999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

增強軌跡意識,構建相對運動轉換
——以2021年鹽城市中考探究題為例

2022-04-16 16:54:07江蘇省溧陽市實驗初級中學王麗潔
中學數學 2022年24期
關鍵詞:探究

?江蘇省溧陽市實驗初級中學 王麗潔

2021年江蘇鹽城市中考數學試卷的函數壓軸題以知識探究的形式呈現,并將函數曲線與幾何旋轉相結合,側重對軌跡意識、相對運動的考查.把握動靜聯系,確定相對轉換是突破的關鍵,下面對其進行深入探究.

1 問題呈現

考題(2021年江蘇省鹽城市中考數學試卷第27題)學習了圖形的旋轉之后,小明知道,將點P繞著某定點A順時針旋轉一定的角度α,能得到一個新的點P′,經過進一步探究,小明發現,當上述點P在某函數圖象上運動時,點P′也隨之運動,并且點P′的運動軌跡能形成一個新的圖形.

試根據下列各題中所給的定點A的坐標、角度α的大小來解決相關問題.

【初步感知】

如圖1所示,設A(1,1),α=90°,點P是一次函數y=kx+b圖象上的動點,已知該一次函數的圖象經過點P1(-1,1).

圖1

(1)點P1旋轉后,得到的點P1′的坐標為;

(2)若點P1′的運動軌跡經過點P2′(2,1),求原一次函數的表達式.

【深入感悟】

圖2

【靈活運用】

圖3

2 解析探究

此題為探究性問題,題干首先給出了相應的探究背景:點P繞著點A順時針旋轉角度α,可得P′,當點P在某一函數圖象上運動時,點P′的運動軌跡可形成新圖形.顯然問題探究的核心是動點關聯,以及動點軌跡.問題探究共分三環節,下面逐問探究.

環節一:初步感知

該環節以一次函數圖象為背景,點P位于一次函數y=kx+b圖象上,旋轉過程為點P1(-1,1)繞著點A(1,1)順時針旋轉α=90°得到了點P1′.根據旋轉特性可得兩大條件:①P1A=P1′A=2(旋轉前后的點到旋轉中心的距離相等);②∠P1AP1′=90°.

(1)根據點A和P1的坐標可知兩點位于平行于x軸的直線y=1上,故旋轉后的點P1′與點A位于平行于y軸的直線x=1上,從而可確定點P1′(1,3).

評析:該環節是對幾何旋轉知識的強化,引導學生把握旋轉過程,提取其中的旋轉特性,掌握旋轉逆向推導的方法.

環節二:深入感悟

該環節以位于反比例函數圖象上點的旋轉為背景,且旋轉角度變為45°,即點P繞著點A順時針旋轉45°.

根據相對運動,可將P視為固定點,將二、四象限角平分線繞著點A逆時針旋轉45°后與x軸相重合.如圖4,過點P作x軸垂線,設垂足為B,連接PO.可證△PBO≌△P′MO,理由如下.

圖4

評析:上述對位于雙曲線上的點進行旋轉,其中旋轉中心和旋轉角作了變更,探究三角形的面積時采用了相對運動的策略,即將點的旋轉轉換為直線的旋轉,在旋轉過程中,點的相對位置是不變的,因此可將△P′MO視為是△PBO旋轉所得.

環節三:靈活運用

圖5

圖6

3 評析思考

上述對一道探究性問題進行了解析,其問題的特征及破解方法均具有一定的參考價值,下面深入反思.

3.1 關于問題特點的評析

本考題為探究性問題,共分“初步感知”“深入感悟”“靈活運用”三個環節.問題構建有兩大特點:一是三個環節緊密相扣,步步深入,引導學生從簡單的一次函數深入到復雜的二次函數;二是環節設計針對性強,符合探究的思維過程.環節一注重基礎知識的強化,引出旋轉特性;環節二側重圖形旋轉,初步構建相對運動轉換,具有一定的特殊性;環節三則上升到拋物線中,引出面積最值問題,具有極強的應用性.問題設計思維連續性強,可幫助學生強化基礎,總結方法,增強應用,是函數與幾何相融合的典型代表.

3.2 關于問題解法的思考

動點軌跡、相對運動轉換是上述探究性問題重要的破題策略,尤其是相對運動轉換實現了“動點”與“定點”的互換,構建了條件之間的聯系,簡化了解題思路.相對運動是物理上重要的思想,即把原動點作為參照標準,將“動點”變為“定點”,將“定點”變為“動點”.相對運動轉換的使用需滿足兩大條件:一是運動的點多于定點,如上述問題中繞著定點旋轉,顯然動點較多;二是動點關聯,具有一定的聯動性,如上述旋轉過程中動點位于同一直線或曲線上,則動點坐標滿足對應的函數關系.從幾何視角來看,動點圍成的圖形形狀和大小不發生改變,也是幾何旋轉的核心內容.

4 方法拓展

上述考題采用相對運動轉換的方法,主要目的是為了串聯條件,構建旋轉前后圖形之間的聯系,利用原條件來求解.如環節二構建S△OMP′=S△PBO關系,環節三利用原拋物線構建面積最值模型.實際上通過相對運動轉換還可減少動點,使問題簡單化.

例題在平面直角坐標系中,四邊形AOBC為矩形,已知點A(5,0),B(0,3).以點A為中心,順時針旋轉矩形AOBC,可得矩形ADEF,點O,B,C的對應點分別為D,E,F.

(1)如圖7所示,當點D落在BC上時,求點D的坐標;

圖7

(2)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍.

解析:(1)根據旋轉特性,并在Rt△ADC中使用勾股定理即可求得BD=1,所以點D(1,3).

(2)求△KDE面積的取值范圍,只需考慮K,D,E三點即可,如圖8所示.但D和E兩點為動點,僅K為定點,三角形的面積不容易確定.

圖8

此時就可采用相對運動轉換來減少動點個數,即固定點D和點E,讓其回到初始位置,即點O和點B處,則可視為點K繞著點A逆時針旋轉,對應的運動軌跡如圖9所示.

圖9

評析:上述求解動態三角形的面積,采用相對運動轉換的方法構建了“一動兩定”面積模型,實現了復雜問題簡化作答.

5 寫在最后

幾何旋轉是圖形運動的一種方式,其中隱含著不變的規律.對于融合圖形旋轉的幾何探究題,可采用相對運動轉換的方法來分析其中的動靜關系,構建旋轉前后的條件聯系.相對運動轉換的思維難點是視角變換,具體探究可從物理視角思考,分析動靜條件以及條件之間的聯系,如點的對應關系、運動參照系等.

教學中要注意引導學生用相對運動的觀念看待問題,關注運動過程,提取運動規律,繪制動點軌跡,同時充分理解相對運動轉換的目的.通過運動轉換、圖形變換來增強學生的軌跡意識,提升數學思維.

猜你喜歡
探究
ETC發行方數據分析與挖掘的應用探究
開放探究,創新應用
一道探究題的解法及應用
一道IMO預選題的探究
中等數學(2021年11期)2021-02-12 05:11:46
探究下神峪村“由亂到治”之路
今日農業(2019年14期)2019-09-18 01:21:42
探究式學習在國外
快樂語文(2018年13期)2018-06-11 01:18:16
一道IMO預選題的探究及思考
中等數學(2018年11期)2018-02-16 07:47:42
P=Fvcosα應用探究
對一個猜想的探究
對公路運輸的探究
中國商論(2016年33期)2016-03-01 01:59:34
主站蜘蛛池模板: 亚洲人成网站在线观看播放不卡| 97国产成人无码精品久久久| 狠狠色丁婷婷综合久久| 免费人欧美成又黄又爽的视频| 国产青青草视频| 国产精品55夜色66夜色| 国产黑人在线| 久久人人97超碰人人澡爱香蕉 | 亚欧成人无码AV在线播放| 2020国产免费久久精品99| 久久久久久久久久国产精品| 91亚洲精选| a国产精品| 国产情侣一区二区三区| 亚洲婷婷丁香| 欧美a级完整在线观看| 97视频免费看| 亚洲高清免费在线观看| 久久免费视频6| 亚洲天堂在线免费| 欧美成人看片一区二区三区| 国产九九精品视频| 欧美一区精品| 久久99国产综合精品女同| 国产精品熟女亚洲AV麻豆| 国产女人水多毛片18| 性色生活片在线观看| 国产微拍精品| 久久精品国产在热久久2019| 国产一区成人| 男人的天堂久久精品激情| 日韩色图在线观看| 四虎精品国产AV二区| 久久午夜夜伦鲁鲁片无码免费| 高清精品美女在线播放| 国产玖玖玖精品视频| 亚洲欧洲日产国产无码AV| 尤物午夜福利视频| 日韩一级毛一欧美一国产| 国产黄色视频综合| 波多野结衣AV无码久久一区| 亚洲国产综合自在线另类| 成人无码区免费视频网站蜜臀| 国产情精品嫩草影院88av| 精品综合久久久久久97| 久综合日韩| 2022国产无码在线| 永久毛片在线播| 亚洲精品另类| 欧美人与牲动交a欧美精品| 日本www色视频| 91精品综合| 91精品伊人久久大香线蕉| 97久久免费视频| 一本无码在线观看| 99视频在线免费| 国产成人精品在线1区| 国产黑丝一区| 亚洲国产精品久久久久秋霞影院| 欧美午夜久久| 91热爆在线| 亚洲日韩AV无码精品| 国产三区二区| 高清国产在线| 多人乱p欧美在线观看| 97久久超碰极品视觉盛宴| 欧美日韩免费| 先锋资源久久| 狂欢视频在线观看不卡| 国产成年女人特黄特色毛片免 | 久久综合九九亚洲一区| 美女亚洲一区| 99无码熟妇丰满人妻啪啪| 欧美亚洲另类在线观看| 久久国产精品娇妻素人| 国产国语一级毛片| 99这里只有精品免费视频| 91精品国产一区自在线拍| 亚洲系列无码专区偷窥无码| 亚洲国产理论片在线播放| 国产精品美人久久久久久AV| 亚洲人成影视在线观看|