侯 捷,王 玨,顧 威,曹 坤,周 雅
[上海市政工程設計研究總院(集團)有限公司,上海市200000]
水工隧洞是水利工程中一個重要的組成部分。由于水工隧洞本身的特點,除了地形和地質條件外,還涉及到許多水力學問題。首先,為保證水工隧洞能夠起到預期的作用,必須獲得良好的水流形態,因此要進行流態判別。其次,要對水工隧洞的泄流能力、水頭損失、壓坡線、水面線進行計算,同時要確定各種過渡段的形式[1-2]。
隧洞水流的流態有三種:有壓流、無壓流和半有壓流。半有壓流又分為頭部水流封閉而洞身為無壓流和洞身前半部為有壓流后半部為無壓流的兩種半有壓流態。對一定的隧洞,其水流流態主要取決于洞前的上游水位和洞出口的下游水位。當下游水位較高,會降低隧洞的泄流能力,此時隧洞為淹沒出流;當下游水位較低,對泄流能力不起影響,則稱為自由出流。下游水位高于洞頂,并發生淹沒水躍(即下游水位已淹沒出口洞頂),此時流態為淹沒出流,且全洞為有壓流。如果下游水位較低,且為自由出流時,其洞內流態決定于上游水位、洞身底坡、進口型式、洞長等因素,此時流態的變化較為復雜。
對于長距離輸水隧洞的水力瞬變計算[3],僅就計算方法而言,無論是有壓流還是無壓流,都有成熟的計算手段和方法,但是隧洞或渠道中的漫頂現象在何時何處發生往往不能預知,造成在計算方法選擇上會因不能明確區分隧洞的有壓流洞段和無壓流洞段而陷入困境,因此,建立合理可行的數值模擬計算方法是長距離輸水隧洞明滿流水力計算的基礎。目前,主要方法有激波擬合法、剛性水體法[4]、Priessmann 窄縫法[5]等。本文將以某水庫現狀截排隧洞為例,采用特征隱式格式法,考慮隧洞全段的水力特性,分析在典型水位組合下輸水隧洞的過流能力特征。
深圳水庫污水截排隧洞是保證和改善深圳水庫原水水質的關鍵工程,也是東深供水改造工程的重要組成部分,隧洞建于2001 年,2003 年正式投入運行,設計流量為25 m3/s。污水隧洞通道由進口沿沙灣河河邊跨深圳水庫庫區至新平村,全長7 132.49 m,主要縱坡1/650,里程K0+000-K1+640 為箱涵段;里程K1+640-K2+000 為淺埋隧道段;里程K2+000-K7+083.79 為山嶺隧洞,隧洞出口設36.7 m 的箱涵和12 m的明渠,接入蓮塘河,隧洞設計時以無壓流形式輸水。隧洞平面走線見圖1。隨著深圳市城市建設的發展,上游匯水情況、水質條件和設計水位均發生很大變化,隧洞流態隨之發生改變,由原無壓過流變為有壓過流,需復核該隧洞在新水位條件下的過流能力能否滿足上游泄洪及深圳水庫水質保障的需求。

圖1 深圳市沙灣截排工程平面布置圖
(1)由無壓流至半有壓流的界限值:由無壓流至半有壓流的轉換界限值k1,一般地說,與進口兩側邊墻的形式、尺寸,隧洞斷面的形式、尺寸,隧洞底坡和泄流量都有關,均由實驗決定。對一般的泄水隧洞,可以認為:影響k1值的主要因素是進口體型。k1值的變動范圍在1.1~1.3 之間,當進口邊墻局部阻力損失系數較大時,取較小值;反之取較大值。一般可取k1=1.2 作為判別界限,即

(2)緩坡隧洞由半有壓流至有壓流的界限值:通過分析,半有壓流至有壓流界限值k2m的計算公式為

式中:Σζ 為自進口上游漸變流斷面到隧洞出口斷面間的局部能量損失系數之和;C為謝才系數;l為洞長;R為洞身滿流時的水力半徑;i為隧洞底坡;a為洞高。
圖2 為各隧洞過流形式判別斷面。

圖2 緩坡隧洞自由出流
隧洞若為無壓流,則過流能力按明渠均勻流公式計算,具體公式如下:

式中:Q為設計流量,m3/s;A為箱涵過水斷面面積,m2;n為粗糙系數,取0.017;C為謝才系數,;i為設計底坡。
有壓隧洞過流能力按下式計算:

式中:ω 為隧洞出口斷面面積,m2;T0為包括行近流速水頭的作用水頭,此處行近流速約等于0;hp為隧洞出口斷面水流的平均單位勢能,此處為下游水深;μ 為流量系數,由下式計算:
角色扮演克服了實錄語料不太可能“提供對言語行為語境因素加以控制的、能對某一特征做出滿意推測的表達同一言語行為的足夠例子”(Fraser et al,1980:81)的缺陷,使得研究人員能夠根據自己的研究目的,有重點、有突出地設計交際情景,對語料收集過程多了幾分把握和控制。同時,被試可以說他們想說的話,可以想說多少說多少,因此,被試的口語表達可以認為是代表了他們“自然”的說話方式。此外,通過對角色的具體設定,研究人員能夠觀察到語境因素是如何影響人們選擇特定語言形式的。

式中:ω 隧洞出口斷面面積,m2;ζ 為某一局部能量損失系數;ωi為相應的流速所在斷面面積:m2。
現狀隧洞縱斷面坡度從1/650~1/120 不等,各斷面實際坡度均小于臨界坡度,可判斷現狀隧洞為緩坡。根據最新截排方案,針對50 a 一遇以下水位進行截排,進口設計水位在50 a 一遇工況下為29.0 m、隧洞進口底標高22.60 m,根據水力計算手冊,隧洞流態主要由h/a 控制。h/a<1.2 時為無壓流態,1.2≤h/a<1.33(計算得到)為半有壓流態,h/a>1.33 時為有壓流態。則本隧洞上游水位<26.8 m 時為無壓狀態,>27.26 m 時為全有壓流態。因此50 a 一遇工況下現狀隧洞為全段有壓出流。出口處水位按深圳河50 a 一遇水位工況定為10.861 m,下游側底板頂高程9.03 m,下游側水位較低,出口處為自由出流狀態,不會影響隧洞泄流能力。改變上游水位,可分別根據明渠均勻流公式和有壓流公式計算得出隧洞流量,如圖3 所示。

圖3 隧洞流量- 水位變化曲線
水位改變后,現狀隧洞過流狀態及過流能力相應發生變化,當閘前水位達到26.80 m 時,隧洞從無壓流態過渡到有壓流態。根據規范,鋼筋混凝土襯砌表面糙率取值為0.017。復核結果表明:進口處水位29 m 時實際流量視隧洞內表面平整程度約在35.51 m3/s。
隧洞水流瞬變流分析的基本方程包括:
連續方程

動量方程

式中:Q為斷面流量;h為斷面水深;A為過水斷面面積;B為水面寬;渠道流動的面波波速;c=;Jf=Q|Q|曼寧公式。
為了尋求迭代收斂性較優的渠道瞬變流求解方法,即特征隱式格式法,將連續方程乘一因子l±=后加到動量方程上,則有:

式中:l±=。
在(m,n)點進行差分,項采用向前差分,對項采用不同的差分格式,而重力項、摩擦項、項按n+1 時層,其它按時層計算,可得:

利用式(10)和(11),以及相應的初始條件和邊界條件,可以得到聯立方程組,經過Newton-Raphson 法線性化,通過編程計算即可得到系統瞬變流的數值解,可廣泛用于含明渠流的復雜輸水系統的恒定流和非恒定流計算分析。
在含明渠流輸水系統瞬態過程分析中,邊界條件主要包括明渠進口和不同明流段的串聯節點等。
明渠進口處為水庫,在特定工況下,其水位保持一恒定值。令明渠進口斷面節點號為1,可得該邊界條件的數學模型。
令水庫水位為▽w,其中▽1 為明渠進口洞底高程,則有:

式中:ζ 為明渠進口局部損失系數;A1為進口斷面過水面積;下標1 表示渠道進口斷面。
式(12)經過Newton-Raphson 法線性化,引進相應參量的增量表示形式,得到反映明渠水力特性的整體帶狀矩陣的第1 行元素及相應的右端項,即:

在明渠串聯節點處,對應上游明渠段末端的節點為j,下游明渠段始端的節點為j+1,則有:

針對現狀隧洞不同的進口水位,出口水位為10.861 m,分析隧洞的過流能力,結果對比圖見下圖4。

圖4 有壓隧洞理論值- 分析值對比圖
圖4 分析可知:各箱涵和隧洞的水頭損失系數和糙率采用與過流能力理論分析的一致,各有壓流態水頭條件下的兩者計算結果基本一致,基于1D 水流特征隱式格式的過流能力計算結果相比經驗公式值誤差在7%以內,平均誤差僅3.03%。現狀隧洞進口為29.0 m(50 a 一遇水位)時,計算得到輸水系統的過流量為34.80 m3/s,略小于理論分析流量35.51 m3/s,此時,隧洞出口段為明滿過渡流態,出口箱涵段為明流流態。對比結果表明該分析計算的合理性和準確性。
深圳水庫截排隧洞由于上游匯水邊界條件改變,隧洞水位條件發生變化,因此有必要復核在新水位條件下的過流能力能否滿足上游泄洪及深圳水庫水質保障的需求。本文通過過水隧洞理論計算與基于1D 水流特征隱式格式方法相結合,研究了隧洞過流水力要素,為隧洞自身設計條件及后續的加固改造提供了依據。得出的主要結論如下:
(1)過水隧洞從無壓流態變換至有壓流態時,過流能力會有一小幅下跌,其原因為隧洞濕周增大,有效水力半徑減小,沿程水損增大。有壓流過流能力隨上下游水位差增大而小幅提升,流量增加能力有限,無限制提升上游水位以期增加隧洞過流能力的經濟效益較差。
(2)隧洞有壓流水力計算公式與基于1D 水流特征隱式格式的計算結果高度吻合,證實了該模擬方法的準確性,為過水隧洞水力計算分析提供了新思路。