李衛錦 鐘才榮 張穎 袁長春 李仁茂



摘要:【目的】對鹽脅迫下海馬齒根系進行轉錄組測序分析,挖掘海馬齒根系耐鹽相關基因,為揭示海馬齒耐鹽的分子機制提供參考。【方法】利用Illumina測序技術對0 mmol/L NaCl(對照組)和400 mmol/L NaCl脅迫處理(鹽脅迫處理組)下的海馬齒根系進行轉錄組測序分析,從中篩選出差異表達基因,選取13個基因進行實時熒光定量PCR(qRT-PCR)檢測,以驗證轉錄組數據的可靠性?!窘Y果】在海馬齒根系轉錄組中共鑒定出305145個轉錄本,平均長度為622 bp,其中,對照組有146177個長度>300 bp的轉錄本,鹽脅迫處理組有72173個長度>300 bp的轉錄本;共有65535條Unigenes在Nr、GO、Swiss-Prot、COG和KEGG五大數據庫注釋成功,占Unigenes總數的52.36%。對照組和鹽脅迫處理組共有65535個差異Unigenes,其中,有182個熱休克蛋白基因。對照組和鹽脅迫處理組間共有24042個差異表達基因,從中選取13個基因進行qRT-PCR檢測,結果顯示,9個基因表達上調,其余4個基因表達下調,與轉錄組測序結果一致。24042個差異表達基因中,共有10106個顯著差異基因富集到129條代謝通路,其中富集程度排名前10的代謝途徑為核糖體、次級代謝生物合成、RNA轉運、內吞作用、剪接體、甘油磷脂代謝、內質網加工、吞噬、醚脂類代謝和植物-病原體相互作用,參與鹽脅迫相關的硫代謝、脯氨酸積累、活性氧(ROS)代謝、與鹽脅迫相關的鈣信號通路和過氧化氫代謝等途徑的差異基因上調?!窘Y論】在鹽脅迫下海馬齒差異表達基因如小分子量熱激蛋白基因、抗氧化酶相關基因及與離子交換相關基因發揮了重要調控作用。
關鍵詞: 海馬齒;根;鹽脅迫;轉錄組;耐鹽基因
中圖分類號: S156.4? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2022)03-0693-11
Analysis of the root transcriptomes in Sesuvium portulacastrum respond to salt stress
LI Wei-jin ZHONG Cai-rong ZHANG Ying YUAN Chang-chun LI Ren-mao
(1 School of Life Science and Technology, Lingnan Normal University, Zhanjiang,Guangdong? 524048, China;
2 Hainan Academy of Forestry, Haikou, Hainan? 571100, China)
Abstract:【Objective】To conduct transcriptome sequencing analysis on Sesuvium portulacastrum under salt tole-rance, and to find out genes related to salt tolerance in the root of S. portulacastrum, so as to provide reference for studying molecular mechanism of S. portulacastrum. 【Method】Illumina sequencing technology was applied to compare and analyze the transcriptomesand the differentially expressed genes (DEGs) related to salt tolerance inroots of S. portulacastrum under 0 mmol/L NaCl (control group) and 400 mmol/L NaCl salt stress (salt stress treatment group),respectively. Thirteen DEGs were selected to verify the reliability of transcriptome data by using quantitative real-time PCR(qRT-PCR) analysis. 【Result】 A total of 305145 transcripts with an average length of 622 bp were identified in the roots of S. portulacastrum transcriptome. In the control group, 146177 transcripts were greater than 300 bp; in the salt treatment group,72173 transcripts were greater than 300 bp. A total of 65535 unigenes were successfully annotated in the five databases of Nr, GO, Swiss-Prot, COG and KEGG, accounting for 52.36% of the total unigenes and including 182 heat shock protein genes. A number of 24042 DEGs between the control group and the salt stress treatment group were identified. Thirteen candidate genes were selected for qRT-PCR analysis, and the result showed that 9 genes were up-regulated and 4 genes were down-regulated, which was consistent with transcriptome sequencing analysis. Among the 24042 DEGs,10106 significant DEGs were enriched in 129 metabolic pathways. The top 10 enriched metabolic pathways were ribosome, biosynthesis of secondary metabolites, RNA transport, endocytosis, spliceosome, glycerophospholipid metabolism, protein processing in endoplasmic reticulum, phagocytosis, ether lipid metabolism and plant-pathogen interaction path. Differential genes in sulfur metabolism, proline accumulation, eactive oxygen species(ROS) metabolism, calcium signaling pathway and hydrogen peroxide metabolism related to salt stress were up-regulated. 【Conclusion】Under salt stress,DEGs in S. portulacastrum, such as small molecular heat shock protein genes, genes related to anti-oxidation and genes related to ion exchange, play an important role in regulation.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Key words: Sesuvium portulacastrum; root; salt stress; transcriptome; genes related to salt tolerance
Foundation items:Special Basic Scientific Research Project of HainanTechnological Innovation in Scientific Research Institutes(KYYS-021-13); Zhanjiang Science and Technology Plan Project (2018A03024); Talent Project of Lingnan Normal University (ZL2003); University-level Project of Lingnan Normal University (1170918174)
0 引言
【研究的意義】海馬齒(Sesuvium portulacastrum)為番杏科(Aizoaceae)海馬齒屬(Sesuvium L.)多年生雙子葉鹽生植物,其作為紅樹林伴生植物,通常生長在世界各地沿海和內陸的沙灘上(Yi et al.,2014;Chang et al.,2016),具有耐鹽霧、砂洗、貧瘠和耐高溫的特性(Rabhi et al.,2010a)。海馬齒屬于兩性生殖的鹽生植物,具有獨特的耐鹽特性,不僅能產生大量的生物量,可通過細胞和組織積累大量的Na+,可達872 mg/株,且在濃度高達800 mmol/L的NaCl溶液中正常生長,利用該特性可實現鹽漬土壤的改良(Rabhi et al.,2010b;Chang et al.,2016)。目前全球約20%的可耕地和7%的土地受到鹽漬化危害(Rizwan et al.,2015)。因此,海馬齒不僅對鹽堿地有修復功能,還能固定沙丘、修復污染海島和海岸帶生態環境(范偉等,2010;Lokhande et al.,2013;丁國華等,2020)。因此,開展在鹽脅迫下海馬齒根系的轉錄組測序分析,挖掘響應鹽脅迫的功能基因,對探究海馬齒對鹽響應的分子機制、改良農作物耐鹽性及解決土壤鹽漬化具有重要的意義。【前人研究進展】鹽脅迫對海馬齒的影響研究主要集中在海馬齒的形態結構基礎(Yi et al.,2014;Chang et al.,2016)、生理特性(Rabhi et al.,2010a;Kannan et al.,2013)及分子調控機制等方面(Ghnaya et al.,2013)。研究發現,在鹽脅迫下,海馬齒葉片能保持足夠的氣體交換和色素組成(Rabhi et al.,2010b),且葉中參與離子結合、質子轉運、光合作用和ATP合成的相關基因差異表達(Kannan et al.,2013;Yi et al.,2014)。目前耐鹽相關基因已有較多報道,如海馬齒的果糖-1,6-二磷酸醛縮酶基因(SpFBA)表達可提高海馬齒對鹽的耐受性(Fan et al.,2009)。甜菜的堿醛脫氫酶基因(SpBADH)表達產物可減少H2O2、增加脯氨酸和激活抗氧化酶,以改善活性氧(ROS)清除,提高植物對干旱或者滲透脅迫的耐受性(Yang et al.,2015)。水通道蛋白基因(SpAQP1)可通過增強植物的抗氧化性來提高其耐鹽性(Chang et al.,2016)。Na+/H+逆向轉運基因(SpNHX1)是響應鹽脅迫的關鍵基因(Zhou et al.,2018)。鹽超敏感基因1(SpSOS1)和H+-ATP基因(SpAHA1)共表達可提高擬南芥的耐鹽性(Ji et al.,2013;Fan et al.,2019)。隨著測序技術的快速發展,高通量轉錄組測序已成為一種快速、高效的基因表達研究方法(Bazakos et al.,2015)。至今,已對大量植物的鹽敏感品種和耐鹽品種進行轉錄組測序分析的研究報道,例如Taji等(2004)利用比較基因組學研究擬南芥和鹽芥的耐鹽基因,結果發現鹽芥耐鹽的原因可能是Fe-SOD、P5CS、PDF1.2、AtNCED、P-protein、β-葡萄糖苷酶基因和SOS1基因共表達的結果;Rabello等(2008)從旱稻中鑒定出22種可能與耐旱相關的蛋白;Qiu等(2011)從楊樹中鑒定出與鹽脅迫相關的脫落酸(ABA)合成基因;且Sun等(2010)研究發現,番茄耐鹽品種的SOS途徑更活躍,水楊酸結合蛋白2基因(SABP2)在其耐鹽機制中可能發揮重要調控作用;Zahaf等(2012)研究發現,苜蓿bHLH轉錄因子可能在鹽脅迫中發揮重要作用;Ma等(2013)從鹽角草中鑒定出大量參與離子穩態和滲透調節相關基因;Zhang等(2014)研究發現,SnRK2、PYL、PP2C等差異表達基因與ABA的信號轉導途徑相關;Bazakos等(2015)研究發現,橄欖根系中有24個差異表達基因,其中9個上調基因,15個下調基因;在葉中有70個差異表達基因,其中14個下調基因,56個上調基因;Tian等(2018)研究發現,SnRK2、ABF、HST、GSTs和GSH1基因在鹽脅迫中表現出高活性;Pan等(2019)研究發現,Unigenes有15321個微衛星標記基因,其中,有17個單核苷酸多肽(SNP)與6個鹽脅迫相關的差異表達基因(DEGs);Wang等(2020a)研究發現,大穗結縷草中TaHSP23.9可能作為一種蛋白質伴侶來正向調節植株對鹽脅迫的響應?!颈狙芯壳腥朦c】目前鮮見有關海馬齒根系響應鹽脅迫轉錄組分析的研究報道。【擬解決的關鍵問題】利用Illumina測序技術對不同濃度NaCl脅迫處理的海馬齒根系進行轉錄組測序分析,并挖掘響應鹽脅迫的功能基因,為培育耐鹽的農作物新品種及有效解決土壤鹽漬化提供理論依據。1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
1 材料與方法
1. 1 試驗材料
供試材料海馬齒采自海南省海口市東寨港口(東經110°33′59″,北緯19°57′12″)。選自同一植株的莖,每個分枝保留3個節和4片葉,并用1/2改良型Hoagland營養液進行培養。經過3周扦插生根后用400 mmol/L NaCl(鹽脅迫組)和0 mmol/L NaCl(對照,CK)連續處理5周,每處理重復3次。RNAplant Plus試劑盒購自天根生化科技(北京)有限公司,SYBR Premix Ex Taq Kit購自寶日醫生物技術(北京)有限公司。主要儀器設備:Agilent2100分析儀(Agilent,美國)、Nanodrop分光光度計(Thermo,美國)、ABI 7500熒光定量PCR儀(ABI,美國)等。
1. 2 RNA提取、文庫制備及測序
按照RNAplant Plus試劑盒說明提取海馬齒根系總RNA。用Agilent2100分析儀檢測RNA的純度。cDNA文庫的制備參照Sharma(2015)的方法。對制備的cDNA文庫進行PCR擴增以獲得大量的連接片段,用NanoDrop分光光度計進行定量,并用Bioanalyzer檢測其純度。最后使用Illumina HiSeq 2000平臺進行測序。
1. 3 組裝、注釋和差異表達基因分析
利用SolexaQA對Raw reads進行過濾處理后得到Clean reads。為得到高質量的測序數據方便后續分析,從中去除由于接頭自連等原因導致沒有插入片段的reads,以及舍棄adapter及質量修剪后長度小于20 bp的序列。利用Trinity(http://trinitynaseq.scourceforge.net)將Clean reads進行從頭組接,設置參數K-mer graph(K=25),從而獲得Unigenes。經組裝后的轉錄本以差異倍數(Fold change)≥2,錯誤發現率(False dicovery rate)<0.05作為篩選標準篩選出差異表達基因。將差異表達基因在Nr(http://www.ncbi.nlm.nih.gov)、GO(http://www.geneontology.org)、Swiss-Prot(http://www.expasy.ch/sprot)、KEGG(http://www.genome.jp/kegg)和COG(http://www.ncbi.nlm.nih.gov/COG)五大數據庫進行功能注釋。采用KEGG數據庫對差異表達基因進行功能分類和代謝途徑富集分析。
1. 4 實時熒光定量PCR(qRT-PCR)檢測
以第一鏈cDNA為模板,利用SYBR Premix Ex Taq Kit對隨機選取13個差異表達基因進行qRT-PCR檢測,以β-actin基因為內參。所有反應均設3次重復。qRT-PCR所用引物(表1)均使用Primer Express(Applied Bio systems)設計,并利用NCBI數據庫的BLAST程序對所設計引物進行驗證。最后用相對定量法(2-△△Ct)計算目的基因表達水平。
2 結果與分析
2. 1 海馬齒轉錄組數據分析結果
利用Illumina配對末端測序法對海馬齒根系的2個cDNA文庫(CK和鹽脅迫處理組)進行轉錄組測序,共獲得138133008條Raw reads。經過對Clean reads進行拼接后,在海馬齒根系轉錄組中共鑒定出305145個轉錄本,平均長度為622 bp,其中,對照組有146177個長度>300 bp的轉錄本,鹽脅迫處理組有72173個長度>300 bp的轉錄本。差異表達的125173個轉錄本中,長度為300~500 bp的轉錄本占差異表達基因總數的64.4%,長度為501~1000 bp的轉錄本占18.9%,長度為1000~3000 bp的轉錄本占16.6%,不含長度>3000 bp的轉錄本。
2. 2 Unigenes功能注釋結果
將Unigenes在Nr、GO、Swiss-Prot、COG和KEGG五大數據庫中進行注釋,結果(表2)發現,共有65535條Unigenes注釋成功,占Unigenes總數的52.36%,剩下的59638條Unigenes均未獲得注釋占Unigenes總數的47.64%。在Nr數據庫中被成功注釋的Unigenes最多,比對上的同源物種有擬南芥、水稻、蒺藜苜蓿、大麥、海金藻等。在GO數據庫中注釋成功的Unigenes如圖1所示。Unigenes被注釋為生物學過程和細胞組分兩大類別的數量較分子功能類別多。生物學過程類別中,富集程度最高的是細胞過程,其次是單一生物細胞過程和代謝過程;細胞組分類別中,富集程度較高的是細胞和細胞部分,其次是細胞器部分;分子功能類別中,富集程度最高的是催化活性和結合活性。
2. 3 Unigenes功能分析結果
對照組和鹽脅迫處理組共有65535個差異Unigenes。與對照相比,鹽脅迫處理組的上調Unigenes有14609個,下調Unigenes有50926個。在Unigenes中發現有182個熱休克蛋白基因,如表3所示。這些蛋白質包括高分子量的Hsps(70 kD Hsp70和90 kD Hsp90)、低分子量的Hsps(18.2 kD class I、15.4 kD class V、22.7 kD class IV、26.5 kD Hsps,10 kD類伴侶蛋白,19 kD Hsps和23.5 kD ACD-sHsps)和分子伴侶(20 kD葉綠體分子伴侶、分子伴侶ClpB1及分子伴侶dnaJ 1,dnaj 2、dnaj 6、dnaj 10、dnaj 13、dnaj 16、含t-復合蛋白的分子伴侶、分子伴侶CPN60、分子伴侶GroEL、分子伴侶-60 kD和ch60),其中低分子量的HSPs表達上調。1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
2. 4 差異表達基因的qRT-PCR檢測結果
對照組和鹽脅迫處理組共有24042個差異表達基因。為驗證測序結果的可信度,從中隨機選擇13個差異表達基因進行qRT-PCR檢測,結果(圖2)發現,其中6個耐鹽蛋白基因(STO1~STO6),吡咯啉-5-羧酸還原酶基因(ProC),亞硫酸還原酶基因(SIR)和鹽超敏感基因(SOS1)上調表達,其余4個基因下調表達。差異表達基因的qRT-PCR檢測結果與轉錄組測序結果表達趨勢一致。說明測序文庫較真實地反映鹽脅迫下差異表達基因的表達情況。
2. 5 差異表達基因的KEGG代謝通路富集分析結果
將獲得的24042個差異表達基因與KEGG數據庫進行比對,結果發現有10106個顯著差異基因富集到129條代謝通路,其中富集程度排名前10的代謝途徑為核糖體、次級代謝生物合成、RNA轉運、內吞作用、剪接體、甘油磷脂代謝、內質網加工、吞噬、醚脂類代謝和植物—病原體相互作用(圖3)。由圖4可知,富集差異表達基因最多的通路為內質網加工蛋白通路,為948個基因,其中上調基因145個,下調基因803個,其次是吞噬體通路,為946個,其中上調基因120個,下調基因826個。此外,差異表達基因參與鹽脅迫密切相關的途徑包括硫代謝、脯氨酸積累、活性氧(ROS)代謝、與鹽脅迫相關的鈣信號通路和過氧化氫代謝(圖5)。在硫代謝中上調基因為SOS1和Na+/H+轉運蛋白基因(NHX1);脯氨酸累積中,proC基因上調,而谷胱甘肽水解酶基因(GGT)和5-氧脯氨酸酶基因(OPLAH)下調;ROS代謝中,脫氫抗壞血酸還原酶基因(DHAR)表達下調,而過氧化物酶體膜蛋白基因2(Pxmp2)和線粒體內膜蛋白基因17(Mpv17)基因表達上調。
3 討論
高度保守的熱激蛋白是一種組成型表達蛋白,并具有分子伴侶的功能,參與多種生物學過程,如轉錄、翻譯和翻譯后修飾、蛋白質折疊及蛋白質的聚集和解聚(Tiwari et al.,2015)。5個保守的Hsps家族(Hsp100、Hsp90、Hsp70、Hsp60和sHsp)和小熱休克蛋白(sHsp)在植物中普遍存在,在生物或非生物脅迫下其基因表達上調,可作為分子伴侶保護其他蛋白免受非生物脅迫的破壞(Elizabeth et al.,2020)。本研究發現,有7種以上的sHsps基因表達上調,推測其參與耐鹽機制。前人研究發現,TaHsp23.9、PfHsp17.2等sHsp基因的表達均提高了轉基因擬南芥的耐鹽性,推測sHsp保護了某些酶和蛋白質在鹽脅迫下免于破壞和降解(Zhang et al.,2018;Wang et al.,2020b)。但Sun(2016)研究表明,轉基因擬南芥中AsHsp17基因表達降低植株對鹽的耐受性,其原因可能是不同種類sHsp對鹽脅迫的響應機制不同。本研究還發現,與ROS代謝相關的2個膜蛋白基因Pxmp2和Mpv17表達上調,表明鹽脅迫下海馬齒根系的ROS合成代謝加強,其原因可能是鹽脅迫刺激下產生大量ROS(Mittler,2017),導致與ROS代謝相關基因表達上調。此外,ROS作為信號分子,將鹽脅迫信號傳遞給sHsp基因,從而導致sHsp基因表達上調(Wrzaczek et al.,2013)。鹽脅迫會引起蛋白質錯誤折疊或未折疊蛋白質的累積,使內質網中編碼分子伴侶基因及其他提高蛋白質折疊能力基因的表達,有助于內質網恢復其穩態(Walter and Ron,2011)。海馬齒在鹽脅迫下,差異表達基因中多種分子伴侶基因互作參與海馬齒的鹽脅迫響應,該結論在大穗結縷草(Zhang et al.,2018)亦得到證實。
在鹽脅迫下,海馬齒中參與到抗壞血酸-谷胱甘肽循環(AsA-GSH)代謝途徑中的脫氫抗壞血酸還原酶基因(DHAR)顯著下調,與燕麥在鹽脅迫下的研究結果(劉建新等,2021)一致,但水稻DHAR在擬南芥中過表達可提高植株耐鹽能力(Ushimaru et al.,2006)。海馬齒的單脫氫抗壞血酸還原酶基因(MDHAR)和抗壞血酸過氧化物酶基因(APX)基因均顯著上調。該結論與鹽脅迫下大豆MDHAR基因表達受到抑制,但APX基因表達量升高的結論存在差異(Rahman et al.,2021)。此外,脯氨酸作為應激反應的銜接分子,在自然界中作用廣泛,在植物逆境脅迫的抗氧化反應中發揮重要作用。脯氨酸處理過的煙草幼苗中APX和谷胱甘肽過氧化物酶(GPX)活性增強,說明脯氨酸參與提高煙草幼苗的抗氧化能力(Boudmyxay et al.,2019),推測脯氨酸在海馬齒鹽脅迫響應中間接發揮作用。今后將通過轉基因技術進一步深入研究海馬齒中鹽脅迫響應基因的分子調控機制。
4 結論
鹽脅迫下海馬齒差異表達基因如小分子量熱激蛋白基因、抗氧化酶相關基因及與離子交換相關基因發揮了重要調控作用。
參考文獻:
丁國華,阮雪玉,張雪妍,王旭初. 2020. 濱海鹽生植物海馬齒耐鹽機制解析及其在生態環保中應用研究[J]. 中國科技成果,21(7):18-23. [Ding G H,Ruan X Y,Zhang X Y,Wang X C. 2020. Study on salt-tolerance mechanism of marine halophytes Sesuvium portulacastrum L. and its application in ecological and environmental protection[J]. China Science and Technology Achievements,21(7):18-23.] doi:10.3772/j.issn.1009-5659.2020.07.006.
范偉,李文靜,付桂,張治禮. 2010. 一種兼具研究與應用開發價值的鹽生植物-海馬齒[J]. 熱帶亞熱帶植物學報,18(6):689-695. [Fan W,Li W J,Fu G,Zhang Z L. 2010. Sesuvium portulacastrum L.,a promising halophyte in research and application[J]. Journal of Tropical and Subtro-pical Botany,18(6):689-695.] doi:10.3969/j.issn.1005-3395.2010.06.017.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
劉建新,劉瑞瑞,賈海燕,劉秀麗,卜婷,李娜. 2021. 硫化氫對鹽堿脅迫下裸燕麥葉片抗壞血酸—胱甘肽循環的調控效應[J]. 應用生態學報,32(12):3988-3996. [Liu J X,Liu R R,Jia H Y,Liu X L,Bu T,Li N. 2021. Regulation effects of hydrogen sulfide on ascorbate-glutathione cycle in naked oat leaves under saline-alkali stress[J]. Chinese Journal of Applied Ecology,32(11):3988-3996.] doi:10.13287/j.1001-9332.202111.023.
Bazakos C,Manioudaki M E,Sarropoulou E,Spano T,Kalaitzis P. 2015. 454 pyrosequencing of olive (Olea europaea L.) transcriptome in response to salinity[J]. PLoS One,10(11):e0143000. doi:10.1371/journal.pone.0143 000.
Boudmyxay K,沈鐳,鐘帥,孫艷芝,楊慧芹. 2019. 脯氨酸引發提高煙草種子和幼苗抗逆性及其與抗氧化系統的關系[J]. 山西農業科學,47(1):39-48. [Boudmyxay K,Shen L,Zhong S,Sun Y Z,Yang HQ. 2019. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming[J]. Journal of Shanxi Agri-cultural Sciences,47(1):39-48.] doi:10.3969/j.issn.1002- 2481.2019.01.11.
Chang W J,Liu X W,Zhu J H,Fan W,Zhang Z L. 2016. An aquaporin gene from halophyte Sesuvium portulacastrum,SpAQP1,increases salt tolerance in transgenic tobacco[J]. Plant Cell Reports,35(2):385-395. doi:10.1007/s00299-015-1891-9.
Elizabeth R,Waters,Elizabeth V. 2020. Plant small heat shock proteins–evolutionary and functional diversity[J]. New Phytologist Trust,227(1):24-37. doi:10.1111/nph.16536.
Fan W,Chang W J,Liu X W,Xiao C,Yang J L,Zhang Z L. 2017. Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots[J]. Acta Physiologiae Plan-tarum,39(3):1-11. doi:10.1007/s11738-017-2383-z.
Fan W,Zhang Z L,Zhang Y L. 2009. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum[J]. Plant Cell Reports,28(6):975-984. doi:10.1007/s00299-009-0702-6.
Fan Y F,Yin X? C,Xie Q,Xia Y Q,Wang Z Y,Song J,Zhou Y,Jiang X Y. 2019. Co-expression of SpSOS1 and SpAHA1 intransgenic Arabidopsis plants improves salinity tolerance[J]. BMC Plant Biology,19(1):74. doi:10.1186/s12870-019-1680-7.
Ghnaya T,Zaier H,Baioui R,Sghaier S,Lucchini G,Sacchi GA,Lutts S,Abdelly C. 2013. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea[J]. Chemosphere,90(4):1449-1454. doi:10.1016/j.chemosphere.2012.08.061.
Ji H T,Pardo J M,Batelli G,Van O M J,Bressan R A,Li X. 2013. The salt overly sensitive(SOS) pathway:Established and emerging roles[J]. Molecular Plant,6(2):275-286. doi:10.1093/mp/sst017.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Kannan P R,Deepa S,Kanth S V,Rengasamy R. 2013. Growth,osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress[J]. Applied Biochemistry and Biotechnology,171(8):1925-1932. doi:10.1007/s12010-013-0475-9.
Lokhande V H,Gor B K,Desai N S,Nikam T D,Suprasanna P. 2013. Sesuvium portulacastrum,a plant for drought,salt stress,and fixation,food andphytoremediation. A review[J]. Agronomy for Sustainable Development,33(2):329-348. doi:10.1007/s13593-012-0113-x.
Ma J B,Zhang M R,Xiao X L,You J J,Wang J R,Wang T,Yao Y N,Tian C Y. 2013. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment[J]. PLoS One,8(6):e65877. doi:10.1371/journal.pone. 0065877.
Mittler R. 2017. ROS are good[J]. Trends in Plant Science,22(1):11-19. doi:10.1016/j.tplants.2016.08.002.
Pan L,Yu X L,Shao J J,Liu Z C,Gao T,Zheng Y,Zeng C,Liang C Z,Chen C Y. 2019. Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean(Vigna unguiculata ssp. sesquipedalis)under salt stress[J]. PLoS One,14(7):e0219799. doi:10.1371/journal.pone.0219799.
Qiu Q,Ma T,Hu Q J,Liu B B,Wu Y X,Zhou H H,Wang Q,Wang J,Liu J Q. 2011. Genome-scale transcriptome ana-lysis of the desert poplar,Populus euphratica[J]. Tree Physiology,31(4):452-461. doi:10.1093/treephys/tpr015.
Rabello A R,Guimar?es C M,Rangel P H N,da Silva F R,Seixas D,de Souza E,Brasileiro A C M,Spehar C R,Ferreira M E,Mehta A. 2008. Identification of drought-responsive genes in roots of upland rice(Oryza sativa L.)[J]. BMC Genomics,9(1):485. doi:10.1186/1471-2164-9-485.
Rabhi M,Ferchichi S,Jouini J,Hamrouni M H,Koyro H W,Ranieri A,Abdelly C,Smaoui A. 2010a. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop[J]. Bioresource Technology,101(17):1336-1341. doi:10.1016/j.biortech.2010.03.097.
Rabhi M,Giuntini D,Castagna A,Renorini D,Baldan B. Smaoui A,Abdelly C,Ranieri A. 2010b. Sesuvium portulacastrum maintains adequate gas exchange,pigment composition,and thylakoid proteins under moderate and high salinity[J]. Journal of Plant Physiology,167(16):1336-1341. doi:10.1016/j.jplph.2010.05.009.
Rahman M,Rahman K,Sathi K S,Alam M M,Nahar K,Fujita M,Hasanuzzaman M. 2021. Supplemental selenium and boron mitigate salt-induced oxidative damages in Glycine max L.[J]. Plants(Basel),10(10):2224. doi:10.3390/plants10102224.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Rizwan M,Ali S,Ibrahim M,Farid M,Adrees M,Bharwana S A,Zia-Ur-Rehman M,Qayyum M F,Abbas F. 2015. Mechanisms of silicon-mediated alleviation of drought and saltstress in plants:A review[J]. Environmental Science and Pollution Research,22(20):15416-15431. doi:10.1007/ s11356-015-5305-x.
Sharma R,Mishra M,Gupta B,Parsania C,SinglaPareek SL,Pareek A. 2015. De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea[J]. PLoS One,10(5):e0126783. doi:10.1371/journal.pone.0126783.
Sun W,Xu X N,Zhu H S,Liu A H,Liu L,Li J M,Hua X J. 2010. Comparative transcriptomic profiling of a salt-tole-rant wild tomato species and a salt-sensitive tomato cultivar[J]. Plant & Cell Physiology,51(6):997-1006. doi:10.1093/pcp/pcq056.
Sun X B,Sun C Y,Li Z G,Hu Q,Han L B,Luo H. 2016. AsHSP17,a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abio-tic stress[J]. Plant,Cell & Environment,39(6):1320-1337. doi:10.1111/pce.12683.
Taji T,Seki M,Satou M,Sakurai T,Kobayashi M,Ishiyama K,Narusaka Y,Narusaka M,Zhu J K,Shinozaki K. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology,135(3):1697-1709. doi:10.1104/pp.104.039909.
Tian X M,Wang Z Y,Zhang Q,Ci H C,Wang P S,Yu L,Jia G X. 2018. Genome-wide transcriptome analysis of thesalt stress tolerance mechanism in Rosa chinensis[J]. PLoS One,13(7):e0200938. doi:10.1371/journal.pone.0200938.
Tiwari S,Thakur R,Shankar J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi[J]. Biotechnology Research International,(2):1-11. doi:10.1155/2015/132635.
Ushimaru T,Nakagawa T,Fujioka Y,Daicho K,Naito M,Yamauchi Y,Nonaka H,Amako K,Yamawaki K,Murata N. 2006. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J]. Journal Plant Physiology,163(11):1179-84. doi:10.1016/j.jplph.2005.10.002.
Walter P,Ron D. 2011. The unfolded protein response:From stress pathway to homeostatic regulation[J]. Science,334:1081-1086. doi:10.1126/science.1209038.
Wang J,Gao X ,Dong J,Tian X Y,Wang J Z,Palta JA,Xu S B,Fang Y,Wang Z H. 2020a. Over-expression of the heat-responsive wheat geneTaHSP23.9 in transgenic arabidopsis conferred tolerance to heat and saltstress[J]. Frontiers in Plant Science,11:243. doi:10.3389/fpls.2020.00243.1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C
Wang R,Wang X,Liu K,Zhang X J,Zhang L Y,Fan S J. 2020b. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress[J]. Plants,9(4):458. doi:10.3390/plants9040458.
Wrzaczek M,Brosché M,Kangasj?rvi J. 2013. ROS signaling loops—Production,perception,regulation[J]. Current Opi-nion in Plant Biology,16(5):575-582. doi:10.1016/j.pbi. 2013.07.002.
Yang C L,Zhou Y,Fan J,Fu Y H,Shen L B,Yao Y,Li R M,Fu S P,Duan R J,Hu X W,Guo J C. 2015. SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry,96:377-387. doi:10.1016/j.plaphy.2015.08.010.
Yi X P,Sun Y,Yang Q,Guo A P,Chang L L,Wang D,Tong Z,Jin X,Wang L M,Yu J L,Jin W H,Xie Y M,Wang X C. 2014. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance[J]. Journal of Proteomics,99:84-100. doi:10.1016/j.jprot.2014.01.017.
Zahaf O,Blanchet S,de Zélicourt A,Alunni B,Plet J,Laffont Carole,de Lorenzo L,Imbeaud S,Ichanté JL,Diet A,Badri M,Zabalza A,González E M,Delacroix H,Gruber V,Frugier F,Crespi M. 2012. Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes[J]. Molecular Plant,5(5):1068-1081. doi:10.1093/mp/sss009.
Zhang L,Hu W J,Gao Y K,Pan H T,Zhang Q X. 2018. A cytosolic class II small heat shock protein,PfHSP17.2,confers resistanceto heat,cold,and salt stresses in transgenic Arabidopsis[J]. Genetics and Molecular Biology,41(3):649-660. doi:10.1590/1678-4685-GMB-2017-0206.
Zhang X,Liao M S,Chang D,Zhang F C. 2014. Comparative transcriptome analysis of the Asteraceae halophyte Kareli-nia caspica under salt stress[J]. BMC Research Notes,7:927. doi:10.1186/1756-0500-7-927.
Zhou Y,Yang C L,Hu Y P,Yin X C,Li R M,Fu S P,Zhu B B,Guo J C,Jiang X Y. 2018. The novel Na+/H+ antipor-ter gene SpNHX1 from Sesuvium portulacastrum confers enhanced salt tolerance to transgenic yeast[J]. Acta Phy-siologiae Plantarum,40(3):61. doi:10.1007/s11738-018-2631-x.
(責任編輯 陳 燕)1D9152E6-FF06-4DC8-B029-2C5CAEBFEE6C