陶計委, 南亞強, 周杰, 樂利明, 關海濱, 蔣谷峰, 范斐陽
Exendin-4通過抑制Toll樣受體4/核因子κB信號通路對帕金森病小鼠保護作用的研究*
陶計委1,2, 南亞強1,2, 周杰2△, 樂利明2, 關海濱2, 蔣谷峰2, 范斐陽2
(1蘭州大學第二醫院,甘肅 蘭州 730030;2中國人民解放軍聯勤保障部隊第九四〇醫院神經外科,甘肅 蘭州 730050)
探討exendin-4對1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導的帕金森病(PD)小鼠的保護作用及機制。將48只雄性C57BL/6小鼠隨機分為空白對照(control)組、exendin-4組、MPTP組和MPTP+exendin-4組,每組12只。MPTP和MPTP+exendin-4組腹腔注射MPTP(30 mg/kg),每天1次,連續5 d建立亞急性PD小鼠模型,造模成功后,exendin-4組及MPTP+exendin-4組小鼠給予腹腔注射exendin-4(2.5 μg/kg),每天2次,連續7 d治療;選擇爬桿實驗和掛線實驗評估小鼠行為學變化。采用Western blot法檢測各組小鼠中腦酪氨酸羥化酶(TH)、離子鈣結合接頭分子1(Iba-1)、Toll樣受體4(TLR4)、髓樣分化因子88(MyD88)和核因子κB(NF-κB)p65蛋白表達水平,免疫組化法測定各組小鼠中腦黑質TH及TLR4的表達水平;酶聯免疫吸附法測定中腦腫瘤壞死因子α(TNF-α)和白細胞介素6(IL-6)水平。與對照組比較,MPTP組小鼠轉頭時間及爬桿時間延長(<0.01),懸掛實驗評分降低(<0.01),中腦黑質TH陽性神經元數及中腦TH蛋白表達減少(<0.01),Iba-1及TLR4、MyD88、p-NF-κB p65、核NF-κB p65蛋白及炎癥因子TNF-α和IL-6表達水平增加(<0.01);與MPTP組相比,MPTP+exendin-4組小鼠轉頭時間及爬桿時間縮短(<0.01),懸掛實驗評分增加(<0.01),中腦黑質TH陽性神經元數及中腦TH蛋白表達增加(<0.01),Iba-1、TLR4、MyD88、p-NF-κB p65、核NF-κB p65、TNF-α和IL-6表達水平降低(<0.01)。在MPTP誘導的PD小鼠模型中,exendin-4可通過抑制小膠質細胞及TLR4/NF-κB炎癥信號通路激活而發揮抗神經炎癥作用,保護多巴胺能神經元,改善PD小鼠運動功能。
Exendin-4;帕金森病;TLR4/NF-κB信號通路;神經炎癥
帕金森病(Parkinson disease, PD)是一種好發于中老年人群的常見神經退行性疾病,其患病率隨著年齡增加而增加,在65歲以上人群中患病率達1%,80歲以上人群中患病率達3%[1]。其病理特點為中腦黑質多巴胺能神經元變性死亡,紋狀體多巴胺含量下降及路易小體形成[2-3]。神經炎癥在PD發病機制中扮演著重要角色[4-5],Toll樣受體4(Toll-like receptor 4, TLR4)作為神經炎癥重要組成部分參與了PD的發病[6-9]。2型糖尿病與帕金森病患病風險呈正相關,并且它們有許多潛在的共同病理機制[10]。胰高血糖素樣肽1(glucagon-like peptide-1, GLP-1)是一種由腸道L細胞分泌的多肽激素,其可通過增加胰島素合成、促進胰島素分泌和抑制胰高血糖素分泌等調節血糖,但其在體內易被二肽基肽酶4降解,血漿半衰期較短;exendin-4是從巨蜥唾液中分離出的GLP-1受體激動劑,它與哺乳動物GLP-1大約有50%的氨基酸序列相同,與GLP-1具有相似的生理功能,可改善胰島細胞功能,葡萄糖濃度依賴性地促進胰島素分泌,且其可抵抗二肽基肽酶4降解,因此具有較長血漿半衰期,臨床上主要用于2型糖尿病治療[11];近年來研究顯示,exendin-4易通過血腦屏障[12],在PD動物模型中,其可通過抑制腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)及白細胞介素1β(interleukin-1β, IL-1β)等促炎因子的表達[13],促進α-突觸核蛋白降解[14]等多種途徑保護多巴胺能神經元;臨床試驗顯示,exendin-4可改善帕金森病患者運動功能[15],且可能具有疾病修飾作用。本研究基于TLR4、髓樣分化因子88(myeloid differentiation factor 88, MyD88)及核因子κB(nuclear factor-κB, NF-κB)炎癥信號通路,利用1-甲基-4-苯基-1,2,3,6-四氫吡啶(1-methy1-4-phenyI-1,2,3,6-tetrahydropyridine, MPTP)誘導PD小鼠模型,通過行為學、病理及分子生物學等實驗探討exendin-4在PD小鼠模型中具體作用機制,為exendin-4應用于臨床提供實驗依據。
48只SPF級雄性C57BL/6小鼠,10~12周齡,體重20~25 g,由中國農業科學院蘭州獸研所提供,許可證號為SCXK(甘)2015-0001;每籠飼養6只小鼠,自由進食和飲水,相對濕度40%~60%,室溫20~25 ℃。研究嚴格遵守《實驗動物的護理和使用指南》的指導原則,已通過中國人民解放軍聯勤保障部隊第九四〇醫院倫理委員會的批準(審批編號:2021KYLL239)。
exendin-4購于Sigma-Aldrich;MPTP購于北京索萊寶科技有限公司;離子鈣結合接頭分子1(ionized calcium-binding adapter moleoule 1, Iba-1)抗體購于Abcam;TLR4和酪氨酸羥化酶(tyrosine hydroxylase, TH)抗體購于Proteintech;β-actin、histone H3、MyD88和NF-κB p65抗體購于北京博奧森生物技術有限公司;p-NF-κB p65抗體購于Cell Signaling Technology;HRP標記的羊抗兔II抗購于北京博奧森生物技術有限公司;免疫顯色試劑(UItraSensitive SP鼠/兔)購于福州邁新生物技術開發有限公司;TNF-α和IL-6測定試劑盒購于江蘇酶標生物科技有限公司。BX51正置顯微鏡購自Olympus; SDS-PAGE裝置及ChemiDoc MP Imaging System購于Bio-Rad;高速冷凍離心機購于Sigma。
3.1模型制備及分組給藥小鼠隨機分為空白對照(control)組、exendin-4組、MPTP組和MPTP+exendin-4組,每組12只,共48只。給藥前小鼠適應環境一周及行爬桿訓練;根據文獻,MPTP組及MPTP+exendin-4組給予MPTP(30 mg/kg)腹腔注射,每天1次,連續5 d復制亞急性PD模型[16-17]。同時control組、exendin-4組給予等量生理鹽水腹腔注射,每次注射MPTP后小鼠出現震顫及豎毛等急性損傷癥狀,但能逐漸恢復,隨著給藥天數的增加,小鼠運動功能逐漸損害,出現運動遲緩及動作笨拙等異常表明造模成功。造模成功后,參考文獻用藥劑量[14],exendin-4組及MPTP+exendin-4組小鼠給予2.5 μg/kg exendin-4連續腹腔注射,每天2次,連續7 d治療,control組和MPTP組同時給予等體積生理鹽水腹腔注射,給藥結束后行爬桿、懸掛實驗及采集標本。
3.2行為學實驗包括爬桿實驗和懸掛實驗兩部分,exendin-4末次注射后的次日進行爬桿實驗。(1)爬桿實驗:根據我們課題組之前的研究方法,將小鼠頭朝上,上肢放在桿頂端圓球上(高55 cm,直徑1 cm,圓球直徑2 cm)。小鼠從放置到全身朝下的時間為掉頭時間,從放置頂端爬到后肢著陸的時間為爬桿總時間,每只小鼠測試3次,取平均值[18];(2)懸掛實驗:將小鼠兩前爪放于細線中間以懸掛小鼠,記錄小鼠抓住細線的肢體數目。四個爪子抓住細線記4分,三個爪子抓住細線記3分,兩個爪子抓住細線記2分,一個爪子抓住細線記1分,掉落記0分, 每只小鼠測試3次,取平均值[19]。
3.3取材行為學實驗結束后用10%水合氯醛麻醉取材,每組取6只小鼠用4%多聚甲醛行心臟灌注固定取完整腦組織,行免疫組化實驗;每組取6只小鼠麻醉后分離包括黑質部分的中腦組織,行Western blot實驗及酶聯免疫吸附實驗。
3.4Western blot檢測蛋白表達水平剝離小鼠包括黑質部分的中腦組織,加入含PMSF及磷酸酶抑制劑的RIPA裂解液勻漿后,4 ℃、13 040.4×離心20 min,取上清液,采用BCA法測定蛋白濃度;核蛋白提取參照核蛋白提取試劑盒說明書進行。SDS-PAGE分離蛋白,分離膠濃度根據蛋白分子量選擇。將分離的蛋白質轉移至0.22 μm的PVDF膜上,5%脫脂奶粉封閉120 min,相應I抗(TH、Iba1和histone H3, 1∶1 000; TLR4、MyD88、p-NF-κB p65和NF-κB p65, 1∶500; β-actin, 1∶2 000)4 ℃冰箱搖床孵育過夜。次日,TBST清洗3次后,將目標條帶與對應種屬的II抗室溫孵育2 h,TBST清洗3次后曝光,ImageJ軟件分析相應條帶灰度值。
3.5免疫組織化學實驗將固定好的腦組織進行石蠟包埋切片,切片進行二甲苯脫蠟、梯度乙醇水化后、抗原修復10 min,PBS洗3次×3 min,試劑1(內源性過氧化物酶阻斷劑)孵育10 min,PBS洗3次×10 min,試劑2(非特異染色阻斷劑)孵育10 min,然后滴加Ⅰ抗(TH, 1∶500; TLR4, 1∶200)4 ℃孵育過夜;第2天,PBS洗3次×3 min,試劑3(生物素標記的羊抗小鼠/兔IgG聚合物)孵育10 min,PBS洗3次×3 min,試劑4(鏈霉菌抗生物素蛋白-過氧化物酶)孵育10 min,顯微鏡下DAB顯色,蘇木素復染,返藍,乙醇脫水、二甲苯透明,中性樹膠封片,在光學顯微鏡下觀察并采集圖像,利用ImageJ軟件分析統計TH染色陽性細胞數目及TLR4平均光密度。
3.6ELISA檢測取小鼠中腦組織,分別按照TNF-α及IL-6測定試劑盒說明書進行操作。
使用SPSS 20.0軟件和GraphPad Prism 8.0軟件進行統計學分析。計量數據用均數±標準差(mean±SD)表示。多組間比較采用單因素方差分析,兩兩比較采用LSD法。以<0.05為差異有統計學意義。
行為學結果顯示,相比control組,MPTP組小鼠的轉頭時間及爬桿時間顯著延長(<0.01),而MPTP+exendin-4組小鼠較MPTP組轉頭時間及爬桿時間顯著縮短(<0.01);懸掛實驗中MPTP組小鼠的評分比control組顯著減少(<0.01),而MPTP+exendin-4組小鼠的評分較MPTP組顯著增加(<0.01),見圖1。

Figure 1.Results of behavioral tests of the mice in each group. A: comparison of turning time (T-turn) of the mice in each group; B: comparison of climbing total time (T-tatal) of the mice in each group; C: comparison of traction test score of the mice in each group. Mean±SD. n=12. **P<0.01 vs control group; ##P<0.01 vs MPTP group.
免疫組化顯示,TH主要表達于神經元胞質中,MPTP注射后小鼠中腦黑質TH陽性神經元較control組細胞數目顯著減少(<0.01),胞質染色減少;MPTP+exendin-4組小鼠TH陽性神經元較MPTP組數量顯著增多(<0.01),胞質染色增多,見圖2A。Western blot結果顯示,MPTP注射后小鼠中腦組織TH蛋白表達水平較control組顯著減少(<0.01),MPTP+exendin-4組小鼠中腦TH蛋白表達水平較MPTP組顯著增多(<0.01),見圖2B。

Figure 2.Comparison of TH expression of the mice in each group. A: immunohistochemical staining of TH+ neurons in the midbrain substantia nigra of the mice in each group (scale bar=50 μm); B: Western blot images of TH protein in midbrain tissues of mice in each group and the statistical results. Mean±SD. n=6. **P<0.01 vs control group; ##P<0.01 vs MPTP group.
免疫組化染色顯示,TLR4蛋白主要表達于細胞膜上,MPTP模型組小鼠中腦黑質TLR4表達較control組顯著增加(<0.01),MPTP+exendin-4組小鼠中腦黑質TLR4表達較MPTP組顯著減少(<0.01);TLR4的Western blot結果與免疫組化結果一致,MPTP組小鼠中腦組織TLR4蛋白表達較control組顯著增加(<0.01),MPTP+exendin-4組小鼠中腦組織TLR4蛋白表達較MPTP組顯著減少(<0.01);相比control組,MPTP組小鼠中腦TLR4下游MyD88蛋白表達顯著增加(<0.01),NF-κB p65磷酸化水平顯著升高(<0.01),胞核NF-κB p65蛋白表達顯著增加(<0.01);相比MPTP組,MPTP+exendin-4組TLR4下游MyD88蛋白表達顯著減少(<0.01),NF-κB磷酸化顯著減少(<0.01),胞核NF-κB蛋白表達顯著減少(<0.01);Iba-1是小膠質細胞激活標志物,相比control組,MPTP組小鼠中腦Iba-1蛋白表達顯著增加(<0.01),MPTP+exendin-4組小鼠中腦Iba-1蛋白表達水平較MPTP組顯著降低(<0.01),見圖3。

Figure 3.Comparison of TLR4/MyD88/NF-κB signaling pathway and expression level of Iba-1 in midbrain of the mice in each group. A: immunohistochemical staining of TLR4 in the midbrain substantia nigra of mice in each group (scale bar=50 μm); B: TLR4, MyD88 and p-NF-κB p65 detected by Western blot; C: nuclear NF-κB p65 detected by Western blot; D: Iba-1 detected by Western blot. Mean±SD. n=6. *P<0.05, **P<0.01 vs control group; ##P<0.01 vs MPTP group.
酶聯免疫吸附實驗顯示,MPTP組小鼠中腦TNF-α及IL-6表達水平較control組顯著增加(<0.01),而MPTP+exendin-4組小鼠中腦TNF-α及IL-6表達水平較MPTP組顯著降低(<0.01),見圖4。

Figure 4.Comparison of the expression levels of inflammatory factors TNF-α and IL-6 in midbrain of the mice in each group. Mean±SD. n=6. **P<0.01 vs control group; ##P<0.01 vs MPTP group.
PD病理特點為中腦黑質-紋狀體多巴胺能神經元變性死亡,紋狀體多巴胺含量下降及路易小體形成,其運動癥狀主要表現為靜止性震顫、肌強直、運動遲緩和姿勢步態異常等[20-21]。利用MPTP腹腔注射能夠模擬帕金森病的病理及行為學改變,是目前建立PD模型較常用的方法[22];TH是多巴胺能神經元標志物[23],在本實驗中,給予MPTP腹腔注射后小鼠出現黑質區域TH陽性神經元受損及中腦TH蛋白表達水平降低,并出現轉頭時間及爬桿時間延長、懸掛實驗評分降低等運動功能障礙,較好地模擬了PD的病理學及行為學改變;給予exendin-4治療后可減少MPTP對小鼠黑質區域TH陽性神經元損害,增加PD小鼠中腦TH蛋白表達水平,改善了MPTP引起的運動功能障礙,發揮了神經保護作用。
既往研究顯示,exendin-4可通過促進α-突觸核蛋白降解在PD動物模型中發揮神經保護作用[14];臨床試驗顯示,exendin-4可改善帕金森病患者運動功能[15],且可能具有疾病修飾作用。神經炎癥在PD發病機制中扮演著重要角色[4-5],然而,exendin-4在帕金森病中抗神經炎癥具體機制仍不明確;小膠質細胞是中樞神經系統主要炎癥細胞,TLR4/NF-κB信號通路是機體重要的炎癥通路,TLR4激活后可通過MyD88依賴性通路或MyD88非依賴性通路激活下游NF-κB,促進NF-κB核轉移,進而促進炎癥因子TNF-α及IL-6等的釋放[24-25]。在PD發病過程中,TLR4/NF-κB信號通路作為神經炎癥重要組成部分參與了PD的發病[6-9]。我們的研究顯示,給予MPTP腹腔注射后小鼠中腦小膠質細胞激活增加,TLR4/MyD88/NF-κB信號通路表達增加,炎癥因子TNF-α及IL-6釋放增加;給予exendin-4治療后可抑制PD小鼠中腦小膠質細胞激活及TLR4/NF-κB信號通路表達,減少NF-κB磷酸化和核轉移,減少炎癥因子TNF-α及IL-6的釋放,在MPTP誘導的PD小鼠模型中起到抗神經炎癥作用。
綜上,我們的研究表明,在MPTP誘導的PD小鼠模型中,exendin-4可通過抑制小膠質細胞及TLR4 /NF-κB炎癥信號通路激活發揮抗神經炎癥作用,保護多巴胺能神經元,改善PD小鼠運動功能。
[1] Homayoun H. Parkinson disease[J]. Ann Intern Med, 2018, 169(5):C33-C48.
[2] Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease[J]. Brain, 2013, 136(Pt 8):2419-2431.
[3] Kalia LV, Lang AE. Parkinson's disease[J]. Lancet, 2015, 386(9996):896-912.
[4] Poewe W, SeppiK, Tanner CM, et al. Parkinson disease[J]. Nat Rev Dis Primers, 2017, 3:17013.
[5] Gelders G, Baekelandt V, Van der Perren A. Linking neuroinflammation and neurodegeneration in Parkinson's disease[J]. J Immunol Res, 2018, 2018:4784268.
[6] Kouli A, Camacho M, Allinson K, et al. Neuroinflammation and protein pathology in Parkinson's disease dementia[J]. Acta Neuropathol Commun, 2020, 8(1):211.
[7] Shao QH, Chen Y, Li FF, et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease[J]. Acta Pharmacol Sin, 2019, 40(12):1503-1512.
[8] Campolo M, Paterniti I, Siracusa R, et al. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson's diseasesmodel[J]. Brain Behav Immun, 2019, 76:236-247.
[9]李海霞, 李映霞, 程蕓, 等. Toll樣受體4在帕金森病中的研究進展[J]. 中國病理生理雜志, 2021, 37(4):744-751.
Li HX, Li YX, Cheng Y, et al. Progress in role of Toll-like receptor 4 in Parkinson disease[J]. Chin J Pathophysiol, 2021, 37(4):744-751.
[10] Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: a new target for disease modification?[J]. Prog Neurobiol, 2016, 145/146:98-120.
[11] Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2012, 8(12):728-742.
[12] Zhang L, Zhang L, Li Y, et al. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson's disease[J]. J Parkinsons Dis, 2020, 10(2):523-542.
[13] Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease[J]. J Endocrinol, 2009, 202(3):431-439.
[14] Bu LL, Liu YQ, Shen Y, et al. Neuroprotection of exendin-4 by enhanced autophagy in a parkinsonian rat model of α-synucleinopathy[J]. Neurotherapeutics, 2021, 18(2):962-978.
[15] Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2017, 390(10103):1664-1675.
[16] Tatton NA,Kish SJ.In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining[J]. Neuroscience, 1997, 77(4):1037-1048.
[17] 任傳忠, 肖猛, 李瑋, 等. 硫辛酸對MPTP誘導的小鼠帕金森病模型的神經保護作用[J]. 中國病理生理雜志, 2020, 36(1):127-133.
Ren CZ, Xiao M, Li W, et al. Effects of alpha-lipoic acid on MPTP-induced Parkinson disease in mice[J]. Chin J Pathophysiol, 2020, 36(1):127-133.
[18] Zhou J, Qu XD, Li ZY, et al. Salvianolic acid B attenuates toxin-induced neuronal damage via Nrf2-dependent glial cells-mediated protective activity in Parkinson's disease models[J]. PLoS One, 2014, 9(7):e101668.
[19] Sun MF, Zhu YL, Zhou ZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota,glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70:48-60.
[20] Erro R, Stamelou M. The motor syndrome of Parkinson's disease[J]. Int Rev Neurobiol, 2017, 132:25-32.
[21] Jankovic J, Tan EK. Parkinson's disease:etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8):795-808.
[22] Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson's disease behaving as they should?[J]. Behav Brain Res, 2018, 352:133-141.
[23] 劉麗, 羅廣軒, 林健琳, 等. 蟲草素對MPTP誘導的帕金森病小鼠運動與認知能力的影響[J]. 中國病理生理雜志, 2019, 35(2):326-331.
Liu L, Luo GX, Lin JL, et al. Effects of cordycepin on motor and cognition in Parkinson disease mice induced by MPTP[J]. Chin J Pathophysiol, 2019, 35(2):326-331.
[24] Kuzmich NN, Sivak KV, Chubarev VN, et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis[J]. Vaccines (Basel), 2017, 5(4):34.
[25] Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation[J]. Ageing Res Rev, 2017, 36:11-19.
Protective effect of exendin-4 on Parkinson disease mice by inhibiting Toll-like receptor 4/nuclear factor-κB signaling pathway
TAO Ji-wei1,2, NAN Ya-qiang1,2, ZHOU Jie2△, LE Li-ming2, GUAN Hai-bin2, JIANG Gu-feng2, FAN Fei-yang2
(1,730030,;2,940,730050,)
To investigate the protective effect and mechanism of exendin-4 on Parkinson's disease (PD) mice induced by 1-methy1-4-phenyI-1, 2,3,6-tetrahydropyridine (MPTP).Forty-eight male C57BL/6 mice were randomly divided into control group, exendin-4 group, MPTP group and MPTP+exendin-4 group, with 12 mice in each group. The mice in MPTP and MPTP+exendin-4 groups were intraperitoneally injected with MPTP (30 mg/kg) once a day for 5 d to establish subacute PD model. Exendin-4 (2.5 μg/kg) was injected twice a day for 7 d in exendin-4 and MPTP+exendin-4 group. The pole test and traction test were used to evaluate the behavioral changes of the mice. Western blot was used to detect the protein levels of tyrosine hydroxylase (TH), ionized calcium-binding adapter molecule 1 (Iba-1), Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor-κB (NF-κB) in the midbrain of the mice. Immunohistochemistry was used to detect the expression levels of TH and TLR4 in the midbrain substantia nigra of the mice. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-a) in midbrain were detected by ELISA.Compared with control group, the head turning time and pole climbing time of the mice in MPTP group were prolonged (<0.01), the traction test score decreased (<0.01), the number of TH-positive neurons in the substantia nigra and the expression of TH protein in midbrain decreased (<0.01), and the expression levels of Iba-1, TLR4, MyD88, p-NF-κB p65, nuclear NF-κB p65, TNF-α and IL-6 increased (<0.01). Compared with MPTP group, the head turning time and pole climbing time of the mice were reduced in MPTP+exendin-4 group (<0.01), the traction test score increased (<0.01), the number of TH-positive neurons in the substantia nigra and the expression of TH protein in midbrain increased (<0.01), the expression levels of Iba-1, TLR4, MyD88, p-NF-κB P65, nuclear NF-κB p65, TNF-α and IL-6 decreased (<0.01).In MPTP-induced PD mouse model, exendin-4 protects dopaminergic neurons and improves the motor function of PD mice by inhibiting the activation of microglia and TLR4/NF-κB inflammatory signaling pathway.
Exendin-4; Parkinson disease; TLR4/NFκB signaling pathway; Neuroinflammation
R742.5; R363.2
A
10.3969/j.issn.1000-4718.2022.03.015
1000-4718(2022)03-0502-07
2021-12-04
2022-01-12
[基金項目]甘肅省衛生行業科研計劃項目(No. GSWSKY2018-43)
Tel: 13309313131; E-mail: zhoujie7089@163.com
(責任編輯:林白霜,羅森)