999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A variational principle for Bowen estimation entropy of nonautonomous dynamical systems

2022-03-31 07:53:38LiuLeiPengDongmei
純粹數學與應用數學 2022年1期

Liu Lei,Peng Dongmei

(School of Mathematics and Statistics,Shangqiu Normal University,Shangqiu 476000,China)

Abstract:In this paper,we study the Bowen estimation entropy for nonautonomous dynamical systems,which is an extension of the classical definition of Bowen entropy in autonomous dynamical systems.We show that the Bowen estimation entropy can be determined by the local estimation entropies of measures for nonautonomous dynamical systems.Also,we establish a variational principle for Bowen estimation entropy on compact subsets in the context of nonautonomous dynamical systems.

Keywords: Bowen estimation entropy,measure-theoretic lower α-estimation entropy,nonautonomous dynamical system,variational principle

1 Introduction

In 1958,Kolmogorov applied the notion of entropy from information theory to ergodic theory.Since then,the concepts of entropy,in particular the topological entropy and measure theoretic entropy,were useful for studying topological and measuretheoretic structures of dynamical systems,that is,topological entropy[1-4]and measuretheoretic entropy[4-6].For instance,two conjugate systems have the same entropy and thus entropy is a numerical invariant of the class of conjugated dynamical systems.The theory of expansive dynamical systems has been closely related to the theory of topological entropy[7-9].Entropy and chaos are closely related,for example,a continuous map of interval is chaotic if and only if it has a positive topological entropy[10].

Reference[11]introduced the topological entropy for any set in a topological dynamical system by a way resembling Hausdorff dimension.Bowen′s topological entropy plays a key role in topological dynamics and dimension theory[12].Reference[13]defined the measure-theoretic entropy for Borel probability measures from the idea of Reference[14]and showed that there is certain variational principle between Bowen topological entropy and measure theoretic entropy for arbitrary non-invariant compact set of a topological dynamical system.References[15-17]characterized the smallest bit rate for an exponential state estimation with a given exponentαfor a continuous-time system on a compact subsetKof its state space.As a measure for this smallest rate they introduced a quantity named estimation entropyhest(α,K),which coincides with the topological entropy onKwhenα=0,but forα>0 is no longer a purely topological quantity.Reference[18]studied the notion of estimation entropy and gave this quantity that measures the smallest rate of information about the state of a system above which an exponential state estimation with a given exponent is possible.Reference[19]discussed the estimation entropy of free semigroup action.Reference[20]studied Bowen estimation entropy and gave a variational principle for Bowen estimation entropy.

In contrast with the autonomous discrete dynamical systems and the continuoustime systems,the properties of the estimation entropies for the nonautonomous dynamical systems have not been fully investigated.A nonautonomous discrete dynamical systems is a natural generalization of a classical dynamical systems,its dynamics is determined by a sequence of continuous self-maps on a compact metric space.The topological entropy of nonautonomous discrete dynamical systems was introduced by Reference[21]and the topological and measurable theory of these systems were developed among others in References[22-30].

Reference[31]defined the Bowen topological entropy of nonautonomous dynamical systems.Their results give quite a number of contributions dealing with Bowen topological entropy of nonautonomous dynamical systems.Based on their works,we give a definition of estimation entropy of nonautonomous dynamical systems which allow us to study it by using the Carathéodory dimension structure.The Hausdorff dimension can be determined with the help of Billingsley′s theorem[32].For the Bowen topolog-ical entropy,Reference[33]gave an analogue of the Billingsley′s theorem.Motivated by Reference[33],we show that the Bowen estimation entropy can be determined via the local estimation entropies of measures for nonautonomous dynamical systems and this result can be considered as an analogue of Billingsley′s theorem for the Hausdorff dimension.By our definitions of estimation entropy and lower local estimation entropy,we obtain the following results.

We extend the result of Reference[33]to nonautonomous dynamical systems and establish an analogue of the Billingsley′s theorem between lower local estimation entropy and the Bowen estimation entropy(Theorem 3.1).

We establish a variational principle for estimation entropy on compact subsets in the context of nonautonomous dynamical systems(Theorem 4.1).

2 Preliminaries

Let N and N+denote the sets of all non-negative integers and all positive integers respectively.We call(X,φ)is a nonautonomous dynamical system(NADS for short),if(X,d)is a compact metric space andφ:[0,+∞)×X→Xis a continuous map withφ(0,x)=xfor everyx∈X.Given a NADS(X,φ).For allt∈[0,+∞)andα≥0,we define

Remark 2.1From(2.1)and(2.2),we have

2.1 α-estimation entropy for NADS

Given?>0,α≥0 andt∈[0,+∞).A subsetF?Xis an(t,?,α)-spanning set ofXwith respect toφif for anyx∈X,there existsy∈Fsuch that.A subsetE?Xis an(t,?,α)-separated set ofXwith respect toφif for anyxyinE,one has

We note that since the spaceXis compact,it follows that(t,?,α)-spanning set and(t,?,α)-separated set are finite.Letsest(t,?,α,X,φ)be the minimal cardinality of any(t,?,α)-spanning set ofXand the quantityrest(t,?,α,X,φ)be the maximal cardinality of(t,?,α)-separated set ofX.We sometimes writesest(t,?,α,X,φ,d)andrest(t,?,α,X,φ,d)when we need to emphasise the metricd.

Remark 2.2(1)If?1

(2)If?1

(3)We havesest(t,?,α,X,φ)≤rest(t,?,α,X,φ)≤sest(t,?/2,α,X,φ)for every?>0.

Definition 2.1Given?>0 andα≥0.Set

Definition 2.2Let(X,d)be a compact metric space and(X,φ)a NADS.Theα-estimation entropy ofφrelative todis defined to be

Remark 2.3IfK?Xis a compact set,we call

α-estimation entropy ofK.

By Reference[18],we give the following example that showshest(α,X,φ)depends on the metricdofX.

Example 2.1[18]Letφ(s,x)=e-sxonX=[0,1]andα=2.Consider the metrics

Since the system is linear,the inequalityd(φ(s,x),φ(s,y))

LetM(X)denote the set of all Borel probability measures onX.We give the following new definition from the idea of Reference[14].

Definition 2.3Let(X,φ)be a NADSμ∈M(X),α≥0 andx∈X.Then we call

the measure-theoretic lower localα-estimation entropy ofμat the pointx∈X.

Definition 2.4Let(X,φ)be a NADS,μ∈M(X),α≥0 andx∈X.The measure-theoretic lowerα-estimation entropy ofμis defined by

Given a NADS(X,φ).We denoteφi(x):=φ(i,x)fori∈N andx∈X.Let.For anyn∈N+,α≥0 andx,y∈X,we define

For alln∈N,?>0,α≥0 andx∈X,set

Definition 2.5Letμ∈M(X)andα≥0.The measure-theoretic lowerαestimation entropy ofμis defined by

2.2 Bowen α-estimation entropy for NADS

In this section,we give the definition and some basic properties of Bowenαestimation entropy for NADSs.

2.3 Weighted Bowen α-estimation entropy for NADS

3 Billingsley type theorem of Bowen α-estimation entropy for NADS

4 Variational principle of Bowen α-estimation entropy for NADS

4.1 Equivalenceand

4.2 Variational principle for Bowen α-estimation entropy

主站蜘蛛池模板: 伊人色在线视频| 91精品在线视频观看| 国产三级毛片| 九九久久99精品| 国产拍在线| 国产精品久久精品| 国产精品视频系列专区| 激情六月丁香婷婷| 亚洲欧洲免费视频| 91精品福利自产拍在线观看| 狠狠色综合网| 影音先锋丝袜制服| 国产精品夜夜嗨视频免费视频| 精品少妇人妻av无码久久| 91无码国产视频| 日本伊人色综合网| 国模粉嫩小泬视频在线观看| 午夜福利在线观看入口| 午夜性刺激在线观看免费| 亚洲人成高清| 国产真实乱人视频| 亚洲一区二区黄色| 色九九视频| 国产高清在线观看| 一级一级特黄女人精品毛片| 欧美精品另类| 黄色网站不卡无码| 综合亚洲色图| 欧美日本在线一区二区三区| 2024av在线无码中文最新| 欧美一区二区三区国产精品| 国产在线91在线电影| 亚洲欧美日韩久久精品| 在线无码av一区二区三区| 无码福利视频| 91亚瑟视频| 色视频久久| 成人年鲁鲁在线观看视频| 欧洲成人免费视频| 丝袜国产一区| 人妻夜夜爽天天爽| 91人妻日韩人妻无码专区精品| 日韩精品毛片人妻AV不卡| 亚洲男人天堂久久| 91精品aⅴ无码中文字字幕蜜桃| 国产素人在线| 黄色污网站在线观看| 大陆国产精品视频| 亚洲日本在线免费观看| 亚洲国产精品无码AV| jijzzizz老师出水喷水喷出| 欧洲亚洲欧美国产日本高清| 91精品免费久久久| 97青青青国产在线播放| 91在线一9|永久视频在线| 3D动漫精品啪啪一区二区下载| 国产在线观看一区二区三区| 欧美精品成人一区二区视频一| 亚洲综合久久一本伊一区| 亚洲精品视频免费| 色综合激情网| 99视频有精品视频免费观看| 色综合综合网| 手机精品福利在线观看| 99激情网| 91福利片| 无码精品国产dvd在线观看9久| 91亚瑟视频| 日韩123欧美字幕| 精品久久久久久久久久久| 五月婷婷综合网| 欧美人与动牲交a欧美精品| 久久综合结合久久狠狠狠97色| 99这里精品| 国产日产欧美精品| 免费人成在线观看视频色| 小13箩利洗澡无码视频免费网站| 国禁国产you女视频网站| 久久五月天综合| 99热这里只有精品2| 天堂网亚洲综合在线| 国产精品视频999|