999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于UPLC-Q-TOF-MS/MS技術分析菠蘿蜜多糖小鼠腸道代謝產物及代謝途徑

2022-04-27 19:20:34馬之原陳玉子譚樂和張彥軍吳剛朱科學
熱帶作物學報 2022年4期
關鍵詞:小鼠劑量

馬之原 陳玉子 譚樂和 張彥軍 吳剛 朱科學

摘? 要:菠蘿蜜在我國海南、廣東、廣西、云南、福建和臺灣等地大量栽種,其果實營養豐富,含有糖類化合物、蛋白質、氨基酸、多酚、脂肪酸、維生素、礦物質等多種營養成分。其中,菠蘿蜜多糖是一類由鼠李糖、阿拉伯糖、半乳糖、葡萄糖、木糖和半乳糖醛酸組成、分子量約為1668 kDa的生物大分子;具有促進小鼠脾淋巴細胞增殖、提高免疫細胞抗氧化活性及誘導細胞因子TNF-α、IFN-γ和IL-1β分泌等生物活性;可被人體腸道菌群酵解利用,產生豐富的SCFAs等代謝產物,有益于人體腸道健康。然而,有關菠蘿蜜多糖的腸道代謝鮮有報道,本文旨在利用UPLC-Q-TOF-MS/MS技術研究菠蘿蜜多糖的小鼠腸道代謝產物及其可能代謝途徑。健康小鼠分為4組:50?mg/kg小鼠體重菠蘿蜜多糖組(低劑量組)、100?mg/kg小鼠體重菠蘿蜜多糖組(中劑量組)和200?mg/kg小鼠體重菠蘿蜜多糖組(高劑量組)以及同等體積蒸餾水(空白對照組)。連續處理2周后,利用超高效液相色譜串聯四級桿飛行時間質譜(UPLC-Q-TOF-MS/MS)鑒定菠蘿蜜多糖在小鼠腸道內的代謝物種類并分析相關代謝通路。通過主成分分析(PCA)、偏最小二乘判別分析法(PLS-DA)及二級質譜技術共鑒定出30種特征代謝標志物,負離子模式下有22種,5種上調,17種下調;正離子模式下有8種,6種上調,2種下調。涉及到的代謝通路有苯丙氨酸、丙氨酸、天冬氨酸、色氨酸、膽固醇、2-氧羧酸和核苷酸代謝,以及三羧酸循環、PPAR信號通路、A類視紫紅質樣受體、苯甲酸的降解及其與氨基酸的結合、核受體、谷胱甘肽和一碳循環、尿素循環與氨基代謝通路,參與小鼠體內膽固醇、脂肪酸、甘油三酯、ω-3脂肪酸、ω-6脂肪酸和次級代謝產物的合成。研究結果可為揭示菠蘿蜜多糖發揮功能活性的物質基礎及其作用途徑提供理論依據。

關鍵詞:菠蘿蜜多糖;代謝組學;通路;超高效液相色譜串聯四級桿飛行時間質譜中圖分類號:R151 ?????文獻標識碼:A

Fecal Metabolomics of Polysaccharide from Jackfruit Pulp in Mice Based on UPLC-Q-TOF-MS/MS

MA Zhiyuan1,2,3, CEHN Yuzi1,2,3, TAN Lehe1,3, ZHANG Yanjun1,3, WU Gang1,3, ZHU Kexue1,3*

1. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; 2. College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; 3. Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China

Abstract: Artocarpus heterophyllusLam. is rich in nutrients, including carbohydrate, protein, amino acid, polyphenol, fatty acid, vitamin and minerals, which can be used as good sources for some important nutrients. Nowadays,A. heterophyllusLam. trees are widely distributed in Hainan, Guangdong, Guangxi, Yunnan, Fujian, and Taiwan provinces. Polysaccharide, as an important biological molecule, participates in cell activities. Recently, a water-soluble polysaccharide named JFP-Ps was isolated fromA. heterophyllusLam. pulp, which consisted of rhamnose, arabinose, galactose, glucose, xylose and galacturonic acid, with an average molecular weight of 1668 kDa. JFP-Ps exerted immunomodulatory effect by inducing lymphocyte proliferation, enhancing antioxidant activity and increasing the secretion of TNF-α, IFN-γ and IL-1β. Moreover, JFP-Ps can be fermented into short-chain fatty acids, including acetate, propionate, butyrate and valerate acid by gut microbiota. However, there was little research about the the metabolism of JFP-Ps during gastrointestinal digestion. Based on our previous research, the present study was aim to investigate the fecal metabolomics of JFP-Ps on fecal metabolites from mice. Healthy Kunming mice were divided into four groups, including 50 mg/kg mouse body weight (low dose group), 100 mg/kg mouse body weight (medium dose group), and 200 mg/kg mouse body weight (high dose group) and the same volume of distilled water (blank control group). After experimental treatment for 2 weeks, fresh fecal samples were collected for metabolomics analysis. A metabolomics method based on Agilent 1290 series UPLC and with 6530B series Q-TOF mass spectrometer (UPLC-Q-TOF-MS/MS) was developed to identify the fecal metabolites. Then related metabolic pathways were analyzed by matching KEGG and Wiki pathways. Our results showed that 30 potential biomarkers were authenticated using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), including 22 types in the negative ion mode and 8 characteristic metabolites in the positive ion mode. The results of metabolomics pathway analysis showed that the metabolites were related to the biological pathways and processes, including metabolism of phenylalanine, alanine, aspartic acid, tryptophan, cholesterol, 2-oxocarboxylic acid and nucleotide. They also have been proven to be related to the tricarboxylic acid cycle activity, PPAR signaling pathway, activation pathways in class A GPCRs, degradation of benzoic acid and derivatization of amino acids, nuclear receptors, glutathione and one-carbon cycle, urea cycle and amino metabolism pathways. The results indicated that JFP-Ps could regulate the metabolism of cholesterol, biosynthesis of fatty acid and triglycerides, omega-3 and omega-6 fatty acids metabolism and the secondary metabolites in mice. The results could provide theoretical basis for elucidating the bioactive substances and its mechanism of JFP-Ps.

Keywords: polysaccharide from jackfruit pulp; metabolomics; pathway; UPLC-Q-TOF-MS/MS

DOI: 10.3969/j.issn.1000-2561.2022.04.005

代謝組學是一種研究生物系統在外界刺激或干擾后產生的全部內源性小分子的定性、定量和動態變化的分析方法[1]。UPLC-Q-TOF-MS/MS是一種常見的代謝組學檢測設備,具有高分辨率、高靈敏度、高通量等優點,能夠快速鑒定代謝物。植物多糖因其抗腫瘤[2-3]、免疫調節[4]、降血糖[5]、抗炎癥、抗病毒[6]、抗氧化[7]等生物活性而受到廣泛關注,多糖發揮其生物活性的機制尚未完全清楚。因此,借助UPLC-Q-TOF-MS/MS探究多糖在胃腸消化過程的變化規律,有助于揭示其發揮生理活性的物質基礎。

腸道糞便中含有的糖、有機酸和氨基酸等小分子代謝物能夠反映腸道菌群和胃腸道對營養物質的攝取、消化和吸收的效果[8]。對葡萄酒的糞便代謝組學研究發現,適量飲用葡萄酒使苯甲酸和4-羥基戊酸等總酚代謝物含量顯著升高[9];研究表明,連續食用富含β-葡聚糖的整粒谷物2個月,糞便中短鏈脂肪酸、支鏈脂肪酸、芳香醇、吲哚類、醛和酮含量增加[10-11]

菠蘿蜜多糖(polysaccharide from jackfruit pulp, JFP-Ps)主要由鼠李糖、阿拉伯糖、半乳糖、葡萄糖、木糖和半乳糖醛酸組成,平均分子量為1668 kDa,具有較強的體外抗氧化及免疫調節等

活性[12-13];其在體外酵解過程中,可被人體腸道微生物利用產生短鏈脂肪酸等代謝產物,有益于腸道健康[14];經體外胃腸消化的JFP-Ps產物具有較強的×OH、O2×和DPPH×清除能力[15],JFP-Ps消化液中還原糖含量增加、分子量降低、結構和構象發生明顯的變化[16]。JFP-Ps的免疫增強活性與其促進小鼠脾淋巴細胞增殖、提高抗氧化活性及誘導細胞因子TNF-α、IFN-γ和IL-1β分泌有關[13];TAN等[17]研究發現,菠蘿蜜粗多糖可能通過提高小鼠胸腺質量指數和吞噬率來增強小鼠的免疫活性。為進一步探究JFP-Ps在體內的代謝規律、挖掘JFP-Ps發揮生物活性的物質基礎和參與的代謝途徑,本研究通過灌胃健康小鼠不同劑量的JFP-Ps,利用超高效液相色譜串聯四級桿飛行時間質譜(UPLC-Q-TOF-MS/MS)并結合高通量分析JFP-Ps在健康小鼠糞便中的差異代謝物及其相關代謝通路,為JFP-Ps的深入研究及開發利用提供理論依據。

1 ?材料與方法

1.1材料

清潔級雄性昆明小鼠20只,體重(20.0±2.0)g,購自湖南斯萊克景達實驗動物有限公司,動物生產許可證號:SCXK(湘)2016-0002。

菠蘿蜜多糖(polysaccharide from jackfruit pulp, JFP-Ps)由中國熱帶農業科學研究院香料飲料研究所提取、純化、制備。乙腈、甲酸(色譜純)(德國Merck公司)。

Z36 HK型超速冷凍離心機(德國Hermle公司);UPLC-Q-TOF-MS/MS(安捷倫科技有限公司);Master-s-plus UVF全自動超純水設備(上海和泰儀器有限公司)。

1.2? 方法

1.2.1? 動物的飼養和分組? 昆明小鼠飼養溫度(25±2)℃,相對濕度60%±10%。所有小鼠給予充足的基本膳食和飲水,適應環境一周后,隨機分為4組,每組5只:菠蘿蜜多糖溶液灌胃劑量分別為50 mg/kg小鼠體重(低劑量組)、100 mg/kg小鼠體重(中劑量組)和200 mg/kg小鼠體重(高劑量組),并設空白對照組(灌胃與多糖組同等體積的蒸餾水)。每天9:00按時灌胃對應濃度的菠蘿蜜多糖溶液,空白對照組小鼠灌胃相同體積的蒸餾水。每天對小鼠進行健康檢查,連續喂養2周后,收集糞便,–80℃凍存備用。

1.2.2? 樣品前處理? 稱取200?mg糞便于1.5?mL EP管中,加入800?μL乙腈水溶液[乙腈/水,4/1(V/V)]勻漿,12?000 r/min、4℃離心10?min,取上清并過0.22 μm微孔有機濾膜至棕色進樣瓶中,供UPLC-Q-TOF-MS/MS測定。

1.2.3 ?分析方法? 經處理的糞便樣品,采用UPLC儀結合C18色譜柱進行梯度洗脫分離,Q-TOF-MS/MS進行樣品檢測。柱子型號:Eclipse Plus C18柱(3.5?μm, 2.1?mm×150?mm,安捷倫科技有限公司);流動相:A:0.1%甲酸水,B:乙

腈;洗脫條件:0~5?min 5%~20% B,5~10?min 20%~35% B,10~15?min 35%~98% B,15~16?min 98%~100% B,16~17?min 100% B;柱溫:35℃;流速:0.3?mL/min;進樣量:5?μL;檢測模式:正(負)離子模式;干燥氣溫度:350℃;干燥氣流速:9?L/min;噴霧器壓力:40 psig;碰撞電壓:150?V;錐孔體電壓:60?V;毛細管電壓:3500(?3500)V;一級質譜掃描范圍:50~1200m/z

1.3 代謝圖譜分析

質譜圖采用Agilent Mass Hunter Qualitative Analysis軟件按分子特征查找化合物,并生成.cef文件;將每個樣品生成的.cef文件按照實驗分組導入到Agilent Mass Hunter Mass Profiler Professional軟件,利用偏最小二乘判別分析法(partial least squares discriminant analysis, PLS-DA)對各組小鼠糞便的代謝物進行分析;采用非配對t檢驗進行組間統計學分析;ID browser調用數據庫檢索,根據CAS、ChEBI、HMP或KEGG號從分子式水平確認化合物;將分析得到的代謝化合物進行目標MS/MS篩選和靶標分析,根據MFG(MS/MS)和MSC(molecular structure correlation)分析,最終從分子結構水平確證特征代謝物。

2? 結果與分析

2.1? JFP-Ps在小鼠腸道糞便中代謝物的統計分析

如圖1所示,正模式檢測條件,高、中、低劑量組和空白對照組完全分離,其中高劑量組小鼠與空白對照組小鼠之間的代謝物差異最大。高、中、低劑量組和空白對照組在負模式檢測條件下同樣完全分離,但高劑量組與中劑量組之間的代謝差異不大。

采用獨立樣本t檢驗分析,結果表明JFP-Ps高、中、低劑量組與空白對照組間的差異,將具有統計學意義(P<0.05)和Fold change>2的代謝物定義為差異代謝物。在正模式下(表1,圖2),與正常對照組相比,低劑量組、中劑量組和高劑量組分別有28種、51種、58種差異化合物;在負離子模式下(表1,圖3),與空白對照組相比,低劑量組、中劑量組和高劑量組分別有88種、57種、66種差異化合物。

2.2差異代謝物的鑒定

通過聚類熱圖分析(圖4,圖5)并采用二級質譜進行特征目標化合物鑒定。分析發現,正離子模式下特征代謝物主要有8種,其中高、中、低劑量組分別與空白組相比,2-氨基-十六烷酸、β環糊精、蛻皮甾酮、苯甲酰輔酶A等6種物質的相對含量顯著上升,天冬氨酸、1-羥基維生素D3纖維二糖苷的相對含量都顯著降低。負離子模式下特征代謝標志物主要有22種,其中高、中、低劑量組分別與空白組相比,4-酮-肉豆蔻酸、多巴胺、亮氨酰-亮氨酸、洛伐他汀酸等5種物質的相對含量顯著上升,7-羥基哌泊噻嗪葡萄糖醛酸苷、N-棕櫚酰甲硫氨酸等17種物質的相對含量顯著降低。

2.3代謝通路分析

如表2所示,利用WikiPathway和KEGG數

據庫對特征代謝化合物進行代謝通路分析,發現差異代謝物亮氨酰-亮氨酸、洛伐他汀酸、4-酮-肉豆蔻酸、天冬氨酸等13種物質參與調控機體內的氨基酸代謝通路;2,3-二氧古洛糖酸等7種物質參與調控膽固醇代謝與合成、脂肪酸合成、甘油三酯合成、ω-3和ω-6脂肪酸的合成通路;17-十八烷酸等7種物質與三羧酸循環,其中2-甲基丙基硫代葡萄糖苷參與2-氧羧酸循環,是2-氧羧酸循環里硫苷合成模塊終產物之一。除此之外,JFP-Ps還能調節苯甲酸的降解、苯甲酸的氨基酸結合、谷胱甘肽和一碳代謝、核苷酸代謝、核受體、尿素循環和氨基代謝、GPCRs、A類視紫紅質通路。

3 ?討論

研究發現,部分氨基酸及其代謝過程中產生的化合物通過調控細胞因子的生成和分泌進而影響免疫反應[18],其中巨噬細胞內精氨酸經NOS-2途徑合成NO并分泌IL-1β、TNF-α和IL-12等炎癥細胞因子,并且IL-4、IL-6、TNF-α等能上調氨酸酶活性,促進精氨酸代謝[19]。本研究結果顯示JFP-Ps參與調節氨基酸代謝通路,結果與朱科學等[13]研究一致,JFP-Ps可通過氨基酸代謝調節細胞TNF-α、IFN-γ和IL-1β的分泌,提高免疫活性。

PPAR 3種亞型都參與脂質代謝,其中PPARα在脂肪酸代謝中發揮降低血脂的作用,PPARγ參與脂肪細胞分化并調節糖脂代謝,與肥胖的發生及發展密切相關。本研究結果顯示JFP-Ps在小鼠體內的代謝物(1S,2S)-3-氧代-2-戊基-環戊烷乙酸參與了PPAR信號通路,推測其可能通過激活PPAR信號通路的方式調節脂類代謝[20-21]。此外,差異代謝物洛伐他汀酸是活性代謝物,能夠降低總膽固醇及低密度膽固醇的量,對于高血脂癥治療效果明顯[22]。結果表明JFP-Ps的攝入有利于降低小鼠體內甘油三酯的含量。

多巴胺主要是在腸系膜等器官產生的,多巴胺對中樞系統、腎臟和胃腸道有著調節作用[23-25]。多巴胺還可以參與組胺H1受體拮抗劑通路,當H1受體與組胺反應時,H1受體被認為是產生過敏癥狀的靶點,組胺H1受體拮抗劑通過競爭與H1受體結合,從而抑制了組胺與靶點的相互作用,使其無法表達生理活性,表現出抗過敏的作用[26]。多糖不能被人體直接降解吸收,可作為腸道微生物的主要營養來源被腸道微生物酵解,酵解產物可調節腸道微生物結構[27-28]。腸道微生物的次級代謝產物可通過血液循環影響機體的免疫系統[29];差異代謝物β-環糊精參與環氧合酶抑制劑通路,環氧合酶抑制劑可以抑制腫瘤的發病率,誘導多種腫瘤細胞凋亡[30]。本研究結果表明攝入JFP-Ps可能有利于調節腸道菌群結構、其代謝物可通過緩解細胞損傷發揮其免疫活性[31-32]

綜上所述,JFP-Ps可以調節如多巴胺、苯甲酰輔酶A等30種內源性物質在小鼠體內的代謝,參與小鼠體內的苯丙氨酸、丙氨酸和天冬氨酸、色氨酸、膽固醇、2-氧羧酸、核苷酸代謝以及三羧酸循環、PPAR信號通路、A類視紫紅質、苯甲酸的降解及其與氨基酸的結合、核受體、谷胱甘肽和一碳循環、尿素循環與氨基代謝通路。參與小鼠體內膽固醇、脂肪酸、甘油三酯、ω-3和ω-6脂肪酸和次級代謝產物的合成。JFP-Ps調節代謝通路的方式及代謝產物發揮生理活性的機制仍有待進一步研究。

參考文獻

  1. FENG Z, DING C Q, LI W H, WANG D C, CUI D. Applications of metabolomics in the research of soybean plant under abiotic stress[J]. Food Chemistry, 2020, 310: 125914.
  2. LIN L Y, CHENG K L, XIE Z Q, CHEN C Y, CHEN L, HUANG Y D, LIANG Z. Purification and characterization a polysaccharide from Hedyotis diffusa and its apoptosis inducing activity toward human lung cancer cell line A549[J]. International Journal of Biological Macromolecules, 2019, 122: 64-71.
  3. FAN S R, ZHANG J F, NIE W J, ZHOU W Y, JIN L Q, CHEN X M, LU J X. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells[J]. Food and Chemical Toxicology, 2017, 102: 53-62.
  4. WANG Y F, TIAN Y Q, SHAO J J, SHU X, JIA J X, REN X J, GUAN Y. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom[J]. International Journal of Biological Macromolecules, 2018, 108: 300-306.
  5. WANG P C, ZHAO S, Yang B Y, WANG Q H, KUANG H X. Anti-diabetic polysaccharides from natural sources: A review[J]. Carbohydrate Polymers, 2016, 148: 86-97.
  6. MING K, CHEN Y, YAO F K, SHI J T, YANG J J, DU H X, WANG X Y, WANG Y X, LIU J G. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide[J]. International Journal of Biological Macromolecules, 2017, 94(Part A): 28-35.
  7. WANG W, ZHANG F M, LI Q, CHEN H, ZHANG W J, YU P, ZHAO T, MAO G H, FENG W W, YANG L Q, WU X Y. Structure characterization of one polysaccharide from Lepidium meyenii Walp, and its antioxidant activity and protective effect against H2O2-induced injury RAW264.7 cells[J]. International Journal of Biological Macromolecules, 2018, 118(Part A): 816-833.
  8. KARU N, DENG L, SLAE M, GUO A C, SAJED T, HUYNH H, WINE E, WISHART D S. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database[J]. Analytica Chimica Acta, 2018, 1030: 1-24.
  9. MUNOZ-GONZALEZ I, JIMENEZ-GIRON A, MARTIN- AL?VAREZ P J, BARTOLOME B, MORENO-ARRIBAS M V. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake[J]. Journal of Agricultural and Food Chemistry, 2013, 61(39): 9470-9479.
  10. ANGELIS M D, MONTEMURNO E, VANNINI L, COSOLA C, CAVALLO N, GOZZI G, MARANZANO V, CAGNO R D, GOBBETTI M, GESUALDO L. Effect of whole-grain barley on the human fecal microbiota and metabolome[J]. Applied and Environmental Microbiology, 2015, 81: 7945-7956.
  11. TRIMIGNO A, KHAKIMOV B, MEJIA J L C, MIKKELSEN M S, KRISTENSEN M, JESPERSEN B M, ENGELSEN S B. Identification of weak and gender specific effects in a short 3 weeks intervention study using barley and oat mixed linkage β-glucan dietary supplements: a human fecal metabolome study by GC-MS [J]. Metabolomics, 2017, 13: 108.
  12. ZHU K X, ZHANG Y J, NIE S P, XU F, HE S Z, GONG D M, WU G, TAN L H. Physicochemical properties and in vitro antioxidant activities of polysaccharide from Artocarpus heterophyllus Lam. pulp[J]. Carbohydrate Polymers, 2017, 155: 354-361.
  13. 朱科學, 王穎倩, 張彥軍, 賀書珍, 徐? 飛, 吳? 剛, 譚樂和. 菠蘿蜜多糖對脾淋巴細胞抗氧化作用及免疫功能的影響[J]. 食品科學, 2017, 38(23): 207-212.ZHU K X, WANG Y Q, ZHANG Y J, HE S Z, XU F, WU G, TAN L H. Antioxidant and immunoenhancing activity of polysaccharide from Artocarpus heterophyllus Lam. on spleen lymphocytes[J]. Food Science, 2017, 38(23): 207-212. (in Chinese)
  14. 姚思雯, 何佳麗, 朱科學, 譚樂和, 張彥軍, 吳? 剛. 菠蘿蜜多糖體外酵解特征研究[J]. 現代食品科技, 2019, 35(3): 87-94.YAO S W, HE J L, ZHU K X, TAN L H, ZHANG Y J, WU G. In vitro fermentation characteristics of polysaccharides from Artocarpus heterophyllus Lam. pulp[J]. Modern Food Science and Technology, 2019, 35(3): 87-94. (in Chinese)
  15. 姚思雯, 朱科學, 何佳麗, 吳? 剛, 譚樂和. 菠蘿蜜多糖體外消化過程中抗氧化活性變化規律[J]. 熱帶農業科學, 2019, 39(2): 66-73, 99.YAO S W, ZHU K X, HE J L, WU G, TAN L H. Study on the change in antioxidant activity of polysaccharides from Artocarpus heterophyllus Lam. pulp during in vitro digestion[J]. Chinses Journal of Tropical Agriculture, 2019, 39(2): 66-73. (in Chinese)
  16. ZHU K X, YAO S W, ZHANG Y J, LIU Q B, XU F, WU G, DONG W J, TAN L H. Effects of in vitro saliva, gastric and intestinal digestion on the chemical properties, antioxidant activity of polysaccharide from Artocarpus heterophyllus Lam. (Jackfruit) pulp[J]. Food Hydrocolloids, 2019, 87: 952-959.
  17. TAN Y F, LI H L, LAI W Y, ZHANG J Q. Crude dietary polysaccharide fraction isolated from jackfruit enhances immune system activity in mice[J]. Journal of Medicinal Food, 2013, 16(7): 663-668.
  18. 胡秀紅, 任文波, 黃? 晶. 細胞因子與氨基酸代謝關系的研究進展[J/OL]. 中國免疫學雜志, [2021-11-24]. https://kns.cnki.net/kcms/detail/22.1126.R.20210128.1806.002.html.HU X H, REN W B, HUANG J. Research progress on the relationship between cytokines and amino acid metabolism[J/OL]. Chinese Journal of Immunology, [2021-11-24]. https://kns.cnki.net/kcms/detail/22.1126.R.20210128.1806.002.html. (in Chinese)
  19. TAKEDA Y, COSTA S, DELAMARRE E, RONCAL C, OLIVEIRA R L, SQUADRITO M L, FINISGUERRA V, DESCHOEMAEKER S, BRUYERE F, WENES M, HAMM A, SERNEELS J, MAGAT J, BHATTACHARYYA T, ANISIMOV A, JORDAN B F, ALITALO K, MAXWELL P, GALLEZ B, ZHUANG Z W, SAITO Y, SIMONS M, PALMA M D, MAZZONE M. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis[J]. Nature, 2011, 479: 122-126.
  20. 王? 青. 枸杞多糖通過PPARγ調節脂肪細胞功能的機制研究[D]. 銀川: 寧夏醫科大學, 2016.WANG Q. Mechanism of LBP on regulating adipocyte function by PPARγ[D]. Yinchuan: Ningxia Medical University, 2016. (in Chinese)
  21. WANG M, WANG B, WANG S S, LU H, WU H, DING M Y, YING L L, MAO Y J, LI Y. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 616219.
  22. SERAJUDDIN A T M, RANADIVE S A, MAHONEY E M. Relative lipophilicities, solubilities, and structure-pharmaco?lo?gical considerations of 3-hydroxy-3-methylglutar?yl-coen?z?yme A (HMG-CoA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin[J]. Journal of Pharmaceutical Sciences, 1991, 80(9): 830-834.
  23. ABRANTES DIAS A S, AMARAL PINTO J C, MAGALHAES M, MENDES V M, MANADAS B. Analytical methods to monitor dopamine metabolism in plasma: Moving forward with improved diagnosis and treatment of neurological disorders[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 187: 113323.
  24. MEISER J, WEINDL D, HILLER K. Complexity of dopamine metabolism[J]. Cell Communication and Signaling, 2013, 11:34.
  25. ELDRUP E. Significance and origin of DOPA, DOPAC, and dopamine-sulphate in plasma, tissues and cerebrospinal fluid[J]. Danish Medical Bulletin, 2004, 51: 34-62.
  26. 苗? 菁. 組胺H1受體與拮抗劑的相互作用[J]. 廣州化工, 2012, 40(16): 72-73, 124.MIAO J. The interactions between histamine H1 receptor and histamine H1 receptor antagonists[J]. Guangzhou Chemical Industry, 2012, 40(16): 72-73, 124. (in Chinese)
  27. 劉榮瑜, 王? 昊, 張子依, 宋冬雪, 陳錦瑞, 汲晨鋒. 多糖與腸道菌群相互作用的研究進展[J/OL]. 食品科學, [2022-01-24]. http://kns.cnki.net/kcms/detail/11.2206.TS.2?0?210205.1625.043.html.LIU R Y, WANG H, ZHANG Z Y, SONG D X, CHEN J R, JI C F. Progress on interaction of polysaccharides with intestinal flora[J/OL]. Food Science, [2022-01-24]. http://kns. cnki.net/kcms/detail/11.2206.TS.20210205.1625.043.html. (in Chinese)
  28. DAVANI-DAVARI D, NEGAHDARIPOUR M, KARIMZADEH I, SEIFAN M, MOHKAM M, MASOUMI S J, BERENJIAN A, GHASEMI Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications[J]. Foods, 2019, 8(3): 92.
  29. DODD D, SPITZER M H, VAN TREUREN W, MERRILL B D, HRYCKOWIAN A J, HIGGINBOTTOM S K, LE A, COWAN T M, NOLAN G P, FISCHBACH M A, SONNENBURG J L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites[J]. Nature, 2017, 551: 648-652.
  30. YU J, TANG B D, LEUNG W K, TO K F, BAI A H C, ZENG Z R, MA P K, GO M Y Y , HU P J, SUNG J J Y. Different cell kinetic changes in rat stomach cancer after treatment with celecoxib or indomethacin: implications on chemoprevention[J]. World Journal of Gastroenterology, 2005, 11(1): 41-45.
  31. 陳? 秋, 夏永鵬, 邱宗蔭. 蛻皮甾酮對胰島素抵抗細胞模型胰島素敏感性和糖代謝的影響[J]. 中國藥理學通報, 2006, 22(4): 460-464.CHEN Q, XIA Y P, QIU Z Y. Effects of ecdysterone on insulin sensitivity and glucosem etabolism in insulin-resistant cell model[J]. Chinese Pharmacological Bulletin, 2006, 22(4): 460-464. (in Chinese)
  32. ZHANG X H, XU X X, XU T, QIN S. β-ecdysterone suppresses interleukin-1β-induced apoptosis and inflammation in rat chondrocytes via inhibition of NF-κB signaling pathway[J]. Drug Development Research, 2014, 75: 195-201.

猜你喜歡
小鼠劑量
愛搗蛋的風
結合劑量,談輻射
·更正·
全科護理(2022年10期)2022-12-26 21:19:15
中藥的劑量越大、療效就一定越好嗎?
不同濃度營養液對生菜管道水培的影響
鄉村科技(2021年33期)2021-03-16 02:26:54
90Sr-90Y敷貼治療的EBT3膠片劑量驗證方法
小鼠大腦中的“冬眠開關”
米小鼠和它的伙伴們
加味四逆湯對Con A肝損傷小鼠細胞凋亡的保護作用
高劑量型流感疫苗IIV3-HD對老年人防護作用優于標準劑量型
主站蜘蛛池模板: 国产综合欧美| 日本人又色又爽的视频| 一本视频精品中文字幕| 凹凸精品免费精品视频| 自偷自拍三级全三级视频| 国产h视频免费观看| 国产一级小视频| 91福利免费视频| 国产一二视频| www中文字幕在线观看| 欧美综合区自拍亚洲综合天堂| 国产乱肥老妇精品视频| 日日拍夜夜操| 国产午夜不卡| 美女国产在线| 亚洲人成在线精品| 九九九精品视频| 国产成人精品高清不卡在线| 亚洲第一成年免费网站| 91福利片| 免费99精品国产自在现线| 欧美性猛交一区二区三区| 亚洲h视频在线| 一级香蕉人体视频| 在线免费亚洲无码视频| 四虎影视无码永久免费观看| 伊人国产无码高清视频| 久热中文字幕在线| 色婷婷成人网| 狠狠操夜夜爽| 婷婷综合色| 国产亚洲欧美在线视频| 国产成人精品免费视频大全五级 | 欧美三级视频网站| 黄色网在线| 欧美精品亚洲精品日韩专区| 亚洲国产精品无码久久一线| 91蝌蚪视频在线观看| 亚洲国产成人久久精品软件| 亚洲区视频在线观看| 久久久久人妻一区精品色奶水 | 日韩色图区| 亚洲精品片911| 成人国产免费| 久久久精品国产SM调教网站| 午夜视频www| 婷婷色一二三区波多野衣| 99re经典视频在线| 一本大道香蕉久中文在线播放| 成人在线综合| 91在线视频福利| 中字无码精油按摩中出视频| 日韩毛片免费| 在线视频一区二区三区不卡| 国产一区二区福利| 久久公开视频| 女人天堂av免费| 亚洲性日韩精品一区二区| 中文字幕天无码久久精品视频免费| 国产日韩欧美精品区性色| 91小视频在线| 青青国产在线| 人妻无码中文字幕第一区| 日本AⅤ精品一区二区三区日| 婷婷五月在线| 小13箩利洗澡无码视频免费网站| 91色老久久精品偷偷蜜臀| 狠狠色香婷婷久久亚洲精品| 久久久久久久久亚洲精品| 91精品啪在线观看国产91| 亚洲欧洲日韩久久狠狠爱 | 国产成人精品综合| 国产精品视频观看裸模| 1769国产精品视频免费观看| 久久精品丝袜| 亚洲高清中文字幕| 亚洲人成成无码网WWW| 国产中文在线亚洲精品官网| 亚洲成人福利网站| 亚洲人成成无码网WWW| 91网址在线播放| 欧美成人手机在线视频|