徐家歡, 王瑋
小膠質(zhì)細(xì)胞在慢性間歇低氧相關(guān)認(rèn)知障礙中的作用*
徐家歡, 王瑋△
(中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院呼吸與危重癥醫(yī)學(xué)科,遼寧 沈陽(yáng) 110001)
慢性間歇低氧;認(rèn)知障礙;小膠質(zhì)細(xì)胞
慢性間歇低氧(chronic intermittent hypoxia, CIH)是阻塞性睡眠呼吸暫停(obstructive sleep apnea, OSA)的重要病理生理學(xué)特征,參與OSA相關(guān)并發(fā)癥的發(fā)生發(fā)展[1]。認(rèn)知障礙是OSA常見的并發(fā)癥之一,其患病率高達(dá)30%以上[2],嚴(yán)重影響患者的生活質(zhì)量。因此,探討CIH導(dǎo)致認(rèn)知障礙的具體機(jī)制,為臨床提供新的治療思路十分重要。小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)的免疫細(xì)胞,在維持中樞神經(jīng)系統(tǒng)穩(wěn)態(tài)中起重要作用。研究顯示,CIH可影響小膠質(zhì)細(xì)胞表型及功能,后者進(jìn)一步參與認(rèn)知障礙的發(fā)生發(fā)展,但具體機(jī)制仍不十分清楚[3-4]。本文就小膠質(zhì)細(xì)胞在CIH相關(guān)認(rèn)知障礙中的作用及機(jī)制進(jìn)行綜述。
CIH是指OSA患者在夜間睡眠過(guò)程中,由于氣道反復(fù)塌陷引起呼吸暫停或低通氣而導(dǎo)致的缺氧和復(fù)氧反復(fù)交替,是OSA患者重要的病理生理學(xué)特征之一。早在2001年,Gozal等[1]就提出CIH可引起認(rèn)知障礙。他們觀察到低氧2周后(10%與21%的氧濃度每90 s或每30 min交替,12 h/d),大鼠在水迷宮中尋找平臺(tái)的潛伏期和路線長(zhǎng)度均較常氧組明顯延長(zhǎng)。此后,越來(lái)越多的研究采用不同的間歇低氧模式及行為學(xué)檢測(cè)方法證實(shí)CIH引起大/小鼠長(zhǎng)期或短期的空間、工作記憶等方面的損害[5-6]。病理學(xué)結(jié)果提示,CIH可引起大/小鼠海馬、大腦額頂葉皮質(zhì)層等學(xué)習(xí)及記憶相關(guān)區(qū)域損傷,主要表現(xiàn)為神經(jīng)元凋亡、壞死,突觸異常,細(xì)胞結(jié)構(gòu)改變等[7-8]。但CIH引起認(rèn)知障礙的具體機(jī)制目前仍不十分清楚。
近年來(lái),越來(lái)越多的研究證實(shí)小膠質(zhì)細(xì)胞在神經(jīng)退行性疾病中發(fā)揮重要作用[9-10]。小膠質(zhì)細(xì)胞是腦內(nèi)定居的免疫細(xì)胞群。正常條件下,小膠質(zhì)細(xì)胞以靜止?fàn)顟B(tài)存在,其主要功能是檢測(cè)病原體和宿主衍生的配體,包括病原體相關(guān)的分子模式和危險(xiǎn)相關(guān)的分子模式,維持中樞神經(jīng)系統(tǒng)的穩(wěn)態(tài)[11]。當(dāng)病原體入侵時(shí),小膠質(zhì)細(xì)胞被激活,并分化成M1型(促炎型)和M2型(抗炎型)細(xì)胞,參與疾病的發(fā)生發(fā)展[12]。研究顯示,小膠質(zhì)細(xì)胞對(duì)認(rèn)知功能的影響是雙向的。一方面,小膠質(zhì)細(xì)胞對(duì)認(rèn)知功能起保護(hù)作用。基因組學(xué)研究提示,小膠質(zhì)細(xì)胞特異性基因突變?nèi)缢铇蛹?xì)胞Ⅱ型觸發(fā)受體基因,脾焦點(diǎn)形成病毒前病毒整合癌基因等,可導(dǎo)致小膠質(zhì)細(xì)胞對(duì)β淀粉樣蛋白的清除能力及對(duì)細(xì)胞碎片的吞噬能力下降,進(jìn)而導(dǎo)致神經(jīng)元的損傷,最終發(fā)生認(rèn)知障礙[13-14];在腦創(chuàng)傷的小鼠模型中,外源性腦室內(nèi)注入小膠質(zhì)細(xì)胞后有利于神經(jīng)元存活,改善小鼠腦創(chuàng)傷后認(rèn)知功能[15]。此外,小膠質(zhì)細(xì)胞也是其他神經(jīng)保護(hù)性藥物發(fā)揮作用的重要靶點(diǎn)。研究顯示貝沙羅汀通過(guò)視黃醇X受體激活過(guò)氧化物酶體增殖物激活受體γ依賴性通路促進(jìn)腦出血小鼠血腫吸收,改善認(rèn)知功能;而在小膠質(zhì)細(xì)胞被消耗的小鼠中,貝沙羅汀的神經(jīng)保護(hù)作用消失[16]。另一方面,小膠質(zhì)細(xì)胞也可能對(duì)認(rèn)知功能起負(fù)面影響。在腹腔注射脂多糖后,小鼠海馬區(qū)激活的小膠質(zhì)細(xì)胞明顯增多,小鼠認(rèn)知功能受損;而給予黃芩苷治療后,小鼠海馬區(qū)反應(yīng)性小膠質(zhì)細(xì)胞及炎癥因子減少,小鼠認(rèn)知功能改善,提示過(guò)渡激活的小膠質(zhì)細(xì)胞對(duì)中樞神經(jīng)系統(tǒng)造成損傷[17]。
CIH作為外源性刺激,影響小膠質(zhì)細(xì)胞的功能狀態(tài),后者又通過(guò)一系列機(jī)制參與CIH相關(guān)認(rèn)知障礙的形成。
3.1.1CIH參與小膠質(zhì)細(xì)胞的激活及表型轉(zhuǎn)化研究提示,與常氧組大/小鼠比較,CIH組大/小鼠海馬區(qū)激活的小膠質(zhì)細(xì)胞明顯增多,且以M1型小膠質(zhì)細(xì)胞為主[3, 18-19]。此外,其他模型提示,與單純糖尿病比較,合并CIH的糖尿病模型組小鼠海馬區(qū)M1型激活小膠質(zhì)細(xì)胞明顯增多,而M2型激活小膠質(zhì)細(xì)胞減少[4]。體外細(xì)胞實(shí)驗(yàn)在間歇低氧8 h或18 h后,獲得同樣的結(jié)果[3-4]。CIH可能通過(guò)以下機(jī)制參與小膠質(zhì)細(xì)胞激活與表型轉(zhuǎn)化:(1)間歇低氧可以直接引起中樞神經(jīng)系統(tǒng)內(nèi)的氧化應(yīng)激,產(chǎn)生大量的活性氧或炎癥因子[1]。一方面,活性氧或者炎癥因子可以直接作用于小膠質(zhì)細(xì)胞,通過(guò)激活還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶等,從而促使小膠質(zhì)進(jìn)一步產(chǎn)生炎癥因子發(fā)揮第一道防線的作用[20];另一方面,活性氧導(dǎo)致神經(jīng)元及其他膠質(zhì)細(xì)胞損傷產(chǎn)生損傷相關(guān)分子模式,后者可與小膠質(zhì)細(xì)胞表面的多種受體例如Toll樣受體4、髓樣細(xì)胞Ⅱ型觸發(fā)受體2等結(jié)合,進(jìn)而激活下游通路,發(fā)揮小膠質(zhì)細(xì)胞功能[21]。(2)CIH可引起外周循環(huán)中炎癥因子增加。當(dāng)CIH時(shí),血腦屏障通透性明顯增加[22],部分外周炎癥因子例如白細(xì)胞介素1(interleukin-1, IL-1)可透過(guò)血腦屏障進(jìn)入中樞神經(jīng)系統(tǒng),促進(jìn)小膠質(zhì)細(xì)胞的激活并釋放炎癥因子。
3.1.2CIH參與小膠質(zhì)細(xì)胞的增殖與凋亡Liu等[23]給予BV-2小膠質(zhì)細(xì)胞8 h的間歇低氧后(1% O2與21% O2每400 s交替1次),觀察到間歇低氧組小膠質(zhì)細(xì)胞數(shù)量明顯低于常氧組,與Gong等[24]的研究結(jié)果相似,提示間歇低氧影響小膠質(zhì)細(xì)胞的增殖。進(jìn)一步機(jī)制研究認(rèn)為,間歇低氧通過(guò)啟動(dòng)多個(gè) P53 相關(guān)通路抑制細(xì)胞周期蛋白 D1 和細(xì)胞周期蛋白 E2 的表達(dá),阻斷細(xì)胞周期轉(zhuǎn)變并減弱小膠質(zhì)細(xì)胞的增殖能力[23]。此外,Lin等[3]的細(xì)胞實(shí)驗(yàn)提示間歇低氧(1% O210 min/21% O25 min交替,共18 h)可促進(jìn)BV-2小膠質(zhì)細(xì)胞凋亡,蒼術(shù)酮通過(guò)作用于沉默調(diào)節(jié)蛋白3減少炎癥因子釋放,可以減輕間歇低氧引起的小膠質(zhì)細(xì)胞凋亡。Gong等[24]的BV-2細(xì)胞實(shí)驗(yàn)同樣提示,與常氧組比較,間歇低氧組小膠質(zhì)細(xì)胞凋亡增多,生松素通過(guò)線粒體自噬相關(guān)蛋白通路減輕炎癥反應(yīng)改善細(xì)胞凋亡。因此,CIH可能通過(guò)誘導(dǎo)炎癥反應(yīng)導(dǎo)致小膠質(zhì)細(xì)胞凋亡,但具體分子機(jī)制仍需進(jìn)一步研究。
CIH對(duì)小膠質(zhì)細(xì)胞影響的總結(jié)見圖1。

Figure 1.The effect of chronic intermittent hypoxia (CIH) on microglia. The red arrows represent cause-effect relationship. The black arrows represent the changes of the phenomena. The blue arrow represents the inflammation factors crossing the blood-brain barrier (BBB). CNS: central nervous system; DAMP: damage-associated molecular patterns.
3.2.1小膠質(zhì)細(xì)胞的保護(hù)作用下降小膠質(zhì)細(xì)胞具有吞噬和清除神經(jīng)毒性物質(zhì),對(duì)認(rèn)知功能起保護(hù)作用。β-淀粉樣蛋白可激活小膠質(zhì)細(xì)胞表面的髓樣細(xì)胞Ⅱ型觸發(fā)受體2,并激活下游的哺乳動(dòng)物雷帕霉素靶蛋白通路促進(jìn)小膠質(zhì)細(xì)胞對(duì)細(xì)胞碎片及β淀粉樣蛋白的清除,并在淀粉樣斑塊周圍聚集產(chǎn)生屏障功能減少對(duì)周圍神經(jīng)元的影響,起神經(jīng)保護(hù)作用[25-26]。CIH一方面直接引起β淀粉樣物質(zhì)生成增多,另一方面其還可引起海馬區(qū)神經(jīng)炎癥反應(yīng)促使小膠質(zhì)細(xì)胞凋亡增加或增殖減少,對(duì)吞噬和清除毒性物質(zhì)的作用減弱[3,24,27]。這引起β淀粉樣物質(zhì)在中樞神經(jīng)系統(tǒng)中的產(chǎn)生與清除失平衡,導(dǎo)致海馬區(qū)β淀粉樣物質(zhì)堆積,從而導(dǎo)致認(rèn)知障礙的發(fā)生。此外,M2型小膠質(zhì)細(xì)胞具有抗炎作用,具有組織修復(fù)作用。在CIH作用下,M2型小膠質(zhì)細(xì)胞激活相關(guān)分子減少,導(dǎo)致小膠質(zhì)細(xì)胞M2型轉(zhuǎn)化受抑制[3],小膠質(zhì)細(xì)胞抗炎及組織修復(fù)作用減弱,腦組織過(guò)度損傷,導(dǎo)致認(rèn)知障礙。
3.2.2小膠質(zhì)細(xì)胞的損傷作用增強(qiáng)
3.2.2.1 小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥反應(yīng) 小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥反應(yīng)在認(rèn)知障礙中具有重要作用。CIH作為外源性刺激,促進(jìn)小膠質(zhì)細(xì)胞向M1細(xì)胞轉(zhuǎn)化,并激活相應(yīng)炎癥通路導(dǎo)致大量炎癥因子釋放,引起神經(jīng)炎癥反應(yīng),進(jìn)而導(dǎo)致認(rèn)知障礙[28-30]。那么小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥反應(yīng)是如何引起認(rèn)知障礙的呢?可能與下列機(jī)制有關(guān):(1)神經(jīng)元損傷:神經(jīng)元是神經(jīng)系統(tǒng)最基本的結(jié)構(gòu)和功能單位,海馬區(qū)或額頂葉皮質(zhì)層神經(jīng)元損傷可引起認(rèn)知障礙。研究顯示,在BV-2小膠質(zhì)細(xì)胞與HT-22神經(jīng)元共培養(yǎng)體系中,與常氧組比較,間歇低氧組炎癥因子、神經(jīng)元凋亡明顯增加[31]。進(jìn)一步動(dòng)物實(shí)驗(yàn)觀察到,CIH引起小鼠海馬區(qū)小膠質(zhì)細(xì)胞M1型激活并釋放IL-1β、IL-6、腫瘤壞死因子α等多種損傷性炎癥因子,引起神經(jīng)元凋亡及死亡,造成小鼠認(rèn)知功能障礙;當(dāng)給予外源性應(yīng)用藥物促進(jìn)小膠質(zhì)細(xì)胞向M2型轉(zhuǎn)化,減少損傷性炎癥因子釋放,增加IL-10、IL-13等保護(hù)性炎癥因子,減少神經(jīng)元損傷,小鼠認(rèn)知功能改善[3,18-19]。此外,神經(jīng)炎癥反應(yīng)還能抑制神經(jīng)干細(xì)胞的增殖,促進(jìn)其凋亡,并能顯著降低其分化成神經(jīng)元,尤其是膽堿能神經(jīng)元的能力,從而使功能性神經(jīng)元減少,引起認(rèn)知障礙[32]。上述結(jié)果提示小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥反應(yīng)通過(guò)引起神經(jīng)元凋亡或抑制神經(jīng)元分化參與間歇低氧引起的認(rèn)知障礙。(2)血腦屏障受損:血腦屏障是由血管內(nèi)皮細(xì)胞,周細(xì)胞及星形膠質(zhì)細(xì)胞組成,在維持腦內(nèi)的穩(wěn)態(tài)及對(duì)外源性刺激后調(diào)節(jié)腦組織局部代謝需求方面具有重要作用[33]。近年來(lái),研究認(rèn)為血腦屏障受損參與多個(gè)神經(jīng)退行性疾病的發(fā)生發(fā)展[34-35],可能的機(jī)制如下:腦能量代謝異常:血腦屏障功能受損時(shí),其表面的葡萄糖轉(zhuǎn)運(yùn)蛋白數(shù)量減少或重新分布,導(dǎo)致葡萄糖轉(zhuǎn)運(yùn)減少,腦能量代謝不足,引起腦組織受損,進(jìn)而引起認(rèn)知障礙[35]。腦內(nèi)神經(jīng)毒性物質(zhì)增多:在缺血性腦卒中模型中,小鼠血腦屏障受損,腺苷三磷酸轉(zhuǎn)運(yùn)蛋白表達(dá)下調(diào),導(dǎo)致神經(jīng)毒性物質(zhì)在腦內(nèi)聚積,損傷正常腦功能;當(dāng)外源性用藥恢復(fù)蛋白表達(dá)后,腦功能恢復(fù)[36]。CIH可引起血腦屏障受損,通透性增加,參與認(rèn)知障礙的發(fā)生[22]。那么,CIH是如何引起血腦屏障損傷參與認(rèn)知障礙的呢?研究認(rèn)為激活的小膠質(zhì)細(xì)胞在血腦屏障受損中具有重要的作用[37],當(dāng)抑制小膠質(zhì)細(xì)胞激活后,血腦屏障受損減輕[38]。在缺血再灌注模型中,小鼠海馬區(qū)小膠質(zhì)細(xì)胞激活,引起神經(jīng)炎癥反應(yīng)及血腦屏障受損,進(jìn)而導(dǎo)致小鼠認(rèn)知障礙;給予小鼠具有抗炎作用的藥物治療后,小鼠海馬區(qū)小膠質(zhì)細(xì)胞激活減少,神經(jīng)炎癥反應(yīng)減輕,血腦屏障功能改善,最終認(rèn)知障礙緩解[39]。因此,CIH通過(guò)激活小膠質(zhì)細(xì)胞并介導(dǎo)神經(jīng)炎癥反應(yīng),后者引起血腦屏障損傷進(jìn)而導(dǎo)致認(rèn)知障礙。
3.2.2.2 小膠質(zhì)細(xì)胞依賴性突觸吞噬 突觸減少影響神經(jīng)沖動(dòng)在神經(jīng)元之間的傳遞,是神經(jīng)退行性疾病認(rèn)知障礙的重要機(jī)制之一[40]。在神經(jīng)系統(tǒng)的生長(zhǎng)發(fā)育過(guò)程中,小膠質(zhì)細(xì)胞通過(guò)補(bǔ)體途徑參與突觸的修飾,維持正常的神經(jīng)系統(tǒng)功能[41]。在缺血缺氧等狀態(tài)下,小膠質(zhì)細(xì)胞介導(dǎo)的突觸吞噬被異常激活,引起突觸減少及相應(yīng)功能損傷[42]。研究顯示,在阿爾茨海默病及缺血再灌注小鼠模型中,海馬區(qū)突觸補(bǔ)體C1q與C3異常激活并與小膠質(zhì)細(xì)胞的補(bǔ)體C3受體接合,啟動(dòng)小膠質(zhì)細(xì)胞依賴性突觸吞噬,從而造成突觸減少及突觸功能障礙,影響小鼠認(rèn)知功能;當(dāng)敲除小膠質(zhì)細(xì)胞C3受體或應(yīng)用特異性C3受體抑制劑后,突觸減少及突觸功能障礙得到改善,小鼠認(rèn)知功能恢復(fù)[43-44]。CIH可以誘導(dǎo)補(bǔ)體C3激活或減少補(bǔ)體抑制劑CD59的表達(dá),從而導(dǎo)致循環(huán)中激活的補(bǔ)體增加[45-46],進(jìn)而引起損傷。因此,CIH可能通過(guò)補(bǔ)體途徑引起小膠質(zhì)細(xì)胞依賴性突觸吞噬,從而參與認(rèn)知障礙形成,具體機(jī)制仍需進(jìn)一步研究。
小膠質(zhì)細(xì)胞參與CIH相關(guān)認(rèn)知障礙機(jī)制的總結(jié)見圖2。

Figure 2.The role of microglia and its underlying mechanism in chronic intermittent hypoxia (CIH)-related cognitive impairment. The red arrows represent cause-effect relationship. The black arrows represent the changes of the phenomena. CNS: central nervous system.
CIH作為OSA的重要病理生理學(xué)特征,參與OSA患者認(rèn)知障礙的發(fā)生發(fā)展。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中重要的免疫細(xì)胞,受CIH的影響,參與相關(guān)并發(fā)癥的發(fā)生發(fā)展,但目前機(jī)制尚不十分清楚。明確小膠質(zhì)細(xì)胞在CIH相關(guān)認(rèn)知障礙中的作用機(jī)制,可通過(guò)上調(diào)其神經(jīng)保護(hù)作用、減弱其神經(jīng)損傷作用而CIH引起的認(rèn)知障礙,為臨床治療OSA相關(guān)認(rèn)知障礙提供參考資料。
[1] Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat[J]. J Neurosci, 2001, 21(7):2442-2450.
[2] Xu J, Qin Z, Li W, et al. Effects of somatotropic axis on cognitive dysfunction of obstructive sleep apnea[J]. Sleep Breath, 2020, 24(1):175-182.
[3] Lin Y, Liu X, Tan D, et al. Atractylon treatment prevents sleep-disordered breathing-induced cognitive dysfunction by suppression of chronic intermittent hypoxia-induced M1 microglial activation[J]. Biosci Rep, 2020, 40(6):BSR20192800.
[4] Shi Y, Guo X, Zhang J, et al. DNA binding protein HMGB1 secreted by activated microglia promotes the apoptosis of hippocampal neurons in diabetes complicated with OSA[J]. Brain Behav Immun, 2018, 73:482-492.
[5] Patil SS, Sunyer B, H?ger H, et al. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze[J]. Behav Brain Res, 2009, 198(1):58-68.
[6] Gozal D, Khalyfa A, Qiao Z, et al. Temporal trajectories of novel object recognition performance in mice exposed to intermittent hypoxia[J]. Eur Respir J, 2017, 50(6):1701456.
[7] Guo X, Shi Y, Du P, et al. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA[J]. Life Sci, 2019, 239:117020.
[8] Douglas RM, Ryu J, Kanaan A, et al. Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction[J]. Am J Physiol Cell Physiol, 2010, 298(6):C1594-C1602.
[9] Rangaraju S, Dammer EB, Raza SA, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease[J]. Mol Neurodegener, 2018, 13(1):24.
[10] George S, Rey NL, Tyson T, et al. Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson's disease [J]. Mol Neurodegener, 2019, 14(1):34.
[11] Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005):841-845.
[12] Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury[J]. Nat Neurosci, 2005, 8(6):752-758.
[13] Pimenova AA, Herbinet M, Gupta I, et al. Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response[J]. Neurobiol Dis, 2021, 148:105217.
[14] McQuade A, Kang YJ, Hasselmann J, et al. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer's disease[J]. Nat Commun, 2020, 11(1):5370.
[15] Willis EF, MacDonald KPA, Nguyen QH, et al. Repopulating microglia promote brain repair in an IL-6-dependent manner[J]. Cell, 2020, 180(5):833-846.e16.
[16] Xu C, Chen H, Zhou S, et al. Pharmacological activation of RXR-α promotes hematoma absorption via a PPAR-γ-dependent pathway after intracerebral hemorrhage[J]. Neurosci Bull, 2021, 37(10):1412-1426.
[17] Li Y, Liu T, Li Y,et al. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway[J]. Oxid Med Cell Longev, 2020, 2020:4751349.
[18] Dong P, Zhao J, Li N,et al. Sevoflurane exaggerates cognitive decline in a rat model of chronic intermittent hypoxia by aggravating microglia-mediated neuroinflammation via downregulation of PPAR-γ in the hippocampus[J]. Behav Brain Res, 2018, 347:325-331.
[19] Zhang X, Li N, Lu L, et al. Pioglitazone prevents sevofluraneinduced neuroinflammation and cognitive decline in a rat model of chronic intermittent hypoxia by upregulating hippocampal PPARγ[J]. Mol Med Rep, 2019, 19(5):3815-3822.
[20] Spranger M, Kiprianova I, Krempien S, et al. Reoxygenation increases the release of reactive oxygen intermediates in murine microglia[J]. J Cereb Blood Flow Metab, 1998, 18(6):670-674.
[21] Zhang J, Song N, Liu Y, et al. Inhibits β-amyloid-induced inflammation and oxidative stress in BV-2 cells via suppressing TLR4/NF-κBsignaling pathway and activating Nrf2/HO-1 signaling pathway[J]. Neurochem Res, 2021, 46(3):638-647.
[22] Zolotoff C, Voirin AC, Puech C, et al. Intermittent hypoxia and its impact on Nrf2/HIF-1α expression and ABC transporters: anhuman blood-brain barrier model study[J]. Cell Physiol Biochem, 2020, 54(6):1231-1248.
[23] Liu S, Wang Z, Xu B, et al. Intermittent hypoxia reduces microglia proliferation and induces DNA damage[J]. Iran J Basic Med Sci, 2016, 19(5):497-502.
[24] Gong LJ, Wang XY, Gu WY, et al. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea[J]. J Neuroinflammation, 2020, 17(1):337.
[25] Yeh FL, Wang Y, Tom I, et al. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia[J]. Neuron, 2016, 91(2):328-340.
[26] Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease[J]. Cell, 2017, 169(7):1276-1290.e17.
[27] Liguori C, Mercuri NB, Nuccetelli M, et al. Obstructive sleep apnea may induce orexinergic system and cerebral β-amyloid metabolism dysregulation: is it a further proof for Alzheimer's disease risk?[J]. Sleep Med, 2019, 56:171-176.
[28] Wang H, Yang T, Sun J, et al. SENP1 modulates microglia-mediated neuroinflammation toward intermittent hypoxia-induced cognitive decline through the de-SUMOylation of NEMO[J]. J Cell Mol Med, 2021, 25(14):6841-6854.
[29] Liu S, Sun JY, Ren LP, et al. Propofol attenuates intermittent hypoxia induced up-regulation of proinflammatory cytokines in microglia through inhibiting the activation of NF-Bκ/p38 MAPK signaling[J]. Folia Neuropathol, 2017, 55(2):124-131.
[30] Wu X, Gong L, Xie L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea[J]. Front Immunol, 2021, 12:628168.
[31] Wang H, Xiong W, Hang S, et al. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation[J]. Aging (Albany NY), 2021, 13(11):15240-15254.
[32] 韋美丹, 林繼宗, 朱寧, 等.Aβ1-42作用的小膠質(zhì)細(xì)胞對(duì)體外培養(yǎng)的神經(jīng)干細(xì)胞生存的影響[J]. 中國(guó)病理生理雜志, 2012, 28(4):683-688.
Wei M, Lin J, Zhu N, et al. Effects of Aβ1-42-induced microglia cells on survival of neural stem cells[J]. Chin J Pathophysiol, 2012, 28(4):683-688.
[33] Harik SI, Hritz MA, LaManna JC. Hypoxia-induced brain angiogenesis in the adult rat[J]. J Physiol, 1995, 485(Pt 2):525-530.
[34] Hainsworth AH, Minett T, Andoh J, et al. Neuropathology of white matter lesions, blood-brain barrier dysfunction, and dementia[J]. Stroke, 2017, 48(10):2799-2804.
[35] Vázquez-Rosa E, Shin MK, Dhar M, et al. P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition[J]. Proc Natl Acad Sci U S A, 2020, 117(44):27667-27675.
[36] ElAli A, Hermann DM. Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells[J]. Brain Pathol, 2012, 22(2):175-187.
[37] Jolivel V, Bicker F, BinameF, et al. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra[J]. Acta Neuropathol, 2015, 129(2):279-295.
[38] Yenari MA, Xu L, Tang XN, et al. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocyclineand[J]. Stroke, 2006, 37(4):1087-1093.
[39] Liu T, Zhang T, Yu H, et al. Adjudin protects against cerebral ischemia reperfusion injury by inhibition of neuroinflammation and blood-brain barrier disruption[J]. J Neuroinflammation, 2014, 11:107.
[40] Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nat Commun, 2020, 11(1):5540.
[41] Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner[J]. Neuron, 2012, 74(4):691-705.
[42] 閔穎俊, 趙俊雄, 彭行, 等. 小膠質(zhì)細(xì)胞參與新生兒缺氧缺血性腦損傷所致突觸異常的研究[J]. 中國(guó)病理生理雜志, 2021, 37(3):385-392.
Min Y, Zhao J, Peng X, et al. Microglia cells are involved in synaptic abnormalities caused by hypoxic-ischemic brain damage in neonates[J]. Chin J Pathophysiol, 2021, 37(3):385-392.
[43] Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286):712-716.
[44] Alawieh AM, Langley EF, Feng W, et al. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy[J]. J Neurosci, 2020, 40(20):4042-4058.
[45] Fu J, Guo F, Chen C, et al. C1 inhibitor-mediated myocardial protection from chronic intermittent hypoxia-induced injury[J]. Exp Ther Med, 2016, 12(4):2208-2214.
[46] Emin M, Wang G, Castagna F, et al. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea[J]. Sci Transl Med, 2016, 8(320):320ra1.
The role of microglia in chronic intermittent hypoxia-related cognitive impairment
XU Jia-huan, WANG Wei△
(,,110001,)
Chronic intermittent hypoxia (CIH) is an important pathophysiological feature of obstructive sleep apnea, which is involved in the occurrence and development of cognitive impairment. As the immune cells in the central nervous system, microglia plays an important role in the pathological processes of neurodegenerative diseases. This article reviews the effect of CIH on microglia including its activation, phenotypic transformation, proliferation, and apoptosis. The role of microglia in CIH-related cognitive impairment includes the decrease in protective effect and the increase in harmful effect caused by the neuroinflammation and synaptic phagocytosis of microglia.
Chronic intermittent hypoxia; Cognitive impairment; Microglia
R563; R363.2
A
10.3969/j.issn.1000-4718.2022.03.023
1000-4718(2022)03-0566-06
2021-12-23
2022-01-14
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81670085)
Tel: 024-83282532; E-mail: wwbycmu@126.com
(責(zé)任編輯:林白霜,羅森)