999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微塑料影響抗性基因的傳播與水平基因轉移

2022-08-24 00:19:56吳效儉施國靜王瑩瑩
中國環境科學 2022年8期
關鍵詞:環境

吳效儉,施國靜,王瑩瑩*

微塑料影響抗性基因的傳播與水平基因轉移

吳效儉1,2,3,施國靜1,2,3,王瑩瑩1,2,3*

(1.南開大學環境科學與工程學院,天津 300350;2.環境污染過程與基準教育部重點實驗室,天津 300350;3.天津市城市生態環境修復與污染防治重點實驗室,天津 300350)

微塑料作為一種新興污染物,在多種環境介質(大氣、土壤、水體、沉積物)中均有廣泛檢出.微塑料能夠通過表面形成的生物膜結構攜帶抗性基因,對人體健康造成的潛在風險已經引起了國內外學者的廣泛關注.但是,微塑料在抗性基因的長距離傳播以及水平轉移方面所發揮的功能,以及微塑料傳播耐藥性所導致的生態與環境效應還尚不明晰.本文重點對不同環境中的微塑料與抗性基因的污染現狀進行了綜述討論,對微塑料傳播抗性基因的主要方式與過程進行了對比分析,最后概述了微塑料參與調控抗性基因水平轉移的機制,并對未來相關研究的重點方向進行了展望,以促進微塑料污染問題的科學解決.

微塑料;塑料;抗生素抗性基因;塑料際;污染特征

塑料作為一種人工合成或半人工合成的高聚物,被廣泛應用于工業生產與日常生活中.2015年的塑料全球年產量已達到4.07億t[1].大量塑料制品的使用會導致塑料廢棄物的產生,預計在2050年,產生的塑料廢棄物會突破2′107t[2].塑料廢棄物進入環境后,經過逐級裂解,形成的粒徑在5mm以內的塑料碎片被稱為微塑料[3].在各類環境,如土壤[4-5]、大氣[6-7]、水體與沉積物中[3,8-9],都有微塑料的廣泛分布.由于尺寸較小,部分微塑料會進入浮游動物體內,這些含有微塑料的浮游動物被處于更高營養級的魚、蝦等水生動物捕食[10-11],進而在食物鏈中逐級積累,發生富集作用[12-14].當人類食用這些海鮮與水產品時,微塑料隨食物進入人體消化系統,對人體健康具有潛在威脅[15].

環境中的微塑料表面會被微生物所定殖,形成生物膜結構,即不同種類的微生物構成的群落[16-17].通過生物膜,微塑料可以攜帶耐藥細菌(ARB).由于耐藥細菌擁有抗生素抗性基因(ARGs),因此能夠對不同種類的藥品產生抗性[18-20].攜帶耐藥細菌的微塑料可以在不同類型的環境中遷移,進而產生諸多問題,其中抗性基因的水平基因轉移(HGT)是尤為嚴重的一個方面.水平基因轉移被認為是細菌耐藥性傳播的主要驅動因素[21],抗性基因可以通過質粒,整合子,轉座子等可移動元件(MGEs)進行遷移[22],造成細菌耐藥性的傳播與擴散[23-24].因此揭示微塑料對抗性基因水平轉移的機理,將有助于進一步明晰抗性基因的攜帶與傳播作用,以及微塑料參與調控不同環境中微塑料的遷移過程對環境安全與人體健康的影響.

本文主要從細菌耐藥性的角度,重點討論了不同環境中微塑料與抗性基因的相關研究進展,旨在分析以耐藥細菌為代表的微生物與微塑料污染之間的聯系,以及兩者作為一個整體所產生的環境生態效應.

1 環境中微塑料的賦存與抗性基因污染

微塑料與抗生素抗性基因被認為是近年來的環境新興污染物[25-26].攜帶抗性基因的細菌可以從多個方面影響人體健康,例如通過飲用水、空氣、開放水域等傳播導致人體感染[27].微塑料作為一種可供微生物定殖的微生境,也具有攜帶并傳播抗性基因與人體致病菌的功能.一些人體條件致病菌,例如,等會在微塑料表面富集[17,20].由于微塑料的難降解性,其在環境中有較長的賦存時間,進而增加人體對抗性基因的暴露風險.在不同環境介質(土壤環境、大氣環境、水體與沉積物環境)中,由微塑料所攜帶的抗性基因的種類與豐度信息見表1.

表1 不同環境介質中微塑料攜帶的抗性基因種類與豐度

注: -為無豐度數據.

1.1 大氣環境中的微塑料與抗性基因

在城市區域,空氣、道路揚塵、室內灰塵中分布有大量微塑料和抗性基因[2,36].室內的裝飾品、織物等會釋放出大量微塑料,在室內空氣中漂浮,據研究,城市室內環境的微塑料濃度可達16個/m3[37].隨著門窗開啟與空氣流通,室內環境中的微塑料會擴散到室外空氣中.汽車輪胎經過長期磨損后會釋放出微塑料,部分進入空氣中,這種現象在車流量較大的城市主干道路附近更加明顯.漂浮在空氣中的微塑料易吸附空氣中漂浮的抗生素抗性基因,與其共同發生遷移.

由于尺寸較小和重量較輕,微塑料很容易在風力作用下向較偏遠的區域發生遷移,在一些受人為活動影響較小區域的空氣中,也發現了氣載微塑料的存在[38-39].一項針對法國山脈附近的氣載微塑料的研究發現,微塑料通過大氣傳輸的距離能夠達到95km[40].抗性基因在大氣環境中的分布方面存在一定規律,全球尺度的大氣環境中,β-內酰胺類抗生素抗性基因bla,以及喹諾酮類抗性基因具有較高的豐度[39].在空氣重度污染地區,碳氫霉烯類抗性的基因bla-1占有大氣總抗性基因豐度的30%[41].

漂浮在空氣中的微塑料與抗性基因極易被人體吸入[42],導致呼吸系統的疾病[43],損害人體健康.每個成人每日吸入的微塑料顆粒數約為20個[44].在人體肺部組織中探測到了合成纖維的存在[45],且嬰兒和兒童的微塑料吸入量遠高于成人[6].空氣氣溶膠中存在著各類攜帶抗性基因的人體條件致病菌,如,等[39,46].當這些致病菌以及抗性基因黏附到微塑料表面進入人體肺部后,容易造成肺部感染等疾病.由于目前關于大氣環境中微塑料所攜帶的抗性基因方面的研究還較少,因此對于評估抗性基因與微塑料的聯合毒性效應還存在較大難度,同樣地,對于抗性基因隨氣溶膠中的微塑料進行長距離遷移的潛力也有待進一步探究.

1.2 土壤環境中的微塑料與抗性基因

土壤環境,尤其是農田土壤中,存在大量微塑料,這是由于耕作過程中廣泛使用的地膜等塑料制品在光照、風蝕、撞擊等作用下,物理化學性質發生改變,逐漸裂解形成微塑料.特定的土壤微生物能夠在微塑料表面形成細菌群落,導致微塑料攜帶的細菌種類和抗性基因組成與周圍環境中的細菌群落均存在差異[47-48].土壤環境具有區別于大氣與水環境的獨特性,土壤的團粒結構組成成分相對復雜,其中各類殺蟲劑、農藥和重金屬的存在導致土壤細菌同時受到多種污染物的影響,當細菌對外源刺激做出響應與反應,會進一步影響土壤細菌群落中抗性基因的豐度[49].土壤中的微塑料能夠吸附土壤中的各類污染物,如溴代阻燃劑[50]、重金屬[51]、抗生素[52],是一個獨特的微生境.具有編碼抗生素與重金屬耐性基因的細菌能夠通過外排泵[53]、降低膜通透性[54]、轉化或降解污染物[55]等方式,更好地適應生境,從而定殖到微塑料表面.因此,土壤中的微塑料會攜帶并富集抗性基因,進而影響土壤環境中的抗性基因組成[30,34].

在污水處理廠中,匯聚了大量不同來源的生活、醫療、農業養殖污水,存在不同類型的微塑料與抗性基因[56].攜帶抗性基因的微塑料進入土壤的另一個重要來源是污水處理廠的活性污泥[57-58].經過絮凝與沉淀過程,污水中的微塑料進入活性污泥中[59],之后隨污泥一同被填埋、焚燒、作為農田肥料,從而進入到土壤中[57],構成了土壤環境中抗性基因的重要點源污染.研究顯示,污水處理廠污泥中的PVC微塑料是傳播致病菌以及抗性基因的媒介[60].一項針對好氧顆粒污泥系統的研究顯示,進入污泥中的微塑料會使體系內攜帶抗性基因的細菌分裂速率發生變化,對于賦存于污泥中[32]、滲濾液中[61]和接收污水處理廠經過處理后的廢水的河流中[62]抗性基因的增殖情況均有明顯影響.

污水處理廠的活性污泥是微塑料進入土壤環境的重要來源,但目前各反應階段(如沉淀、絮凝、生化處理、消毒等)對微塑料以及表面抗性基因的種類與豐度變化的影響還了解甚少.因此,有必要針對關鍵的分離與轉化步驟對微塑料的去除效率,以及表面生物膜中抗性基因的賦存情況進行研究,為評估特定步驟的物理化學條件對微塑料傳播抗性基因的能力的影響.

1.3 水環境中的微塑料與抗性基因

海洋匯聚了河流、湖泊以及來自大氣沉降的微塑料,被認為是一個重要的微塑料的匯[28,63].目前,多項研究證實了各個大洋、河流、內陸湖、集水區等水域[64-67]中均有微塑料的存在,甚至一些受人為活動影響較小的地區,如格陵蘭島附近的海域[68]也有微塑料的檢出.微塑料能夠攜帶并富集水體中的抗性基因[57,69-72].多項關于水體中微塑料表面生物膜的研究顯示,無論是抗性基因的種類還是豐度,微塑料攜帶抗性基因的能力均高于水體,其表面形成的生物膜結構對抗性基因具有富集作用[17,19,57,69,71-72].一些抗性基因的細菌宿主(,與)只在微塑料表面被發現,而沒有出現在其他自然介質表面(如巖石和葉片中),是微塑料所具有的材料特性所導致的[17].

目前的大部分研究關注的是水介質中的微塑料表面抗性基因的賦存情況,而對于沉積物的研究還較少,這可能是受到采樣設備與條件的限制,以及沉積物環境中微塑料表面生物膜較難收集導致[73].由于微塑料在老化、生物污損等因素的作用下,會在水體環境中發生垂直遷移,從而進入沉積物中.沉積物環境中生活著多種底棲動物,微塑料所攜帶的抗性基因與這些生物的相互作用也有待進一步研究.

1.4 大氣、土壤、水體環境中微塑料表面抗性基因污染的異同點

在水環境、土壤環境以及空氣環境中的微塑料均被發現能夠攜帶抗性基因,但存在于不同環境介質中微塑料表面形成的生物膜的群落組成與生物量存在差異,導致了其攜帶抗性基因能力的不同.其中,空氣環境中微塑料攜帶抗性基因的情況與土壤、水體環境中存在很大差異,主要表現在微塑料表面生物膜的生物量較低,攜帶的抗性基因種類較少,豐度較低.這主要是單位體積空氣中細菌的豐度小于單位體積的水或者土壤所導致的.

而土壤與水環境中蘊含著較豐富的營養物與多種細胞代謝所需的礦物質元素,能夠支持存在于水、土介質中具有不同生理特性的微生物對微塑料表面的定殖過程,一些適應微塑料生境的細菌在微塑料表面逐漸形成生物量高、物種數量繁多、結構致密的生物膜系統,微塑料是眾多細菌以群落為單位進行繁殖和演替的微型生境.微塑料表面以生物膜形式存在的細菌群落對環境因子的劇烈變化具有更強的抵抗能力.不同細菌有各自精細的分工,專營特定的生理反應與代謝活動,產生的各類次生代謝物可以釋放到胞外,進入生物膜基質中,供給群落中的其他細菌成員使用.細菌群落作為整體,具有更加多樣化的功能.部分細菌通過攜帶特定基因片段,可以利用轉化、外排泵等方式將藥物對細菌菌體的殺傷力降至最小,從而發揮出耐藥性.在水體與土壤環境中的微塑料攜帶的抗性基因具有更高的多樣性以及豐度.研究證實,微塑料表面生物膜中耐藥細菌以及抗性基因的豐度比水體環境中至少高幾個數量級[69,74].

現有的研究顯示,土壤與水環境中微塑料表面攜帶的抗性基因的情況有所差異,這主要是由于土壤與水體環境中占有優勢主導地位的細菌群落不同所導致的.具有不同分類學地位的細菌宿主會編碼不同的抗性基因序列.水體與土壤中微塑料具有各自獨特的表面性質特征,對表面的細菌群落產生特異性選擇作用.例如,多項研究顯示水體環境中微塑料對特定類群的細菌具有富集作用[75-76]另一方面,水體與土壤環境的多項環境因子均具有差異性,導致微塑料中含有的添加劑的析出程度不同,這也是造成水與土中微塑料攜帶抗性基因類別具有差異的重要原因.

污水處理廠、耕地、人體呼吸道等生境中,均存在核心抗性基因的現象[77-79].例如,研究收集了來自種植玉米、花生和大豆耕地的105份土壤樣品,發現即使這些土壤中所生長的植物種類、土壤養分條件以及地理位置(樣本之間相距距離最長2200km)不同,有一些基因在超過50%的樣本中均被檢測到,例如多重耐藥型抗性基因,-05,以及-04等[80].微塑料是賦存于大氣、土壤與水體環境中一類高度分化的生態位,但是目前對其中賦存的核心抗性基因的組成方面的了解還較少.多數研究區域面積較小,且種類單一,例如湖泊的近岸區、農田土壤的局部,得到的規律性結論在推廣到其他環境時存在一定的困難.另外,多數研究受到微塑料生物膜生物量以及采樣方法等條件的限制,所涵蓋的樣本量通常較少,對于解析抗性基因的豐度關系方面存在一定困難.因此,未來有必要在多環境介質、較大區域尺度范圍內進行聯合研究,以此為基礎探討微塑料對富集核心抗性基因的現象以及其中包含的規律.

2 微塑料表面生物膜的成因與影響條件

在自然環境中,多數土壤介質以及幾乎所有水體中的固體表面均能夠支持生物膜的生長[81].微塑料表面生物膜的形成條件主要包括以下幾個方面:

2.1 固體介質表面性質

在微塑料生物膜形成的最初始階段,需要固體介質表面為環境中存在的種類繁多的細菌提供附著與定殖的空間.只有細菌成功定殖到微塑料表面后,才能啟動生物膜后續形成過程(圖1).因此,固體介質微塑料的存在,是生物膜形成的基礎.由于部分塑料材質的醫療用品,如導尿管,在制作加工時表面使用了聚兩性離子涂層,具有抑菌效果[82].為了減少致病菌在導尿管上形成生物膜,部分導尿管的塑料材質表面還經過納米尺度的結構修飾,細菌無法很好地黏附到管壁上,也就無法形成生物膜,從而降低尿路感染引起的炎癥效應[83].相比于未經物理與化學改性修飾的普通微塑料,表面覆蓋有特殊涂層,經過修飾的塑料制品經過裂解后形成的微塑料更加難以被細菌定殖,形成生物膜的能力較弱,攜帶抗性基因的能力較差.

環境中通過鞭毛等結構進行自由移動的細菌接觸到微塑料表面后,松散地吸附到材料上.這個階段的黏附是可逆的,也就是說,一部分細菌還會離開微塑料表面,重新回歸為浮游狀態.而部分細菌通過開始表達與黏性蛋白相關的基因[84],合成相關黏附素,將菌體緊密地固定到微塑料表面,同時鞭毛等主管移動的附件結構的活動性也發生變化,細菌對表面的吸附進入不可逆的狀態[85],至此,細菌完成對微塑料表面的定殖過程,這些細菌被稱作先鋒種.先鋒種細菌在微塑料表面進行細胞分裂與繁殖,改變了介質的表面性質,為后續其他種類細菌在微塑料表面形成細菌群落提供了先導條件.

2.2 營養與水文條件

在經歷了先鋒種的定殖后,逐漸有更多種類的細菌開始在微塑料表面穩定存在,由于微塑料作為一類微型生境,能夠提供的空間與營養是有限的,因此周圍環境中介質的更新速度決定了細菌獲取營養以支撐群落發展的速率以及規模,也對生物膜的形貌特征具有決定性作用[86].有研究顯示,在水體環境中,液體的流速影響了固體介質表面生物膜的物理結構,主要表現為在一定范圍內,流速越高,生物膜的生物量越大[87].這主要是水流能夠為生物膜帶來更高濃度的營養物質,同時將產生的多余代謝物帶走,不斷進行局部環境的更新.但是,當水流流速過高時,生物膜結構無法承受水流剪切力作用,表面的細菌會從生物膜中剝離,導致生物量的減少[88-89].在特定的河流、湖泊等環境中,水流的速度大致在一定范圍內進行波動,其中微塑料表面生物膜的生物量以及群落中細菌總量穩定在特定水平,其攜帶抗性基因的能力是相對穩定的.

2.3 其他環境因子

多種環境因子,例如,光照條件、溫度、pH值、培養時間等均會從不同方面對生物膜中細菌的生長造成影響,從而改變生物膜的群落特征.研究顯示,在黑暗條件下,蓄水庫中生物膜的厚度在30μm以下,在有光照的條件下,蓄水庫中生物膜的厚度有了大幅度的增加,約為50~130μm[90].溫度對生物膜的生長速率有十分重要的影響.當水體溫度過低時,細菌的細胞進入休眠狀態,只進行最基本的代謝活動,生物膜的組成不再發生大的變化[91].研究顯示,當微塑料在污水處理廠污泥中的存在時間超過60d時,微塑料所攜帶的抗性基因的豐度有顯著增加[60,92],這表明微塑料在特定生境中的賦存時間對攜帶抗性基因的細菌在介質表面的增殖以及向周圍環境中的擴散產生的影響是直接的,進而間接影響該生境中抗性基因的組成與豐度.

圖1 微塑料表面生物膜的形成條件

在微塑料所處的特定生境中,所有環境因子共同對生物膜群落的變化與演替施加影響.經過各個細菌類群的比例動態變化的階段后,逐漸達到群落結構相對穩定的狀態,主要表現為養分分配的平衡,對外界環境因子的劇烈變化有一定的抵抗能力.這個穩定的狀態并非是各個種屬的細菌比例保持一成不變,而是生物膜群體能夠隨著外界環境條件隨時調整自身結構形成的動態平衡.但是,目前的研究多關注于微塑料表面經過長時間培養后形成的生物膜結構,對于其動態形成過程中群落組成的變化以及抗性基因的豐度波動還需要更加詳細的探究.

3 微塑料影響抗性基因傳播的途徑

3.1 微塑料的理化性質影響抗性基因傳播

通過野外調查與實驗室模擬,多項研究表明,抗性基因在微塑料表面生物膜中的賦存與傳播受到微塑料理化性質的影響,主要包括介質的化學組成(材質)、粒徑和老化程度等方面.

3.1.1 微塑料的化學組成影響抗性基因的傳播 一項針對滲濾液中微塑料的研究顯示,聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)所富集的抗性基因種類與豐度具有差異[92],這可能是由于不同的化學組成影響了微塑料表面所定殖的菌群的結構,從而導致所攜帶的抗性基因的差異.

塑料高聚物的種類也同樣影響微塑料對于抗性基因的豐度富集效果.例如,河口環境與滲濾液微宇宙系統中的聚乙烯(PE)微塑料生物膜中的抗性基因的豐度均高于PP微塑料[92-93].不同化學組成的微塑料中所含有的添加劑成分也不同,對于不同細菌類群在微塑料表面形成生物膜的影響具有差異,其促進或抑制效應需要針對具體細菌類群的情況進行分析.

3.1.2 微塑料粒徑與老化程度影響抗性基因傳播 有研究通過批次培養實驗,對不同粒徑范圍的微塑料表面生物膜群落組成進行了探究,分別對比了粒徑范圍在106~125μm與355~425μm的PS微塑料,粒徑范圍在125~250μm與250~500μm的PE微塑料,兩組實驗結果顯示,粒徑范圍并未顯著影響微塑料的表面微生物群落結構,其攜帶的抗性基因的差異也較小[94].

微塑料進入環境后,經歷一系列物理、化學、生物過程導致其表面性質發生改變的現象稱為老化.物理方面,在機械磨損作用下會發生分子鏈的斷裂;化學方面,在紫外線照射下,微塑料表面發生光氧化,涉及官能團的改變;微生物作用下,其表面的粗糙度、電荷含量以及表面自由能變得不同,含有的添加劑更容易析出,且更容易吸附來自外部的污染物,如抗生素類的藥品以及重金屬等.微塑料老化后,材料的疏水性發生變化,表面形成的生物膜中更容易積累重金屬、有機污染物、抗生素等物質[49,95].這些物質對細菌具有定向選擇壓力,不僅會導致耐藥性細菌的增加,也會直接影響耐藥細菌中質粒攜帶的抗性基因發生轉移的速率(圖2).

研究顯示,微塑料表面吸附的污染物對于微塑料表面抗性基因的豐度具有促進作用[33].在甲氧芐氨嘧啶的作用下,抗性基因水平轉移與垂直轉移速率均顯著增加[96];重金屬與多環芳烴的存在,也會對抗性基因的轉移效率產生影響[97].從塑料中分離出的細菌具有更強的制造胞外多聚物的能力,因此,當具有這些能力的細菌定殖于塑料表面時,有助于形成致密的生物膜結構[98-99].塑料防污涂層中含有的銅元素與鋅元素能夠使微塑料富集更高豐度的大環內酯類-林可胺類-鏈霉素類(MLS)抗性基因[100].在種植蔬菜的農田土壤中經過自然老化的微塑料吸附的抗生素與重金屬含量更高,也增加了可移動性遺傳元件的豐度,這對于微塑料表面抗性基因的傳播有較多貢獻[101].

圖2 微塑料表面生物膜影響抗性基因的傳播

3.2 微塑料在環境介質中的遷移影響抗性基因傳播

3.2.1 微塑料在環境介質內部的遷移 在水體環境內部,微塑料起初多數存在于表層水體,之后在表面生物膜的影響下向深層水體以及沉積物中遷移.當微塑料表面的生物膜被部分以細菌為食的浮游生物攝取后,微塑料的密度發生變化,可能會重新懸浮到水體表層.該過程不斷循環,伴隨著微塑料的沉降與再懸浮,所攜帶的抗性基因也隨之進入水體環境的各個組分中[102].土壤中微塑料的移動主要是依靠土壤動物翻動土壤,微塑料隨著土壤顆粒共同運動,其運動路徑大體遵循由淺層土壤進入深層土壤的趨勢.大氣環境中存在的常常是密度較輕的微塑料,其運動受到風力、降水等因素的影響較多[103-104].

3.2.2 微塑料在多環境介質之間的遷移 河流是微塑料從陸源向水體環境中遷移的重要媒介.污水處理廠接收的廢水中含有的大量微塑料無法被完全去除,依舊存在于水介質中,隨著末端排放進入河流中.河流中攜帶著大量微塑料匯入海洋.據統計,全球90%的微塑料是通過河流輸送到海洋、內陸湖等環境中的[105].

另一方面,大氣的全球循環是水體、空氣、土壤中的微塑料向其他介質中遷移的重要渠道.在風力與氣流的作用下,微塑料進入空中,之后在沉降作用下進入陸地與海洋環境[103-104],但是目前氣載微塑料的流通過程與通量的計量還需要結合模型進行解析與評估.

以生物膜形式存在的細菌,其生活方式區別于浮游態的細菌.胞外多聚物結構對于細菌菌體的黏附聚集、形成特定的空間結構、抵抗外界環境因子波動以及細菌群落內部的交流和耐藥性方面,都具有十分重要的作用.致密的胞外多聚物可以加強微塑料表面細菌之間的聯系,能夠增加包括質粒、噬菌體、基因島、轉座子和插入序列等在內的可移動遺傳元件的豐度,促進不同種屬的細菌之間抗性基因的交流.已有研究顯示,水環境中微塑料攜帶的耐藥性細菌豐度是水體中的100倍[106],微塑料生物膜中的細菌獲得質粒的頻率約為浮游態細菌的兩倍[107],質粒攜帶抗性基因的序列在環境微生物與耐藥性細菌之間轉移,增加了普通細菌獲得耐藥性的可能性.其他實驗數據也表明微塑料攜帶的抗性基因具有較高的基因轉移速率[69,106].微塑料作為一個匯集了耐藥性細菌、污染物、抗生素的微生境,細菌之間的聯系與交流都強于環境中浮游狀態的細菌,對環境抗性基因組也會產生較大的影響.微塑料通過在多種介質之間的移動,會導致攜帶的抗性基因在表面生物膜與所經過的環境微生物之間發生交換.這種抗性基因的傳播效應可以在長距離尺度發生[49,108].

生物膜作為一個具有高度自組織結構的整體,部分細菌類群數量始終處于不斷變化中,這樣能夠更好地適應不斷變化的外界環境.處于不同演替階段的微塑料表面生物膜在傳播抗性基因方面所發揮的功能有何種不同還有待進一步探索.另一方面,土壤固體團粒結構以及水流流體具有不同的介質特點,介質中存在的污染物的種類以及可遷移性方面也會影響抗性基因的傳播,相關的具體過程以及內部調控機制也尚未明晰.最后,針對微塑料在不同生態系統中發生老化的過程,對于攜帶抗性基因的能力的影響的評估也十分重要,能夠為評估微塑料的環境行為以及生態風險評估提供理論支持.

4 微塑料影響抗性基因水平轉移的過程與機制

微塑料所攜帶的可移動遺傳元件為抗性基因的水平基因轉移提供了基礎[109].整合子能夠捕獲并整合外源性基因,并將其轉變為功能性基因的表達單位,與轉座子或者接合性質粒共同使抗性基因在不同細菌之間發生水平傳播[110].例如,抗性基因1位于I類整合子的3’-保守末端(3’-CS),當整合子在不同細菌之間移動時,所攜帶的1也會隨之轉移[111].此外研究報道在微塑料表面有部分可移動遺傳元件能夠同時攜帶重金屬抗性基因(MRGs)和抗生素抗性基因,且兩者的豐度具有顯著相關關系[70].目前,對微塑料如何調控抗性基因水平轉移方面的機制還有待進一步了解.對近5年報道的幾類主要水平基因轉移方式進行總結分析,微塑料在這些過程中所發揮的功能與調控作用見圖3.

圖3 微塑料影響抗性基因轉移的機制

4.1 微塑料影響細菌的接合過程

與浮游態的細菌相比,微塑料表面的細菌具有更高的基因轉移頻率[109].抗性基因能夠通過接合的方式發生水平轉移.接合(Conjugation)是供體菌通過性菌毛將DNA傳遞給受體菌,從而將抗性基因整合到受體菌的基因組中,使其表達出相應的抗性性狀.接合方式介導的基因轉移以供體菌通過性菌毛與受體菌發生直接接觸為基礎[23],微塑料會對接合過程的發生頻率產生影響.聚苯乙烯微塑料會極大程度地促進MG1655的pKJK5質粒向sp.細菌以及天然湖泊中細菌的接合轉移,這表明微塑料不僅會影響模式細菌在純培養體系中的接合頻率,也會影響自然環境中的細菌的接合轉移[107].微塑料表面可以吸附其他類型的污染物,例如納米材料(ENMs)[112]以及藥物和個人護理品(PPCPs)[113]等.這些吸附的污染物(如ZnO、Al2O3、GO、Ag、CuO、TiO2、NaNO2、TCS等)已被證實能夠不同程度地提高細菌的接合效率[114-119].

4.2 微塑料影響活性氧簇調控胞外多聚物形成過程

微塑料表面附著的生物膜具有胞外多聚物結構,含有的多糖、核酸、蛋白質、脂質以及其他小分子,對細菌相互作用與信息交流具有重要作用[120].當胞外多聚物的含量較高時,會促進細菌的黏附作用,而胞外多聚物含量較低時,則會通過靜電排斥力的作用抑制細胞黏附過程[121].由于胞外多聚物的形成過程受到胞內活性氧簇(ROS)濃度的影響[122],活性氧簇的濃度又受到污染物暴露的影響[123-124].微塑料表面吸附的污染物(如重金屬離子等),會通過影響細菌胞內活性氧簇濃度水平的方式,間接影響影響表面生物膜的形成.由于適度的活性氧簇暴露會引發細胞一系列保護性措施,也有利于增加水平基因轉移發生的頻率[125];但是,當所接觸的污染物含量較高時,過量的活性氧簇也會導致細胞損傷甚至死亡,導致接合頻率的下降[126].

4.3 微塑料影響細胞膜通透性與群體感應調節系統

與浮游細菌相比,微塑料表面以生物膜狀態存在的細菌,其營養策略、細胞間的交流、細胞膜通透性均具有不同的特征,這對抗性基因的轉移也會構成影響.當細胞膜通透性較大時,疏水的脂質屏障被削弱,促進抗性基因的釋放與吸收.暴露于微塑料表面污染物的細菌細胞膜容易形成孔洞,使供體菌的性菌毛更容易與受體菌接觸,從而發生接合作用[127].

群體感應調節系統(QS)支持了生物膜中細胞與細胞之間的通訊,能夠通過信號分子獲取自身以及其它細菌種群的數量信息,當細菌的密度達到一定閾值時,會通過啟動相關基因來調控細菌群落的密度水平[128].調控方式主要是依靠特定信號分子的濃度實現的,如N-酰基高絲氨酸內酯(AHLs).這些信號分子也參與了生物膜中抗性基因水平轉移的過程.但是不同種類的AHLs的調控作用存在差異,例如,C4-HSL信號分子會通過啟動AHL效應器SdiA,抑制部分細菌的種間接合轉移[129];而另一項研究顯示C6-HSL信號分子對細菌E. coli HB101向E. coli NK5449的屬內接合過程產生促進作用[130].因此微塑料生物膜中的群體效應的信號分子如何調控抗性基因傳播的機制還需進一步的研究.

5 總結與展望

5.1 目前的研究已經證實攜帶抗性基因的微生物能夠以微塑料為載體進入到不同營養級的生物體內,與腸道菌群發生相互作用,導致抗性基因的傳播、進化.未來還需要重點研究由微塑料攜帶的抗性基因、環境中的由浮游生物攜帶的抗性基因、以及生物腸道菌群內的抗性基因的共有部分以及同源性,以揭示抗性基因在不同介質中的擴散潛力以及進化速度.

5.2 目前關于大氣環境中微塑料攜帶的抗性基因方面的研究還較少,評估抗性基因與微塑料的聯合毒性效應還存在較大難度,因此抗性基因隨氣溶膠中的微塑料進行長距離遷移的潛力亟需進一步探究,以便全面評估由吸入等途徑進入人體的微塑料所產生的人體健康效應.

5.3 當前研究多關注抗性基因在微塑料表面的賦存情況,對于微塑料導致抗性基因水平轉移的頻率增加的機理與調控機制還尚未明晰,因此需要研究微塑料參與抗性基因水平轉移的各個步驟,從而對抗性基因的傳播、功能以及生態作用提供全面的概述,全面加深微塑料遷移過程對生態穩定性的影響.

[1] Rhodes C J. Plastic pollution and potential solutions [J]. Science Progress,2018,101(3):207-260.

[2] Wright S L,Ulke J,Font A,et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport [J]. Environment International,2020,136:105411.

[3] Isobe A,Iwasaki S,Uchida K,et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066 [J]. Nature Communications,2019,10(1):417.

[4] Accinelli C,Abbas H K,Shier W T,et al. Degradation of microplastic seed film-coating fragments in soil [J]. Chemosphere,2019,226:645-650.

[5] Beriot N,Peek J,Zornoza R,et al. Lowdensity-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain [J]. Science of the Total Environment,2021,755:142653.

[6] Abbasi S,Keshavarzi B,Moore F,et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County,Iran [J]. Environmental Pollution,2019,244:153-164.

[7] Amato-Lourenco L F,Galvao L D S,De Weger L A,et al. An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? [J]. Science of the Total Environment,2020,749:141676.

[8] Cozar A,Echevarria F,Ignacio Gonzalez-Gordillo J,et al. Plastic debris in the open ocean [J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(28):10239-10244.

[9] Isobe A,Uchiyama-Matsumoto K,Uchida K,et al. Microplastics in the Southern Ocean [J]. Marine Pollution Bulletin,2017,114(1):623- 626.

[10] Desforges J P W,Galbraith M,Ross P S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean [J]. Archives of Environmental Contamination and Toxicology,2015,69(3):320-330.

[11] Martinez-Gomez C,Leon V M,Calles S,et al. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins [J]. Marine Environmental Research,2017,130:69-76.

[12] Frias J P,Otero V,Sobral P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters [J]. Marine Environmental Research,2014,95:89-95.

[13] Berglund E,Fogelberg V,Nilsson P A,et al. Microplastics in a freshwater mussel (Anodonta anatina) in Northern Europe [J]. Science of the Total Environment,2019,697,134192.

[14] Adika S A,Mahu E,Crane R,et al. Microplastic ingestion by pelagic and demersal fish species from the Eastern Central Atlantic Ocean,off the Coast of Ghana [J]. Marine Pollution Bulletin,2020,153,110998 .

[15] Abbasi S,Turner A. Human exposure to microplastics: A study in Iran [J]. Journal of Hazardous Materials,2021,403,123799.

[16] Flemming H C,Wingender J. The biofilm matrix [J]. Nature Reviews Microbiology,2010,8(9):623-633.

[17] Wu X J,Pan J,Li M,et al. Selective enrichment of bacterial pathogens by microplastic biofilm [J]. Water Research,2019,165,114979.

[18] Zhang X X,Zhang T,Fang H H P. Antibiotic resistance genes in water environment [J]. Applied Microbiology and Biotechnology,2009,82(3):397-414.

[19] Wang J,Qin X,Guo J,et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers [J]. Water Research,2020,183,116113.

[20] Galafassi S,Sabatino R,Sathicq M B,et al. Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters [J]. Water Research,2021,201,117368.

[21] Stevenson C,Hall J P,Harrison E,et al. Gene mobility promotes the spread of resistance in bacterial populations [J]. Isme Journal,2017,11(8):1930-1932.

[22] Liao H,Friman V P,Geisen S,et al. Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting [J]. Science of the Total Environment,2019,660:841-850.

[23] Ochman H,Lawrence J G,Groisman E A. Lateral gene transfer and the nature of bacterial innovation [J]. Nature,2000,405(6784):299-304.

[24] Andersson D I,Hughes D. Microbiological effects of sublethal levels of antibiotics [J]. Nature Reviews Microbiology,2014,12(7):465-478.

[25] Bai Y,Xu R,Wang Q P,et al. Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: Dynamics of microbial communities and change of antibiotic resistance genes [J]. Bioresource Technology,2019,276:51-59.

[26] Liu Z B,Klumper U,Liu Y,et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge [J]. Environment International,2019,129:208-220.

[27] Feng J,Li B,Jiang X,et al. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses [J]. Environmental Microbiology,2018,20(1):355- 368.

[28] 劉曉薇,方芳,李蘭蘭,等.磺胺甲惡唑脅迫對2種微塑料上細菌群落和抗性基因影響的初步研究[J]. 生態毒理學報,2022,17:1-11.

Liu X W,Fang F,Li L L,et al. Preliminary study on antibiotic resistance genes and bacterial communities on two types of microplastics under sulfamethoxazole stress [J]. Asian Journal of Ecotoxicology,2022,17:1-11.

[29] 周昕原,王言仔,蘇建強,等.微塑料對河水抗生素抗性基因的影響 [J]. 環境科學,2020,41(9):4076-4080.

Zhou X Y,Wang Y Z,Su J Q,et al. Microplastics-induced shifts of diversity and abundance of antibiotic resistance genes in river water [J]. Environmental Science,2020,41(9):4076-4080.

[30] Lu X M,Lu P Z,Liu X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of the Total Environment,2020,709,136276.

[31] Shi J,Wu D,Su Y,et al. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate [J]. Science of the Total Environment,2021,765,142775.

[32] Dai H H,Gao J F,Wang Z Q,et al. Behavior of nitrogen,phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system [J]. Journal of Cleaner Production,2020,256,120402.

[33] Zhao Y,Gao J,Wang Z,et al. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment [J]. Journal of Hazardous Materials,2021,402: 123550-.

[34] Yan X,Yang X,Tang Z,et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes [J]. Environmental Pollution,2020,262,114270.

[35] Di Cesare A,Pinnell L J,Brambilla D,et al. Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments [J]. Environmental Pollution,2021,291,118161.

[36] Chen G,Feng Q,Wang J. Mini-review of microplastics in the atmosphere and their risks to humans [J]. Science of the Total Environment,2020,703,135504.

[37] Vianello A,Jensen R L,Liu L,et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin [J]. Scientific reports,2019,9(1),8670.

[38] Evangeliou N,Grythe H,Klimont Z,et al. Atmospheric transport is a major pathway of microplastics to remote regions [J]. Nature Communications,2020,11(1),3381.

[39] Li J,Cao J J,Zhu Y G,et al. Global survey of antibiotic resistance genes in air [J]. Environmental Science & Technology,2018,52(19): 10975-10984.

[40] Allen S,Allen D,Phoenix V R,et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment [J]. Nature Geoscience,2019,12(5):339-344.

[41] Zhang T,Li X Y,Wang M F,et al. Time-resolved spread of antibiotic resistance genes in highly polluted air [J]. Environment International,2019,127:333-339.

[42] Zhang Q,Xu E G,Li J,et al. A review of microplastics in table salt,drinking water,and air: Direct human exposure [J]. Environmental Science & Technology,2020,54(7):3740-3751.

[43] 周 帥,李偉軒,唐振平,等.氣載微塑料的賦存特征、遷移規律與毒性效應研究進展 [J]. 中國環境科學,2020,40(11):5027-5037.

Zhou S,Li W X,Tang W P,et al. Progress on the occurrence,migration and toxicity of airborne microplastics [J]. China Environmental Science,2020,40(11):5027-5037.

[44] Liu K,Wang X H,Fang T,et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai [J]. Science of the Total Environment,2019,675:462-471.

[45] Prata J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution,2018,234:115-126.

[46] Li J,Zhou L T,Zhang X Y,et al. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant [J]. Atmospheric Environment,2016,124:404-412.

[47] Zhang M,Zhao Y,Qin X,et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Science of the Total Environment,2019,688:470-478.

[48] Chen H,Wang Y,Sun X,et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function [J]. Chemosphere,2020,243,125271.

[49] Koelmans A A,Bakir A,Burton G A,et al. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model- supported reinterpretation of empirical studies [J]. Environmental Science & Technology,2016,50(7):3315-3326.

[50] 孫 璇,俞安琪,王學松,等.富里酸在聚苯乙烯微塑料上的吸附行為 [J]. 中國環境科學,2022,42(1):285-292.

Sun X,Yu A Q,Wang X S,et al. Adsorption behaviors of fulvic acid onto polystyrene microplastics. China Environmental Science,2022,42(1):285-292.

[51] 范秀磊,常卓恒,鄒曄鋒,等.可降解微塑料對銅和鋅離子的吸附解吸特性 [J]. 中國環境科學,2021,41(5):2141-2150.

Fan X L,Chang Z H,Zou Y F,et al. Adsorption and desorption properties of degradable microplastic for Cu2+and Zn2+[J]. China Environmental Science,2021,41(5):2141-2150.

[52] Wang J,Liu X,Li Y,et al. Microplastics as contaminants in the soil environment: A mini-review [J]. Science of the Total Environment,2019,691:848-857.

[53] Zgurskaya H I,Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes [J]. Molecular microbiology,2000,37(2): 219-225.

[54] Tabak M,Scher K,Hartog E,et al. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms [J]. FEMS Microbiology Letters,2007,267(2):200-206.

[55] Carey D E,Mcnamara P J. The impact of triclosan on the spread of antibiotic resistance in the environment [J]. Frontiers in Microbiology,2015,5:780.

[56] Sun J,Dai X H,Wang Q L,et al. Microplastics in wastewater treatment plants: Detection,occurrence and removal [J]. Water Research,2019,152:21-37.

[57] Raju S,Carbery M,Kuttykattil A,et al. Transport and fate of microplastics in wastewater treatment plants: implications to environmental health [J]. Reviews in Environmental Science and Bio-Technology,2018,17(4):637-653.

[58] Zhang Z Q,Chen Y G. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review [J]. Chemical Engineering Journal,2020,382,122955.

[59] Rolsky C,Kelkar V,Driver E,et al. Municipal sewage sludge as a source of microplastics in the environment [J]. Current Opinion in Environmental Science & Health,2020,14:16-22.

[60] Zhao Y F,Gao J F,Wang Z Q,et al. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment [J]. Journal of Hazardous Materials,2021,402,123550.

[61] Shi J H,Wu D,Su Y L,et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate [J]. Environmental Science-Nano,2020,7(11):3536-3546.

[62] Eckert E M,Di Cesare A,Kettner M T,et al. Microplastics increase impact of treated wastewater on freshwater microbial community [J]. Environmental Pollution,2018,234:495-502.

[63] 王佳佳,趙娜娜,李金惠.中國海洋微塑料污染現狀與防治建議 [J]. 中國環境科學,2019,39(7):3056-3063.

Wang J J,Zhao N N,Li J H,et al. Current situation of marine microplastics pollution and prevention proposals in China [J]. China Environmental Science,2019,39(7):3056-3063.

[64] Ivar Do Sul J A,Costa M F. The present and future of microplastic pollution in the marine environment [J]. Environmental Pollution,2014,185:352-364.

[65] Zhao S,Zhu L,Li D. Microplastic in three urban estuaries,China [J]. Environmental Pollution,2015,206:597-604.

[66] 徐 沛,彭谷雨,朱禮鑫,等.長江口微塑料時空分布及風險評價 [J]. 中國環境科學,2019,39(5):2071-2077.

Xu P,Peng G Y,Zhu L X,et al. Spatial-temporal distribution and pollution load of microplastics in the Changjiang Estuary [J]. China Environmental Science,2019,39(5):2071-2077.

[67] 王志超,竇雅嬌,周 鑫,等.冰封期岱海微塑料賦存與環境因子的關系及風險評價 [J]. 中國環境科學,2022,42(2):889-896.

Wang Z C,Dou Y J,Zhou X,et al. Relationship between microplastics occurrence and environmental factors and risk assessment during ice-covered period of the Daihai Lake [J]. China Environmental Science,2022,42(2):889-896.

[68] Jiang Y,Yang F,Zhao Y,et al. Greenland Sea Gyre increases microplastic pollution in the surface waters of the Nordic Seas [J]. Science of the Total Environment,2020,712,136484.

[69] Lu J,Zhang Y,Wu J,et al. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system [J]. Ecotoxicology and Environmental Safety,2019,184,109631.

[70] Yang Y Y,Liu G H,Song W J,et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes [J]. Environment International,2019,123:79-86.

[71] Guo X P,Sun X L,Chen Y R,et al. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment [J]. Science of the Total Environment,2020,745,140916.

[72] Wang S,Xue N,Li W,et al. Selectively enrichment of antibiotics and ARGs by microplastics in river,estuary and marine waters [J]. Science of the Total Environment,2020,708,134594.

[73] Van Cauwenberghe L,Devriese L,Galgani F,et al. Microplastics in sediments: A review of techniques,occurrence and effects [J]. Marine Environmental Research,2015,111:5-17.

[74] Zhang Y X,Lu J,Wu J,et al. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system [J]. Ecotoxicology and Environmental Safety,2020,187,109852.

[75] Amaral-Zettler L A,Zettler E R,Mincer T J. Ecology of the plastisphere [J]. Nature Reviews Microbiology,2020,18(3):139-151.

[76] Zettler E R,Mincer T J,Amaral-Zettler L A. Life in the "Plastisphere": Microbial communities on plastic marine debris [J]. Environmental Science & Technology,2013,47(13):7137-7146.

[77] Mac Aogain M,Lau K J X,Cai Z,et al. Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease [J]. American Journal of Respiratory and Critical Care Medicine,2020,202(3):433-447.

[78] Munck C,Albertsen M,Telke A,et al. Limited dissemination of the wastewater treatment plant core resistome [J]. Nature Communications,2015,6,8452.

[79] Lau K J,Mac Aogain M,Narayana J K,et al. Functional metagenomics reveals a core resistome and potential resistance reservoirs in chronic respiratory disease [J]. American Journal of Respiratory and Critical Care Medicine,2020,202(3):433–447.

[80] Du S,Shen J P,Hu H W,et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands [J]. Science of the Total Environment,2020,712,136418.

[81] Percival S L,Knapp J S,Edyvean R,et al. Biofilm development on stainless steel in mains water [J]. Water Research,1998,32(1):243- 253.

[82] Chang Y,Yandi W,Chen W Y,et al. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(n-isopropyl acrylamide) containing zwitterionic polysulfobetaine [J]. Biomacromolecules,2010,11(4):1101-1110.

[83] Cheng Y F,Feng G P,Moraru C I. Micro- and nanotopography sensitive bacterial attachment mechanisms: A review [J]. Frontiers in microbiology,2019,10,191.

[84] Allison D G. The biofilm matrix [J]. Biofouling,2003,19(2):139-150.

[85] O'toole G,Kaplan H B,Kolter R. Biofilm formation as microbial development [J]. Annual Review of Microbiology,2000,54:49-79.

[86] Nguyen H,Ybarra A,Basagaoglu H,et al. Biofilm viscoelasticity and nutrient source location control biofilm growth rate,migration rate,and morphology in shear flow [J]. Scientific reports,2021,11(1): 16118.

[87] Zhang W,Sileika T S,Chen C,et al. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions [J]. Biotechnology and Bioengineering,2011,108(11):2571-2582.

[88] Paramonova E,Kalmykowa O J,Van Der Mei H C,et al. Impact of hydrodynamics on oral biofilm strength [J]. Journal of Dental Research,2009,88(10):922-926.

[89] Liu Y,Tay J H. Metabolic response of biofilm to shear stress in fixed-film culture [J]. Journal of Applied Microbiology,2001,90(3): 337-342.

[90] Rao T S,Rani P G,Venugopalan V P,et al. Biofilm formation in a freshwater environment under photic and aphotic conditions [J]. Biofouling,1997,11(4):265-282.

[91] Hostacka A,Ciznar I,Stefkovicova M. Temperature and pH affect the production of bacterial biofilm [J]. Folia Microbiologica,2010,55(1): 75-78.

[92] Su Y L,Zhang Z J,Zhu J D,et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process [J]. Environmental Pollution,2021,270,116278.

[93] Guo X P,Sun X L,Chen Y R,et al. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment [J]. Science of the Total Environment,2020,745,140916.

[94] Parrish K,Fahrenfeld N L. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class [J]. Environmental Science-Water Research & Technology,2019,5(3): 495-505.

[95] Guo X,Liu Y,Wang J. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin,2019,145:547-554.

[96] Li X,Mei Q,Chen L,et al. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process [J]. Water Research,2019,157:228-237.

[97] Imran M,Das K R,Naik M M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat [J]. Chemosphere,2019,215:846-857.

[98] Lagarde F,Olivier O,Zanella M,et al. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type [J]. Environmental Pollution,2016,215:331-339.

[99] Lagana P,Caruso G,Corsi I,et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica) [J]. International Journal of Hygiene and Environmental Health,2019,222(1):89-100.

[100] Flach C F,Pal C,Svensson C J,et al. Does antifouling paint select for antibiotic resistance? [J]. Science of the Total Environment,2017,590:461-468.

[101] Lu X M,Lu P Z,Liu X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of the Total Environment,2020,709,136276.

[102] Andrady A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin,2011,62(8):1596-1605.

[103] Bergmann M,Mutzel S,Primpke S,et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic [J]. Science Advances,2019,5(8):eaax1157.

[104] Klein M,Fischer E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg,Germany [J]. Science of the Total Environment,2019,685:96-103.

[105] Schmidt C,Krauth T,Wagner S. Export of plastic debris by rivers into the sea [J]. Environmental Science & Technology,2017,51(21): 12246-12253.

[106] Zhang Y,Lu J,Wu J,et al. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system [J]. Ecotoxicology and Environmental Safety,2020,187,109852.

[107] Arias-Andres M,Kluemper U,Rojas-Jimenez K,et al. Microplastic pollution increases gene exchange in aquatic ecosystems [J]. Environmental Pollution,2018,237:253-261.

[108] Schwarz A E,Ligthart T N,Boukris E,et al. Sources,transport,and accumulation of different types of plastic litter in aquatic environments: A review study [J]. Marine Pollution Bulletin,2019,143:92-100.

[109] Pinilla-Redondo R,Cyriaque V,Jacquiod S,et al. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: Recent advances and future perspectives [J]. Plasmid,2018,99:56-67.

[110] Cheng D,Ngo H H,Guo W,et al. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review [J]. Bioresource Technology,2020,299,122654.

[111] Luo Y,Wang Q,Lu Q,et al. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons [J]. Environmental Science & Technology Letters,2014,1(5):266-270.

[112] Li P H,Zou X Y,Wang X D,et al. A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments [J]. Journal of Hazardous Materials,2020,385,121601.

[113] Xiong Y C,Zhao J H,Li L Q,et al. Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution [J]. Water Research,2020,184,116100.

[114] Qiu Z,Yu Y,Chen Z,et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera [J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(13):4944-4949.

[115] Zou W,Li X,Lai Z,et al. Graphene oxide inhibits antibiotic uptake and antibiotic resistance gene propagation [J]. Acs Applied Materials & Interfaces,2016,8(48):33165-33174.

[116] Wang X,Yang F,Zhao J,et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes [J]. Nanoimpact,2018,10:61-67.

[117] Guo M T,Tian X B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation [J]. Journal of Hazardous Materials,2019,380,120877.

[118] Zhang S,Wang Y,Song H,et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International,2019,129:478-487.

[119] Lu J,Wang Y,Jin M,et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. Water Research,2020,169,115229.

[120] Karygianni L,Ren Z,Koo H,et al. Biofilm matrixome: Extracellular components in structured microbial communities [J]. Trends in Microbiology,2020,28(8):668-681.

[121] Tsuneda S,Aikawa H,Hayashi H,et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface [J]. FEMS Microbiology Letters,2003,223(2):287-292.

[122] Han P P,Shen S G,Guo R J,et al. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium nostoc flagelliforme [J]. Journal of Agricultural and Food Chemistry,2019,67(8):2235-2244.

[123] Li G,Chen X,Yin H,et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic- resistance genes [J]. Environment International,2020,136,105497.

[124] Wang Y,Lu J,Engelstadter J,et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation [J]. Isme Journal,2020,14(8):2179- 2196.

[125] Van Acker H,Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria [J]. Trends in Microbiology,2017,25(6):456-466.

[126] Han X,Lv P,Wang L G,et al. Impact of nano-TiO2on horizontal transfer of resistance genes mediated by filamentous phage transduction [J]. Environmental Science-Nano,2020,7(4):1214-1224.

[127] Wang Q,Mao D,Luo Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4 [J]. Environmental Science & Technology,2015,49(14):8731-8740.

[128] Papenfort K,Bassler B L. Quorum sensing signal-response systems in Gram-negative bacteria [J]. Nature Reviews Microbiology,2016,14(9): 576-588.

[129] Lu Y,Zeng J,Wu B,et al. Quorum sensing N-acyl homoserine lactones-sdia suppresses escherichia coli-pseudomonas aeruginosa conjugation through inhibiting tral expression [J]. Frontiers in Cellular and Infection Microbiology,2017,7:7.

[130] Zheng J,Chen T,Chen H. Antibiotic resistome promotion in drinking water during biological activated carbon treatment: Is it influenced by quorum sensing? [J]. Science of the Total Environment,2018,612:1-8.

Effects of microplastics on the spread and horizontal gene transfer of antibiotic resistance genes.

WU Xiao-jian1,2,3,SHI Guo-jing1,2,3,WANG Ying-ying1,2,3*

(1.College of Environmental Science and Engineering,Nankai University,Tianjin 300350,China;2.Key Laboratory Processes and Environmental Criteria (Ministry of Education),Tianjin 300350,China;3.Tianjin Key Laboratory of Environmental Remediation and Pollution Control,Tianjin 300350,China).,2022,42(8):3957~3968

As an emerging pollutant,microplastics are ubiquitous in different types of environments. The antibiotic resistance genes (ARGs) carried by microplastic biofilms have adverse effects on human health,which has aroused wide concerns. However,the role of microplastics in the process of long migration and horizontal gene transfer of ARGs is still not clear. The environmental impacts of the resistance dissemination caused by microplastics also need further investigation. The current status of microplastic pollutants and the ARGs they carry was summarized. The pathways by which microplastics spread ARGs and the regulation of ARG transfer via microplastics are also compared and discussed. Future research perspectives are proposed to provide possible approaches for solving the problem of antibiotic resistance dissemination by microplastics.

microplastic;plastic;antibiotic resistance genes;plastisphere;pollution characteristics

X171.5

A

1000-6923(2022)08-3957-12

2022-01-11

國家自然科學基金委面上項目(31870485);天津市自然科學基金項目(19JCZDJC39600);天津市研究生科研創新項目(2019YJSB052)

* 責任作者,教授,wangyy@nankai.edu.cn

吳效儉(1995-),女,天津人,南開大學博士研究生.主要從事抗性基因的宏基因組、宏轉錄組檢測與定量分析相關研究.發表論文2篇.

猜你喜歡
環境
長期鍛煉創造體內抑癌環境
一種用于自主學習的虛擬仿真環境
孕期遠離容易致畸的環境
不能改變環境,那就改變心境
環境與保護
環境
孕期遠離容易致畸的環境
高等院校環境類公選課的實踐和探討
掌握“三個三” 兜底環境信訪百分百
我國環境會計初探
中國商論(2016年33期)2016-03-01 01:59:38
主站蜘蛛池模板: 精品久久777| 亚洲αv毛片| 精品偷拍一区二区| 草草线在成年免费视频2| 亚洲视频欧美不卡| 国产91蝌蚪窝| 日韩高清在线观看不卡一区二区| 日韩 欧美 国产 精品 综合| a级毛片网| 久久精品娱乐亚洲领先| 精品国产中文一级毛片在线看| 亚洲区一区| 久久公开视频| 91精品视频网站| 不卡无码h在线观看| 国产区网址| a亚洲视频| 精品日韩亚洲欧美高清a| 欧美成人看片一区二区三区 | 色哟哟精品无码网站在线播放视频| 日韩免费毛片| 久久精品一卡日本电影| 成人在线第一页| 青青网在线国产| 玖玖免费视频在线观看| 无码aaa视频| 狠狠色综合网| 精品一区二区久久久久网站| 午夜福利无码一区二区| 精品无码国产一区二区三区AV| 精品超清无码视频在线观看| 无码aⅴ精品一区二区三区| 国产剧情一区二区| 免费亚洲成人| 国产精品福利在线观看无码卡| 成人福利一区二区视频在线| 啪啪国产视频| 亚洲天堂免费| 亚洲看片网| 色香蕉影院| 国产成人精品视频一区视频二区| 91人妻在线视频| 无码中文字幕乱码免费2| 亚洲精品黄| 国产第三区| 99视频在线看| 中文字幕有乳无码| 亚洲国产日韩在线观看| 99视频精品在线观看| 妇女自拍偷自拍亚洲精品| 久久国产免费观看| 亚洲欧洲自拍拍偷午夜色| 亚洲欧美日韩色图| 一级毛片在线免费视频| 久久精品国产精品国产一区| 国产成人高清精品免费| 国产丰满成熟女性性满足视频| 就去吻亚洲精品国产欧美| 欧美综合成人| 思思热在线视频精品| 久草性视频| 国产在线观看91精品亚瑟| 亚洲天堂精品视频| 国产成人亚洲毛片| 中文国产成人精品久久一| 人妻无码AⅤ中文字| 欧美国产日韩在线| 第一页亚洲| 四虎AV麻豆| 午夜福利在线观看入口| 国产幂在线无码精品| 亚洲首页在线观看| 国产高清在线观看| 欧美精品高清| 亚洲精品无码AⅤ片青青在线观看| 亚洲 成人国产| 日本欧美在线观看| 综合色婷婷| 91蜜芽尤物福利在线观看| 久久亚洲AⅤ无码精品午夜麻豆| 91精品免费高清在线| 日本爱爱精品一区二区|