999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Difference of Mostar Index and Irregularity of Unicyclic and Bicyclic Graphs with Small Diameter

2022-04-15 09:03:22WuTingzengZengXiaolin
數學理論與應用 2022年1期

Wu Tingzeng Zeng Xiaolin

(School of Mathematics and Statistics,Qinghai Minzu University,Xining 810007,China)

Abstract Let G be a connected graph.Gao et al.first introduced the invariant of G:ΔM(G)=Mo(G)-irr(G),and raised a problem:how to determine the extremal graphs among all connected graphs of order n with respect to ΔM(G),where Mo(G)and irr(G)stand for the Mostar index and irregularity of G,respectively.In this paper,we characterize the upper bounds of ΔM(G)over all unicyclic graphs and bicyclic graphs with diameter 3,and determine the extremal graphs.

Key words Mostar index Irregularity Unicyclic graph Bicyclic graph Diameter

1 Introduction

Given a simple loopless finite undirected graphG=(V,E)with vertex setV={v1,v2,...,vn}and edge setE={e1,e2,...,em}.Letu ∈V.The degree of a vertexuis denoted bydu.The length of a shortest path between verticesuandvofGis called the distance connectinguwithv,denoted byd(u,v).The maximum distance between any two vertices ofGis called the diameter ofG.

Letuandvbe two vertices ofG,nuandnvdenote the number of vertices ofGcloser to vertexuthan to vertexvand the number of vertices ofGcloser to vertexvthan to vertexu.The Mostar index of a connected graphGis defined as[1]

which is well elaborated[2-7].

A graphGis called irregular if not all its vertices have a same degree.The irregularity ofGis defined as

which is introduced by Bell [10].For more studies on the irregularity of graphs,see [8,9,11] among others.

The ΔM(G)of a connected graphGis defined as

Gao et al.[12]first introduced the ΔM(G),and raised the following problem.

Problem 1.1How to determine the extremal graphs among all connected graphs of ordernwith respect to ΔM(G)?

In this paper,we determine the upper bounds of ΔM(G) over unicylic graphs and bicyclic graphs with diameter 3.The rest of this paper is organized as follows.In Section 2,we characterize the upper bound of ΔM(G)over all unicyclic graphs with diameter 3.In Section 3,we characterize the upper bound of ΔM(G)over all bicyclic graphs with diameter 3.In the final section,we summarize our results,and present a further problem.

2 The upper bound of ΔM(G)over unicyclic graphs with diameter 3

Feng et al.[13] determined all the unicyclic graphs withnvertices and diameter 3:S+(a,b),C3(a,b,c),C4(a,b)andC5(a,b),see Figure 1.In this section,we characterize the upper bound of ΔM(G)over all those unicyclic graphs.

Figure 1 All unicyclic graphs with n vertices and diameter 3

Lemma 2.1LetG ∈S+(a,b).

ProofBy (1.1) and (1.2),we obtain thatMo(S+(a,b))=a(n -1) +b(n -3)+2n -4 andirr(S+(a,b))=a2+5a+b2-b+4.Thus,ΔM(G)=-a2+(n-6)a-b2+(n-2)b+2n-8.Now we use the method of Lagrange multipliers to find the upper bound of ΔM(G).Let

subject toa+b+4-n=0.Taking partial derivatives ofF(a,b,λ)with respect toa,bandλ,respectively,we obtain that

subject toa+b+4-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we obtain that

3 The upper bound of ΔM(G)over bicyclic graphs with diameter 3

In this section,we characterize the upper bound of ΔM(G)over all the bicyclic graphs withnvertices and diameter 3,which are showed in Figure 2.

ProofBy(1.1)and(1.2),we can obtain thatMo(G1(a,b,c))=na+(n-2)b+(n-4)c+2n-10 andirr(G1(a,b,c))=a2+3a+b2+b+c2+3c.Thus,ΔM(G)=-a2+(n-3)a-b2+(n-3)bc2+(n-7)c+2n-10.Now we use the Lagrange multipliers to find the upper bound of ΔM(G).Let

subject toa+b+5-n=0.Taking the partial derivatives ofF(a,b,c,λ)with respect toa,b,candλ,respectively,we have

Figure 2 Bicyclic graphs with n vertices and diameter 3

ProofBy(1.1)and(1.2),we can get thatMo(G2(a,b,c))=(n+1)a+nb+(n -3)c+2 andirr(G2(a,b,c))=a2+5a+b2+b+c2+c+2.Thus,ΔM(G)=-a2+(n-4)a-b2+(n-1)b-c2+(n-4)c.According to the method of Lagrange multipliers,we have

subject toa+b+4-n=0.Taking the partial derivatives ofF(a,b,c,λ)with respect toa,b,candλ,respectively,we get that

ProofBy (1.1) and (1.2),we haveMo(G3(a,b,c))=(n+3)a+nb+(n -3)c+2 andirr(G3(a,b,c))=a2+5a+b2+b+c2+c+2.Thus,ΔM(G)=-a2+(n-2)a-b2+(n-1)b-c2+(n-4)c.Now we use the method of Lagrange multipliers.Let

subject toa+b+5-n=0.Taking the partial derivatives ofF(a,b,c,λ)with respect toa,b,candλ,respectively,we have

ProofBy(1.1)and(1.2),we haveMo(G4(a,b))=(n-1)a+(n-3)b+4n-12 andirr(G4(a,b))=a2+5a+b2+3b+4.Thus,ΔM(G)=-a2+(n-6)a-b2+(n-6)b+4n-16.According to the method of Lagrange multipliers,we have

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we get that

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we obtain that

ProofSimilarly,by(1.1)and(1.2),we obtain thatMo(G6(a,b))=(n+5)a+(n-1)b+8 andirr(G6(a,b))=a2+5a+b2+3b+4.Thus,ΔM(G)=-a2+na-b2+(n-4)b+4.According to the method of Lagrange multipliers,we have

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we get that

ProofBy(1.1)and(1.2),we haveMo(G7(a,b))=(n+5)a+(n+1)b+12 andirr(G7(a,b))=a2+5a+b2+3b+4.Thus,ΔM(G)=-a2+na-b2+(n-2)b+8.According to the method of Lagrange multipliers,we have

subject toa+b+7-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we obtain that

ProofBy (1.1) and (1.2),we haveMo(G8(a,b))=(n+3)a+(n -1)bandirr(G8(a,b))=a2+3a+b2+b.Thus,ΔM(G)=-a2+na-b2+(n-2)b.By the method of Lagrange multipliers,we have

subject toa+b+5-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we have

ProofBy (1.1) and (1.2),we can get thatMo(G9(a,b))=(n -1)a+(n -3)b+4n -8 andirr(G9(a,b))=a2+9a+b2-b+16.Thus,ΔM(G)=-a2+(n-10)a-b2+(n-2)b+4n-24.Now we use the method of Lagrange multipliers.Let

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we get that

ProofBy(1.1)and(1.2),we can get thatMo(G10(a,b))=(n+4)a+nb+6 andirr(G10(a,b))=a2+3a+b2+5b+6.Thus,ΔM(G)=-a2+(n+1)a-b2+(n-5)b+2.We use the method of Lagrange multipliers.Let

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we obtain that

ProofSimilarly,by (1.1) and (1.2),we haveMo(G11(a,b))=(n+4)a+(n+2)b+16 andirr(G11(a,b))=a2+7a+b2+b+8.Thus,ΔM(G)=-a2+(n-3)a-b2+(n+1)b+8.By the method of Lagrange multipliers,we have

subject toa+b+7-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we have

ProofBy (1.1) and (1.2),we haveMo(G12(a,b))=(n+2)a+nb+4 andirr(G12(a,b))=a2+a+b2+5b+4.Thus,ΔM(G)=-a2+(n+1)a-b2+(n-5)b.Now we use the method of Lagrange multipliers to find the upper bound of ΔM(G).Let

subject toa+b+5-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we obtain that

ProofBy(1.1)and(1.2),we haveMo(G13(a,b))=(n+3)a+(n+1)b+4 andirr(G13(a,b))=a2+3a+b2+3b+2.Thus,ΔM(G)=-a2+na-b2+(n-2)b+2.According to the method of Lagrange multipliers,we have

subject toa+b+6-n=0.Taking the partial derivatives ofF(a,b,λ) with respect toa,bandλ,respectively,we get that

ProofBy(1.1)and(1.2),we haveMo(G14(a,b))=(n+1)a+(n+1)b+2+2|a-(b+1)|andirr(G14(a,b))=a2+2a+b2+4b+3+|a-(b+1)|.Thus,ΔM(G)=-a2+na-b2+(n-4)b-2 or ΔM(G)=-a2+(n-2)a-b2+(n-2)b.Now we use the Lagrange multipliers to find the upper bound of ΔM(G).First,we discuss the maximum of ΔM(G)when ΔM(G)=-a2+na-b2+(n-4)b-2.Let

subject toa+b+5-n=0.Taking the partial derivatives ofa,bandλinF(a,b,λ),we have

subject toa+b+5-n=0.Taking the partial derivatives ofa,bandλinF(a,b,λ),we have

Combining the maximum values in Lemmas 3.1-3.14,we can get the following result.

Theorem 3.1be the set of all bicyclic graphs withnvertices and diameter 3.For anywe have

4 A futher problem

In this paper,we chararcterized the upper bounds of ΔM(G)for allG ∈Naturally,one may consider the following problem,which is probably much more difficult.

Problem 4.1Given aGhow can we determine the minimum value of ΔM(G)?

主站蜘蛛池模板: 日韩最新中文字幕| 91精品在线视频观看| 国产三级国产精品国产普男人| 538国产视频| v天堂中文在线| 四虎成人精品在永久免费| 五月婷婷中文字幕| 一级毛片免费播放视频| 色精品视频| 亚洲国产综合精品中文第一| 狠狠色综合网| 久久综合久久鬼| 亚洲人成成无码网WWW| 国产成人精品视频一区二区电影 | 毛片网站在线播放| 国产精品视频久| 国产成人精品2021欧美日韩| 国产电话自拍伊人| 国产区福利小视频在线观看尤物| 色婷婷久久| 亚洲精品视频免费| 99视频全部免费| 欧美在线观看不卡| 日韩欧美国产另类| 都市激情亚洲综合久久| 2021国产精品自产拍在线观看 | 自慰高潮喷白浆在线观看| 日本亚洲成高清一区二区三区| 好久久免费视频高清| 伊大人香蕉久久网欧美| 一级毛片在线播放| 韩国自拍偷自拍亚洲精品| 国产在线观看精品| 色有码无码视频| 亚洲a免费| 国产香蕉国产精品偷在线观看| 亚洲va视频| 国产人在线成免费视频| 免费看av在线网站网址| 欧美亚洲激情| 九九热免费在线视频| 99热这里只有免费国产精品| 色婷婷国产精品视频| 97在线免费视频| 中文字幕人妻无码系列第三区| 美女啪啪无遮挡| 亚洲91在线精品| 亚洲大尺度在线| 九九香蕉视频| 欧美a√在线| 大陆精大陆国产国语精品1024| 潮喷在线无码白浆| 99re经典视频在线| 91久久国产成人免费观看| 久久不卡国产精品无码| 91福利国产成人精品导航| 999精品色在线观看| 亚洲手机在线| 欧美在线三级| 亚洲精品桃花岛av在线| 亚洲一区第一页| 国产91久久久久久| 国产午夜看片| 国产成年女人特黄特色毛片免| 亚洲男人的天堂视频| 国产乱人伦精品一区二区| 久久精品这里只有国产中文精品| 久久a毛片| 中文字幕有乳无码| 欧美性爱精品一区二区三区 | 中国精品自拍| 午夜国产大片免费观看| 亚洲欧洲免费视频| 97se亚洲综合不卡| 2020久久国产综合精品swag| 亚亚洲乱码一二三四区| 国产精品第5页| 欧美亚洲欧美区| 性喷潮久久久久久久久| 国产成人精品优优av| 亚洲成a人片在线观看88| 色精品视频|