金曉彤,王冬艷,王興佳,商 屹,李文慶
用微量元素對東北大米產地識別的技術
金曉彤1,2,王冬艷1,2※,王興佳1,商 屹1,李文慶2
(1. 吉林大學地球科學學院,長春 130061;2. 吉林大學自然資源部東北亞礦產資源評價重點實驗室,長春 130061)
為探討元素指紋分析技術對東北三省大米產地識別的可行性,篩選出可以區分不同產地大米的標志元素,該研究采用電感耦合等離子體質譜(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)測定東北三省主要水稻產區土壤-作物籽實中Li、B、Be等23種微量元素含量,利用相關分析、方差分析、偏最小二乘回歸分析等多種分析方法對不同產地大米及土壤中微量元素含量進行分析,建立識別東北三省大米產地的判別模型。結果表明:大米中Mo、Zn含量與土壤中Mo、Zn含量呈顯著正相關(<0.01);3個省份大米中Ga、Pb、Sr、Zr、Ba元素分布表現出一致性,而另外18種元素表現出顯著差異性(<0.05)。對18種顯著差異元素建立產地識別模型,發現正交偏最小二乘回歸分析和多層感知器神經網絡分析建立的判別模型能較好地對東北三省大米進行有效區分和識別,多層感知器神經網絡分析中整體檢驗組的綜合正確判別率為96.3%;在Fisher判別分析中利用逐步判別法篩選出的7種元素建立的判別模型能有效識別東北三省大米產地,判別正確率為93.8%。研究表明基于微量元素含量特征能夠對東北三省大米產地進行有效識別,可為保護地區特色產品提供技術參考。
模型;分類;微量元素;大米;產地識別;電感耦合等離子體質譜
東北三省稻區是中國最大的商品粳稻生產基地,也是優質稻米的代表產區和重要輸出地[1],對保障糧食安全和社會穩定至關重要。黑龍江五常大米、吉林萬昌大米、遼寧盤錦大米都已被列為地理標志保護產品。大米品質是耕地環境綜合作用的結果,能有效保證特征性產品地理標志性的食品產地識別技術引起廣泛重視[2-4]。
土壤中的微量元素主要來源于成土母質[5],微量元素的含量影響植物的生長發育[6]。植物中的有機化合物因施肥、種植年份的氣候條件、種植品種而產生差異,難以從有機成分中測定其來源,但植物中微量元素含量能夠反映土壤類型和生長環境條件,可以通過對植物中微量元素含量的測定來判定產地[7]。植物體中礦物元素含量與其生長環境(如水、土壤或氣候)密切相關[8],不同地區的農作物元素含量存在著很大的地理空間差異。鹿保鑫等[9]采用ICP-MS測定齊齊哈爾和北安50份黃豆樣本中52種礦物元素的含量,利用判別分析篩選出8種元素指標并建立了黃豆產地的判別模型。Cheajesadagul等[10]利用ICP-MS測定不同產地大米樣品中21種元素的含量,建立判別模型,成功將泰國大米與其他國家大米進行區分。黎永樂等[11]利用ICP-MS測定五常及其他不同產地大米中無機元素含量,通過主成分分析、Fisher判別分析、人工神經網絡對五常大米進行鑒別。張玥等[12]對吉林省松原市大米礦物元素含量測定,通過差異分析、判別分析、主成分分析和聚類分析實現了松原市三大主產區大米產地溯源。以上研究表明可以基于作物的元素含量特征來識別作物產地,然而市場上東北大米混淆現象普遍,不利于地區特色產品的保護,因此,需要建立可靠的東北三省大米產地識別方法。
本試驗應用ICP-MS檢測技術測定黑龍江、吉林和遼寧省共90份大米及其土壤樣品中Li、B、Be等23種微量元素含量,通過定量分析得到大米微量元素指紋圖譜,尋找能夠有效區分東北三省大米產地的特征元素,建立不同產地來源的判別模型,為判斷東三省大米的產地提供技術手段。
根據水稻種植規模和空間分布特征在黑龍江、吉林、遼寧設置9個采樣區,在采樣區內選取具有代表性的農田地塊均勻布置采樣點,每個采樣區設10個采樣點。黑龍江設置3個采樣區,分別為綏化、哈爾濱、五常;吉林省設置3個采樣區,分別為東豐-梅河口、萬昌、雙遼;遼寧省設置3個采樣區,分別為盤山、大洼、營口。共采集90份土壤表層樣品和水稻樣品,采樣時間為水稻收獲前。為方便數據處理,將黑龍江省樣本標注為組別1、吉林省樣品標注為組別2、遼寧省樣品標注為組別3。
每個土壤樣品由多個子樣組合而成,采集深度為0~20 cm,用四分法取約1 000 g樣品裝入干凈的布袋。在土壤樣點采集范圍內同步采集水稻籽實樣品,質量約500 g,根據采集地點進行編號。將所采90套土壤和水稻樣品自然風干,土樣進行過篩處理;大米樣品脫殼,從中取100 g作為分析樣本,封存備用。
硝酸溶液、氫氟酸溶液、高純水、土壤標樣:GBW07401(GSS1)、大米標樣:GBW10010(GSB1a)。
本文涉及的樣品測試在吉林大學自然資源部東北亞礦產資源評價重點實驗室完成。試驗采用Agilent公司生產的7500a型電感耦合等離子體質譜儀,該儀器可完成樣品中常量-微量-痕量等11個數量級的多元素含量分析,可以同時測定含量差別較大的各種元素,具有檢出限低、精密度好、準確度高、分析速度快等優點。在樣品測試過程中每次測樣都將樣品元素含量與標準樣品元素含量進行比對,控制相對標準偏差低于5%以保證元素檢測精度。儀器的參數設置如下:調頻發射功率1 350 W;載氣流速1.12 L/min;氧化物(CeO+/Ce+)<0.5%;雙電荷(Ba2+/Ba+)<1%;霧化器為高鹽霧化器,霧化室溫度為2 ℃;重復次數為3次,蠕動泵轉速:0.1 r/s;采樣深度:7 mm;積分時間:0.1 s。干燥箱為GZX-9146MBE電熱鼓風干燥箱。
土壤樣品:稱取土壤樣品10 g碎樣至200目(粒徑為0.074 mm),稱取0.050 g左右放入聚四氟乙烯溶樣彈中,加入2 mL質量分數為50%的硝酸溶液,放在140 ℃的電熱板上加熱溶解,待樣品中無明顯反應時,蒸至濕鹽狀,從加熱板上取下冷卻室溫后加入1.4 mL氫氟酸溶液、1.6 mL硝酸溶液,將溶樣彈加蓋及鋼套密閉,放入干燥箱內,190 ℃保持48 h。冷卻到室溫后向溶樣彈中加入2 mL質量分數為50%的硝酸溶液,密封放入干燥箱內,190 ℃保持12 h。自然冷卻室溫后,用高純水將消解液移至PET(聚氯乙烯)樣品瓶,稀釋1 000倍至50 mL。
大米樣品:稱取大米樣品10 g碎樣至100目(粒徑為150m),稱取0.100 g左右放入聚四氟乙烯溶樣彈中,加入3 mL 硝酸溶液,將溶樣彈加蓋及鋼套密閉,放入干燥箱內,190 ℃保持12 h。在干燥箱內自然冷卻到室溫后,放在電熱板上加熱溶解,待樣品中無明顯反應時,蒸至濕鹽狀,從加熱板上取下加入2 mL 硝酸溶液,將溶樣彈加蓋及鋼套密閉,放入干燥箱內,190 ℃保持12 h。自然冷卻室溫后,用高純水將消解液移至PET(聚氯乙烯)樣品瓶,稀釋1 000倍至100 mL。
采用皮爾遜相關分析[13-14]探究大米與土壤中微量元素含量的相關關系。采用方差分析[15-16]篩選出不同產地大米中具有顯著差異的微量元素。利用主成分分析[17-18]、偏最小二乘回歸分析[19-20]、正交偏最小二乘回歸分析[21-23]、Fisher判別分析[11]和多層感知器神經網絡分析[24-25]建立判別大米產地的判別模型并進行驗證。數據的相關分析、方差分析、Fisher判別分析和多層感知器神經網絡分析均采用SPSS 23軟件(IBM,美國)完成;主成分分析、偏最小二乘回歸分析、正交偏最小二乘回歸分析采用SIMCA P14.1(Umetrics AB,Sweden)完成。
稻米所需要的礦物元素主要來源于土壤,土壤礦物元素之間的相互作用及其復雜,影響著土壤中礦物元素的供應[26]。對東三省大米及其對應土壤中的Li、Be、B、Cr、Ni、Cu、Zn、Ga、Ge、Mo、Cd、Pb、As、Se、Rb、Sr、Zr、Nb、Sb、Cs、Ba、Hf、W共23種微量元素進行相關分析,發現3個省大米中Mo、Zn元素與土壤中Mo、Zn含量相關性較好,表現為顯著正相關(<0.01),皮爾遜相關系數分別為0.490和0.430(圖1),由此可見產地土壤中Mo、Zn元素的分布對大米中Mo、Zn元素的含量具有一定影響。

注:MMo、TMo分別代表大米、土壤中Mo元素含量;MZn、TZn分別代表大米、土壤中Zn元素含量。
在進行方差分析之前,對3個省大米及土壤中微量元素含量進行方差齊性檢驗,發現并不是所有元素都滿足方差齊的條件,因此選用布朗福賽斯方差分析(Brown-Forsythe analysis of variance)。
利用方差分析研究組別對大米樣本中Li、Be、B共23種元素的差異性。從表1可以看出:不同組別大米樣本對于Ga、Pb、Sr、Zr、Ba表現出一致性(>0.05);而組別樣本對于其余18種元素表現出顯著差異性(<0.05)。后續將選取具有顯著差異的18種元素進行大米產地判別分析。
為探究東北三省大米中具有顯著差異的微量元素在其產地土壤中是否存在差異,對土壤中23種元素進行方差分析。結果表明:由于地理位置較近,所測土壤元素含量較為接近,不同組別土壤樣本對于Li、Be、B、Ga、Mo、As、Zr、Nb、Sb、Ba、Hf表現為差異性(表 1)。其中,遼寧省Li、Be、B、Mo含量平均水平高于其他兩省。總體上看,各省土壤中23種微量元素含量相差不大。

表1 不同產地大米及土壤中23種微量元素含量布朗福賽斯方差分析
注:數據均為平均值±標準偏差,1為黑龍江?。?為吉林??;3為遼寧省(*<0.05,**<0.01)。為樣本容量,=30。下同。
Note: The data are average ± standard deviation, 1 is Heilongjiang Province; 2 is Jilin Province; 3 is Liaoning Province (*<0.05 **<0.01).represents the sample size,=30. Same below.
通過SIMCA P14.1利用主成分分析對18種具有顯著差異的元素進行處理,第一主成分和第二主成分的累計方差為46.39%,包含原變量的信息較少。三個省大米在PC1和PC2上的主成分得分投影圖顯示出不同省份大米在二維空間中不能呈現聚集分布。有監督的偏最小二乘分析能夠很好地解決無監督分析中遇到的問題[27],因此考慮使用SIMCA軟件進行偏最小二乘回歸進行分析。由生成的偏最小二乘回歸分析得分圖(圖2)可以看出由于地域臨近,大米元素特征也相近,樣本易出現混淆交叉現象。為了得到更好的判別效果,采用判別效果更加清晰的正交偏最小二乘法進行判別分析。由于正交偏最小二乘回歸分析一般針對2個組進行,所以分別對黑龍江-吉林、吉林-遼寧、黑龍江-遼寧的大米微量元素含量進行分析。由圖3可以看出黑龍江-吉林樣本被有效區分(圖 3a),而吉林與遼寧(圖3b)、黑龍江與遼寧(圖 3c)樣本有零星交叉現象。另對經正交偏最小二乘回歸分析的結果進行置換檢驗,發現回歸線在軸截距均小于0,且原始的R2Y(所建模型對矩陣的解釋率)和Q2Y(模型的預測能力)總是大于置換后對應的值,說明監督模型可靠。

注:t[1]表示第一預測主成分(X/橫坐標);t[2]表示第二預測主成分(Y/縱坐標)。
判別分析中,選擇90%數據作為訓練集(黑龍江、吉林、遼寧各27個樣本),用于訓練擬合判別分析模型;在黑龍江省的綏化、哈爾濱、五常,吉林省的東豐-梅河口、萬昌、雙遼,遼寧省的盤山、大洼、營口取第一個采樣點的樣本作為未分組個案,組成測試集,用于驗證模型有效性。

注:t[1]表示第一預測主成分(X/橫坐標);t0[1]表示第一正交主成分。
利用Fisher判別函數、采取逐步判別法和留一法交叉檢驗對18種特征元素進行判別分析,分析結果見圖4。圖中組別1(黑龍江省)質心坐標為(2.611,0.921)、組別2(吉林省)質心坐標為(0.392,-1.522)、組別3(遼寧?。┵|心坐標為(-3.004,0.602),樣本的分離效果可以得到比較直觀的展示。3個省樣本分布集中于不同區間,用于檢驗的9個未分組樣本也被正確分到相應組。

圖4 東北三省大米微量元素判別分析合并組圖
對18 種特征元素含量的標準化數據按照統計量Wilk’s最小值原則選擇變量,進行逐步判別分析,建立判別方程。結果顯示B、Cr、Ni、Cu、Ge、Mo、W 7種元素先后被引入判別模型中,所建立的判別模型如下:



式中組別1、組別2和組別3分別代表黑龍江省、吉林省和遼寧省的模型判別值;B、Cr、Ni、Cu、Ge、Mo、W分別代表各元素含量,mg/kg。
從表2中可以發現判別模型對9個未分組個案的判別正確率為100%,對原始已分組個案判別正確率為93.8%,為保證分類模型的準確定,進行留一法交叉驗證,已分組個案交叉驗證分類的正確率為92.6%。

表2 東北三省大米微量元素判別分析分類結果及交叉驗證
注:正確地對93.8%原始已分組個案進行了分類;僅針對分析中的個案進行交叉驗證。在交叉驗證中,每個個案都由那些從該個案以外的所有個案派生的函數進行分類;正確地對92.6%進行了交叉驗證的已分組個案進行了分類。
Note: 93.8% of the originally grouped cases were correctly classified; Only the cases in the analysis were cross-validated. In cross validation, each case is classified by functions that derive from all cases other than that case; 92.6% of the grouped cases that were cross-validated were correctly classified.
從正交偏最小二乘回歸分析、Fisher判別分析的結果可以看出,利用元素的指紋圖譜分析技術可以識別東三省大米產地。為進一步尋求其他可靠的判別方法,利用SPSS建立判別模型,建模方法為多層感知器,組別作為因變量,18種元素含量作為協變量。根據個案相對數目隨機分配個案,按照該分析方法常用比例即訓練集相對70%,驗證集相對30%,參數均按系統默認設置。分析過程中:實際訓練樣本63個,驗證樣本27個,隱藏層數為1層,隱藏層1中的單元數為4。
由分類表(表3)可以看到,多層感知器神經網絡分析對訓練樣本的正確判別率為100%,而檢驗樣本中7個吉林樣本有1個被誤判為黑龍江省樣本,正確判別率為85.7%,黑龍江省、遼寧省樣本均判別正確,整體檢驗組的綜合正確判別率為96.3%。通過對多層感知器神經網絡分析中受試者工作特征(Receiver Operating Characteristic,ROC)曲線面積即AUC(Area Under Curve)數值觀察,AUC值都接近于1,說明檢測方法真實性高。

表3 東北三省大米微量元素多層感知器神經網絡分析
本研究應用ICP-MS檢測技術測定東北三省大米及其土壤樣品中Li、B、Be等23種微量元素含量,通過定量分析得出以下主要結論:
1)東北三省大米中Mo、Zn含量與產地土壤中Mo、Zn含量呈顯著正相關(<0.01)。
2)方差分析結果表明東北三省大米中Li、Be、B、Cr、Ni、Cu、Zn等18種微量元素含量存在地域間的差異。
3)正交偏最小二乘回歸分析進一步表明,不同產地的大米區域特征明顯,微量元素能夠對東北三省大米進行有效區分和識別。
4)在運用Fisher函數、交叉檢驗的基礎上,采取逐步判別法進行分析,依次引入B、Cr、Ni、Cu、Ge、Mo,建立3個判別函數,其訓練集的正確判別率達到93.8%,驗證集的正確判別率為92.6%。
5)對18種顯著差異的微量元素建立的多層感知器神經網絡判別模型具有更好的判別能力,其訓練樣本的判別準確率為100%,檢驗樣本的判別正確率為96.3%。
上述研究表明,即使在空間差異較小的東北三省,也會形成較為明顯的大米中標志微量元素組合的顯著差異。通過對標志微量元素含量及其組合特征的研究可以實現農產品的產地識別。
[1] 蔡卓,朱崴,王旭紅,等. 淺析東北三省水稻產業發展概況[J]. 園藝與種苗,2019(10):49-51.
Cai Zhuo, Zhu Wei, Wang Xuhong, et al. Analysis on the development of rice industry in Northeast China[J]. Horticulture & Seed, 2019(10): 49-51. (in Chinese with English abstract)
[2] 張玥. 吉林省大米產地溯源分析的研究[D]. 長春:吉林農業大學,2015.
Zhang Yue. Study on the Rice Traceability Analysis of Jilin Provenance[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese with English abstract)
[3] 蔣再強. 礦物元素指紋圖譜分析技術對糧食產地溯源的研究進展[J]. 農產品加工,2018(5):70-71,75.
Jiang Zaiqiang. Research progress on traceability of grain origin produced by mineral element fingerprint analysis technology[J]. Farm Products Processing, 2018(5): 70-71, 75. (in Chinese with English abstract)
[4] 白揚,譚麗芹,趙姍姍,等. 大米產地溯源和真實性研究進展[J]. 安徽農業科學,2021,49(18):22-29.
Bai Yang, Tan Liqin, Zhao Shanshan, et al. Research progress on origin tracing and authenticity of rice[J]. Journal of Anhui Agricultural Sciences, 2021, 49(18): 22-29. (in Chinese with English abstract)
[5] 李本銀,汪鵬,吳曉晨,等. 長期肥料試驗對土壤和水稻微量元素及重金屬含量的影響[J]. 土壤學報,2009,46(2):281-288.
Li Benyin, Wang Peng, Wu Xiaochen, et al. Effect of long-term fertilization experiment on concentration of mironutrients and heavy metals in soil and brown rice[J]. Acta Pedologica Sinica. 2009, 46(2): 281-288. (in Chinese with English abstract)
[6] 張璐,蔡澤江,王慧穎,等. 中國稻田土壤有效態中量和微量元素含量分布特征[J]. 農業工程學報,2020,36(16):62-70.
Zhang Lu, Cai Zejiang, Wang Huiying, et al. Distribution characteristics of effective medium and micronutrient element contentsin paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 62-70. (in Chinese with English abstract)
[7] Gonzalvez A, Armenta S, Guardia M. Trace-element composition and stable-isotope ratio for discrimination of foods with protected designation of origin[J]. TrAC: Trends in Analytical Chemistry, 2009, 28(11): 1295-1311.
[8] 馮雪. 方正稻米產地溯源技術研究[D]. 鄭州:河南農業大學,2016.
Feng Xue. The Geographic Authenticity Technologies on Fangzheng Rice[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese with English abstract)
[9] 鹿保鑫,張東杰. 基于礦物元素指紋圖譜的黑龍江黃豆產地溯源[J]. 農業工程學報,2017,33(21):216-221.
Lu Baoxin, Zhang Dongjie. Origin traceability of Heilongjiang soybean using fingerprint of mineral elements[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 216-221. (in Chinese with English abstract)
[10] Cheajesadagul P, Arnaudguilhem C, Shiowatana J, et al. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry[J]. Food Chemistry, 2013, 141(4): 3504-3509.
[11] 黎永樂,鄭彥婕,湯璐,等. 基于無機元素分析對地理標志五常大米鑒別技術的研究[J]. 光譜學與光譜分析,2016,36(3):834-837.
Li Yongle, Zheng Yanjie, Tang Lu, et al. Study on the identification of geographical indication Wuchang rice based on the content of inorganic elements[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 834-837. (in Chinese with English abstract)
[12] 張玥,王朝輝,張亞婷,等. 基于主成分分析和判別分析的大米產地溯源[J]. 中國糧油學報,2016,31(4):1-5.
Zhang Yue, Wang Zhaohui, Zhang Yating, et al. The provenance traceability of rice based on the principal component analysis and discriminant analysis[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(4): 1-5. (in Chinese with English abstract)
[13] 肖勇,趙云,涂治東,等. 基于改進的皮爾遜相關系數的低壓配電網拓撲結構校驗方法[J]. 電力系統保護與控制,2019,47(11):37-43.
Xiao Yong, Zhao Yun, Tu Zhidong, et al. Topology checking method for low voltage distribution network based on improved pearson correlation coefficient[J]. Power System Protection and Control, 2019, 47(11): 37-43. (in Chinese with English abstract)
[14] 李瑞琴,白濱,于安芬,等. 基于礦物元素指紋分析的藥食兼用百合產地溯源[J]. 中國食物與營養,2019,25(12):15-18.
Li Ruiqin, Bai Bin, Yu Anfen, et al. Traceability of origin of medicine and edible lily based on fingerprint analysis on mineral elements[J]. Food and Nutrition in China, 2019, 25(12): 15-18. (in Chinese with English abstract)
[15] 鄒祎. SPSS軟件單因素方差分析的應用[J]. 價值工程,2016,35(34):219-222.
Zou Yi. The analysis of single-factor variance by SPSS[J]. Value Engineering, 2016, 35(34): 219-222. (in Chinese with English abstract)
[16] 顏治,林起輝,雷紅琴,等. 基于無機多元素分析鑒別我國主要進口大米產地[J]. 食品安全質量檢測報,2021,12(13):5455-5462.
Yan Zhi, Lin Qihui, Lei Hongqin, et al. Geographical origin identification of major rice imported to China based on inorganic multi-element analysis[J]. Journal of Food Safety & Quality, 2021, 12(13): 5455-5462. (in Chinese with English abstract)
[17] 吳海燕,徐芝亮. 基于主成分分析和判別分析的廣地龍產地溯源研究[J]. 藥物分析雜志,2022,42(3):387-393.
Wu Haiyan, Xu Zhiliang. Provenance traceability of earthworm based on the principal component analysis and discriminant analysis[J]. Chinese Journal of Pharmaceutical Analysis, 2022, 42(3): 387-393. (in Chinese with English abstract)
[18] 田瓊,馬新華,袁俊杰,等. 基于主成分分析和人工神經網絡的近紅外光譜大豆產地識別[J]. 食品工業科技,2021,42(9):270?274.
Tian Qiong, Ma Xinhua, Yuan Junjie, et al. Soybean origin identification based by near-infrared spectrum based on principal component analysis and artificial neural network model[J]. Science and Technology of Food Industry, 2021, 42(9): 270?274. (in Chinese with English abstract)
[19] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS)[J]. Journal of Chemometrics, 2002, 16(3): 119-128.
[20] 王小芝,陳瑤,吳海龍,等. 基于元素指紋的白術產地溯源及其與土壤的相關性研究[J]. 化學學報,2022,80(2):159-167
Wang Xiaozhi, Chen Yao, Wu Hailong, et al. Study on the origin traceability ofKoidz. and its correlation with soil based on mineral elements[J]. Acta Chimica Sinica, 2022, 80(2): 159-167. (in Chinese with English abstract)
[21] 李富榮,劉雯雯,文典,等. 基于礦質元素指紋分析的皮產地溯源研究[J]. 食品工業科技,2022,43(11):295-302.
Li Furong, Liu Wenwen, Wen Dian, et al. Study on origin tracing of dried tangerine peel using mineral element fingerprints[J]. Science and Technology of Food Industry, 2022, 43(11): 295-302. (in Chinese with English abstract)
[22] 王俊,許多寬,肖勇,等. 基于化學指標的煙葉產區正交偏最小二乘判別分析[J]. 中國煙草科學,2017,38(1):91-96.
Wang Jun, Xu Duokuan, Xiao Yong, et al. The OPLS-DA model of tobacco producing areas based on chemical measurements[J]. Chinese Tobacco Science, 2017, 38(1): 91-96. (in Chinese with English abstract)
[23] 孫全昌,楊明,候華毅. 正交偏最小二乘判別法對青蒿素拉曼光譜的研究[J]. 武漢工程大學學報,2021,43(3):271-276.
Sun Quanchang, Yang Ming, Hou Huayi. Raman spectra of artemisinins via orthogonal projections to latent structures-discriminant analysis modeling[J]. Journal of Wuhan Institute of Technology, 2021, 43(3): 271-276. (in Chinese with English abstract)
[24] 王游游,康利平,呂朝耕,等. 基于穩定同位素和礦質元素的決明子產地特征與溯源判別研究[J]. 核農學報,2020,34(201):28-36.
Wang Youyou, Kang Liping, Lv Chaogeng. et al. Origin characteristics and traceability discrimination of Cassiae Semen based on stable isotope and mineral element [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(201): 28-36. (in Chinese with English abstract)
[25] 李楠,楊春杰. 基于近紅外光譜技術的小米產地溯源研究[J].食品與機械,2020,36(9):97-101.
Li Nan, Yang Chunjie. Geographic origin determination of millet based on near infrared spectroscopy technique[J]. Food and Machinery, 2020, 36(9): 97-101. (in Chinese with English abstract)
[26] 夏立婭. 大米產地特征因子及溯源方法研究[D]. 保定:河北大學,2013.
Xia Liya. Study on Characteristic Factor and Assignment Methods of rice Geographical Origin[D]. Baoding: Hebei University, 2013. (in Chinese with English abstract)
[27] 胡圣英,任紅波,張軍,等. 大米產地溯源方法研究進展[J]. 中國農學通報,2020,36(14):148-155.
Hu Shengying, Ren Hongbo, Zhang Jun, et al. Traceability method of rice origin: Research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 148-155. (in Chinese with English abstract)
Identification technology for rice origins via tracking trace elements in Northeast China
Jin Xiaotong1,2, Wang Dongyan1,2※, Wang Xingjia1, Shang Yi1, Li Wenqing2
(1.,,130061,;2.,,,130061,)
Northeast Rice is mainly grown in the plain areas of Heilongjiang, Jilin, and Liaoning provinces of China. The unique quality of Northeast rice can be attributed to the environmental advantages, including the fertile soil, sufficient sunshine, excellent water quality, long accumulated temperature, and large temperature difference between day and night. However, it is difficult to identify the Northeast rice in the market for the protection of regional special products. An accurate and rapid identification technology is of great significance to the Northeast rice origin. In this study, a total of 10 sampling areas were prepared in Heilongjiang, Jilin, and Liaoning provinces. 90 soil surface and rice samples were then collected. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the content of 23 trace elements (such as Li, B, and Be) in 90 soil-crop seeds from the main rice-producing areas. The SPSS and SIMCA statistical analysis software was also used to analyze the distribution of trace elements in rice and soil from different producing areas. Correlation analysis showed that the contents of Mo and Zn in rice were positively correlated with the contents of Mo and Zn in soil. The analysis of variance showed that there was a consistent distribution of Ga, Pb, Sr, Zr, and Ba in rice from the three provinces, whereas, the rest 18 elements showed significant differences. Principal component analysis (PCA), partial least squares regression analysis (PLS-DA), orthogonal partial least squares regression analysis (OPLS-DA), fisher discriminant analysis (FDA), and multi-layer perceptron neural network (MLP-NN) were performed on the 18 elements with significant differences in rice. Furthermore, the cumulative variance of the first principal component and the second principal component was 46.39%, indicating only a little original variable information. There was no aggregate for the rice from the different provinces in two-dimensional space in the projection of the principal component score. By contrast, there was a small difference in rice element characteristics in the PLS-DA score chart, due to the geographical proximity. Meanwhile, confusion and cross phenomenon were found among rice samples from different producing areas. OPLS-DA, FDA, and MLP-NN were utilized to distinguish the rice from different producing areas. The OPLS-DA scores performed better to distinguish the rice from the Heilongjiang and Jilin provinces. There were a few overlaps in the samples between Jilin and Liaoning provinces, or between Heilongjiang and Liaoning provinces. The result of permutation test shows that the model established by orthogonal partial least squares regression analysis is reliable. In the FDA, the elements that were introduced into the Fisher discriminant model were B, Cr, Ni, Cu, Ge, Mo, and W in the order of stepwise discriminant analysis. The accuracy of the discriminant function was 93.8% for the original grouped cases, and 92.6% for the cross-validation of the rest. The multi-layer perceptron neural network was used to analyze 63 actual training samples, and 27 verification samples, with the group as the dependent variable, and 18 elements content as the covariable. The correct discrimination rate of training samples was 100%, and the comprehensive correct discrimination rate of the overall test group was 96.3%. Consequently, the different discrimination models, the content of trace elements in rice, and the characteristic elements can be expected to effectively distinguish the rice-producing areas of the three provinces in Northeast China.
model; classification; trace elements; rice; identification of origin; inductively coupled plasma mass spectrometry
10.11975/j.issn.1002-6819.2022.22.026
TS213.3
A
1002-6819(2022)-22-0246-07
金曉彤,王冬艷,王興佳,等. 用微量元素對東北大米產地識別的技術[J]. 農業工程學報,2022,38(22):246-252.doi:10.11975/j.issn.1002-6819.2022.22.026 http://www.tcsae.org
Jin Xiaotong, Wang Dongyan, Wang Xingjia, et al. Identification technology for rice origins via tracking trace elements in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 246-252. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.026 http://www.tcsae.org
2022-09-07
2022-11-12
國家自然科學基金項目(42071255)
金曉彤,研究方向為土地資源評價。Email:jinxt21@mails.jlu.edu.cn
王冬艷,教授,博士生導師,研究方向為土地評價與規劃管理。Email:wang_dy@jlu.edu.cn