999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

光熱耦合條件下木質素改性瀝青界面行為研究

2022-08-24 05:52:26付鑫孫微微夏冰華劉遠才
科學技術與工程 2022年20期
關鍵詞:界面體系

付鑫, 孫微微, 夏冰華, 劉遠才

(西南林業大學土木工程學院, 昆明 650224)

截至2020年底,中國公路通車總里程約517×104km,位居世界第二位。高速公路總里程約15×104km,位居世界第一位,道路工程的快速建設有利的支撐了中國經濟的可持續發展的戰略。根據相關文件指示,預期在今后的數年內中國交通建設規模將持續不斷擴大,將會建數萬公里的高速公路和百萬公里的普通公路,更有數百萬公里的既有公路需要升級改造,其中絕大部分高等級公路路面結構為普通瀝青路面。按照中國現行的瀝青路面結構設計標準,高等級公路瀝青路面的設計壽命為15年,但從實際服役期限的調查結果來看,大多數的高速公路在使用約10年就需進行大中修,實際使用壽命遠低于設計壽命。瀝青路面使用壽命偏短導致公路基礎設施頻繁維修,消耗了大量的不可再生資源,產生了嚴重的生態環境破壞,誘發了交通擁堵,顯著降低了道路的通行能力和路網運輸效能,也大幅增加了運營期的養護維修費用。因此,開展耐久性瀝青路面結構與材料的研究具有十分重要的戰略意義。

學者們對于生物質材料在道路工程建設的應用開展了各項試驗研究[1-5],但基于工業造紙廢料木質素對改性瀝青復合材料性能改善領域的科學研究及工程應用并不常見,往往依據流變參數對瀝青膠漿體系進行宏觀層面的評價,缺乏對復合材料微觀界面行為的探究。周昆等[6]、單超[7]基于分子動力學模型對于改性瀝青復合材料的界面力學性能進行研究,發現實際瀝青老化程度與界面黏結力大小存在一定的宏觀規律。對于木質素與基質瀝青界面黏結機理,劉麗[8]、邵顯智等[9]采用掃描電鏡觀察集料與瀝青顯微結構界面,利用界面黏結理論進行瀝青分層剝離特點研究,發現了集料的表層微觀結構對瀝青膠漿界面有一定的影響。但顯微表征僅局限的說明試樣的表觀實際樣貌,不具備統計學的意義,這對于真實界面狀況的了解存在偏差。為此,參考高分子復合材料的黏結理論,對木質素改性瀝青膠漿體系的動態模量變化對界面黏結性和相容性進行了力學測試,旨在對改性瀝青膠漿界面的黏結特征進行定量分析,對道路工程理論應用給予一定的借鑒價值。

1 材料與方法

1.1 試驗材料

采用生物質改性劑源于南京某公司工業造紙廢料,屬于堿木質素。基質瀝青為韓國sk-70#,根據《公路工程瀝青及瀝青混合料試驗規程》(JTG E20—2011)中相關規定,對瀝青的各項性能進行測試,測試結果如表1所示。

表1 基質瀝青性能指標Table 1 Performance index of base asphalt

1.2 試驗方法

采用美國TA公司生產的動態剪切流變儀對光熱耦合條件下(溫度70 ℃、紫外光波長365 nm、輻射強度25 W/m2及30~120 h 4組老化時間)不同摻量的(質量分數為5%、10%及15%)木質素瀝青進行30~80 ℃溫度范圍振蕩掃描,得到儲能模量G′及損耗角正切值tanδ。利用德國Leica徠卡DM2000正置光學顯微鏡對基質瀝青和木質素改性瀝青進行顯微局部觀察,分析各摻量的改性瀝青的相容性程度。

基于Ashida等[10]提出的黏結材料力學內部能量損耗峰值(tanδmax)c與純基體力學內部能量損耗峰值(tanδmax)m和界面黏結力存在函數關系,可表示為

(tanδmax)c=(tanδmax)m-αVf

(1)

式(1)中:Vf為填料的體積分數;α為界面黏結參數,且α與界面黏結力存在正比例關系,其值越大,黏結力越強。

基于Luis等[11]研究的混合填充材料的阻尼特性,提出表征界面行為的黏結力程度的表達式為

(2)

式(2) 中:tanδc為混合填充材料的損耗角正切值;tanδm為純基體材料的損耗角正切值;φ為填料的體積分數;β為基體界面作用參數,其值越大,界面黏結力越強。

2 結果與分析

2.1 瀝青膠漿體系流變參數

若不考慮木質素與基質瀝青在界面發生能量的交換,木質素可視為剛性顆粒在基質瀝青中扮演填料的角色,對膠漿體系的儲能模量G′及損耗角正切值tanδ有圖1所示的動態力學性能效果。

圖1 木質素改性瀝青膠漿體系動態力學性能變化Fig.1 Dynamic mechanical properties change of lignin modified asphalt mortar system

由圖1可知,木質素改性瀝青的儲能模量G′隨填料的增加而升高,而損耗角正切值tanδ(損耗因子)的峰卻明顯降低,可見瀝青膠漿體系的耐熱性能明顯高于基質瀝青[12]。耐熱性能的改變實質上是木質素內部3種苯丙烷單元通過醚鍵和碳碳雙鍵相互連接,形成的具有三維網狀復雜的天然生物高分子結構,在高溫時難以被破壞,降低了改性瀝青的溫度敏感性,賦予了良好的高溫穩定性。當溫度為60 ℃時,基質瀝青和木質素改性瀝青損耗因子處于峰值,依次為5.587 4、5.068 4、4.633 9及4.823 5,隨木質素的摻量變化而出現不同程度的降幅。損耗峰逐漸由寬變窄,意味著木質素改性瀝青膠漿體系存在黏結界面且粘附性隨填料的摻量而有所區別。因此,研究木質素改性瀝青界面黏結性與tanδ的變化關系,可以從側面反映材料整體的高溫穩定性,對探究改性瀝青的流變性能有一定的參考價值。

2.2 瀝青膠漿體系界面黏結性

根據式(1)、式(2)對瀝青混合料界面行為進行黏附理論評價,擬對木質素改性瀝青基于光熱耦合條件下進行流變試驗溫度掃描,得到了基質瀝青(純基體)和木質素改性瀝青(黏結混合料)的相關試驗參數。試驗一方面是為了觀察瀝青膠漿體系高溫流變行為;另一方面,更為主要的是結合損耗因子tanδ隨溫度的變化值對瀝青膠漿體系界面行為的黏結性能進行定量分析。研究認為,瀝青混合料內部界面黏結性能的強弱是抵抗環境水損病害的關鍵因素,單純的瀝青材料對于水分的侵蝕作用相對困難,但高強度往復的車輛荷載容易導致混合材料內部發生分層破壞。故界面黏結穩定才能更好地吸附集料顆粒,以此增加瀝青混合料在服役期限過程中的耐久性。

流變試驗以10 rad/s的頻率對基質瀝青及木質素改性瀝青進行高溫振蕩掃描,由圖1(b)可知,tanδ在60 ℃時出現了損耗峰值,且整體峰值變化逐漸由寬變窄說明木質素改性瀝青中確實存在界面行為,且不同粉膠比的改性瀝青界面黏結性在不同溫度下也會有所差異,試驗基于損耗因子峰值與46、52、58、64、70、76 ℃不同溫度下的數值,根據式(1)、式(2)計算可知Ashida.M-α值與Ziegel.K-β值,故得到瀝青膠漿體系界面行為的黏附性隨膠漿比及溫度的變化關系如表2、表3及圖2、圖3所示。

表2 木質素改性瀝青Ashida.M-α隨時間變化Table 2 Changes of lignin modified asphalt Ashida.M-α over time

表3 木質素改性瀝青Ziegel.K-β隨時間變化Table 3 Changes of lignin modified asphalt Ziegel.K-β over time

圖2 不同瀝青粉膠比的Ashida.M-α隨溫度 變化關系圖Fig.2 Ashida.M-α changes with temperature for different asphalt mortar ratios

由表2、圖2可知,各改性瀝青的Ashida.M-α值隨粉膠比的增加呈先上升后下降的趨勢,說明15%的高粉膠比雖表現出較好的抗老化性能,但卻帶來更弱的界面黏結性能。10%的粉膠比在耦合老化的30、60、90、120 h內均體現良好的黏結性,在抵抗溫度敏感性的同時也具備一定的高溫穩定性。若不考慮損耗峰值帶來的黏結特性,可根據46~76 ℃溫度范圍內以間隔6 ℃的損耗因子為基準,評價Ashida.M-α值隨溫度的變化關系。由圖2總體的變化趨勢效果來看,在耦合老化時間段內,不同摻量的木質素改性瀝青的Ashida.M-α值隨溫度的升高出現了先下降后上升的關系,這與粉膠比的變化趨勢相反。在相鄰的溫度躍遷范圍內,3種木質素改性瀝青的Ashida.M-α值大小依次為α5%>α10%>α15%(α5%表示摻量為5%木質素改性瀝青的Ashida.M-α值,α10%表示摻量為10%木質素改性瀝青的Ashida.M-α值,α15%表示摻量為15%木質素改性瀝青的Ashida.M-α值),表明高膠漿比的改性瀝青較低粉膠比的改性瀝青而言,在高溫及紫外輻射環境下更容易出現界面相的分離與破壞,若考慮實際荷載的疊加效應,則更容易在潮濕環境中導致瀝青混合料內部的細微裂縫的產生。

圖3 不同瀝青粉膠比的Ziegel.K-β隨溫度 變化關系圖Fig.3 Ziegel.K-β changes with temperature for different asphalt mortar ratios

由表3、圖3可知,木質素改性瀝青的基體界面作用參數Ziegel.K-β值隨粉膠比的增加變化趨勢與界面黏結參數Ashida.M-α值總體一致。Ashida.M-α值在耦合老化30 h內,大小順序為α10%>α15%>α5%,但在60 h、90 h及120 h內,始終α10%>α5%>α15%。而Ziegel.K-β值大小排序在同一耦合老化時間段內為β10%>β15%>β5%(β5%表示摻量為5%木質素改性瀝青的Ziegel.K-β值,β10%表示摻量為10%木質素改性瀝青的Ziegel.K-β值,β15%表示摻量為15%木質素改性瀝青的Ziegel.K-β值)。二者的區別說明在光熱耦合老化前期,改性瀝青的界面黏結性受溫度的波動影響較大。各改性瀝青在相同的粉膠比下,隨老化時間的延長黏結性能逐漸上升,可能的原因是隨著木質素內部自由水的揮發,其干燥潔凈的表面與瀝青憎水性的表面更加具有相互吸引力,老化導致瀝青內部產生大量的極性基團,易與木質素顆粒產生范德華力的物理吸附的過程。Ziegel.K-β值隨溫度變化關系和Ashida.M-α值大體相同,但在中高溫區域內,曲線之間出現了相互交叉的現象,說明瀝青材料的粘附性受溫度的效應較大,處于中高溫狀態下,不同摻量的木質素改性瀝青也可能出現相同的界面行為。因此,選擇適當的粉膠比可以帶來可觀的粘附能力,對提高瀝青混合料整體的固結效果具有良好的借鑒價值。

2.3 瀝青膠漿體系界面相容性

采用流變儀對木質素改性瀝青的膠漿體系進行頻率掃描測試,試驗頻率設置范圍為0.1~100 rad/s,對掃描數據進行科爾作圖(Cole-cole圖)后分析瀝青膠漿體系的相容程度。

木質素改性瀝青的Cole-cole圖是依據流變試驗頻率掃描過程中,以復數剪切黏度η值的實數部分η′(η′=G″/ω)為橫坐標,虛數部分η″(η″=G′/ω)為縱坐標作圖,其中,G″為損耗模量,ω為角速度,G′為儲能模量。一般而言,對于分子量呈單峰變化的高分子復合體系,其Cole-cole圖曲線為半圓弧,說明混合物之間有良好的相容性。對于不相容或相容性較差的混合體系,其圖像會出現半圓弧的拐點,表明存在物相分離的現象。設置60 ℃的試驗溫度對木質素改性瀝青Cole-cole圖如圖4所示。

圖4 不同摻量的木質素改性瀝青Cole-cole圖Fig.4 Cole-cole diagram of lignin modified asphalt with different content

3種摻量的木質素改性瀝青Cole-cole圖(圖4)中并未出現拐點現象,說明瀝青膠漿在經過高溫剪切后,堿性較強的集料與基質瀝青充分混合均勻且相容性較好。圖5為不同粉膠比的木質素改性瀝青光學顯微鏡圖像。

由圖5可知,基質瀝青存在少數雜質,可能是在生產、運輸及攪拌過程中落入了灰分。粉膠比為5%和10%的改性瀝青中,隨木質素摻量的增加,可以明顯觀察木質素顆粒分布均勻緊密,形成良好的混合體系。而15%粉膠比的改性瀝青中,木質素顆粒占據比例很多,形成一定三維立體網狀結構。根據Cole-cole圖可知,并未出現半圓弧的拐點,可以預測15%左右的粉膠比是最佳的堿木質素摻量,超過該比例可能會導致改性瀝青的集料相容性較差,過多的木質素顆粒會分散到基質瀝青中,形成結構化的空間分布狀態,從而提高瀝青膠漿體系的彈性能力。因此,木質素改性瀝青的粉膠比介于10%~15%可以顯著提高膠漿體系的粘彈性和抗變形能力,超出的部分雖可改善瀝青的彈性性能,但過于飽和會導致集料與瀝青之間的相容性變差,共混后會加大混合料的熱加工鋪設過程的難度系數。改性瀝青的黏度隨粉膠比的增加也會變大,且黏度的提高并不意味著黏性的增加,相容性變差也會降低集料與瀝青界面的黏附力,故選擇最佳的粉膠比既可優化改性瀝青中木質素形成網狀結構化空間,改善瀝青膠漿體系的高溫穩定性和粘彈特性,也可確保木質素改性瀝青在工程領域實際應用的價值。

圖5 不同摻量的木質素改性瀝青的顯微照片對比Fig.5 Comparison of photomicrographs of different content of lignin modified asphal

3 結論

(1)木質素改性瀝青膠漿體系的界面行為在一定程度上反映瀝青整體材料的固結能力,基于Ashida.M-α與Ziegel.K-β值隨粉膠比及溫度的變化關系可知,二者均隨木質素摻量的增加出現了先上升后下降的趨勢,意味著高粉膠比的改性瀝青雖體現出良好的抗老化性能,但卻帶來較弱的界面黏結性能。高粉膠比的改性瀝青容易在光熱耦合條件下出現界面相的分離與破壞。

(2)木質素改性瀝青膠漿體系在中高溫范圍內,瀝青混合料的黏結力受溫度變化影響較大。由Cole-cole圖可知各瀝青膠漿體系的相容性良好,高溫時表現出較強的黏彈性及抗變形能力。

猜你喜歡
界面體系
構建體系,舉一反三
國企黨委前置研究的“四個界面”
當代陜西(2020年13期)2020-08-24 08:22:02
探索自由貿易賬戶體系創新應用
中國外匯(2019年17期)2019-11-16 09:31:14
基于FANUC PICTURE的虛擬軸坐標顯示界面開發方法研究
空間界面
金秋(2017年4期)2017-06-07 08:22:16
電子顯微打開材料界面世界之門
人機交互界面發展趨勢研究
手機界面中圖形符號的發展趨向
新聞傳播(2015年11期)2015-07-18 11:15:04
如何建立長期有效的培訓體系
現代企業(2015年1期)2015-02-28 18:43:18
“曲線運動”知識體系和方法指導
主站蜘蛛池模板: 免费中文字幕在在线不卡 | 亚洲国产AV无码综合原创| 精品亚洲国产成人AV| 永久免费无码日韩视频| 国产色婷婷| 国产欧美又粗又猛又爽老| 黄色网页在线播放| 东京热高清无码精品| 一级高清毛片免费a级高清毛片| 精品国产中文一级毛片在线看| 亚洲中文字幕精品| 日本爱爱精品一区二区| 天天躁日日躁狠狠躁中文字幕| 在线视频亚洲色图| 无码精油按摩潮喷在线播放| 欧美成人第一页| 精品一区二区无码av| a级毛片免费网站| 国产福利一区在线| 国产精品无码一二三视频| 91精品专区国产盗摄| 国产成人成人一区二区| 91成人在线免费观看| 在线观看无码a∨| 久久国产拍爱| 成年人久久黄色网站| 中文无码日韩精品| 欧美成人在线免费| 免费午夜无码18禁无码影院| 在线国产三级| 91视频首页| 精品少妇人妻一区二区| 91精品网站| 国产黄在线免费观看| 日韩在线2020专区| 国产激爽大片高清在线观看| 国产精品开放后亚洲| 亚洲妓女综合网995久久| 国产综合亚洲欧洲区精品无码| 毛片免费试看| 在线播放真实国产乱子伦| 欧美色丁香| 亚洲无码在线午夜电影| 午夜a视频| 久久成人免费| 天天爽免费视频| 亚洲人成网址| 精品国产aⅴ一区二区三区| 99热这里只有精品2| 麻豆精品在线| 国产精品19p| 97人妻精品专区久久久久| 国产在线视频导航| 色哟哟国产精品| 91精品国产无线乱码在线| 91精品福利自产拍在线观看| 国产精品大尺度尺度视频| 国产一区二区三区免费观看| 综合色区亚洲熟妇在线| 国产欧美高清| 国产一区三区二区中文在线| 欧美一区二区精品久久久| 无码福利日韩神码福利片| 最新日本中文字幕| 亚洲第一极品精品无码| 四虎永久免费地址在线网站| 久久超级碰| 日本免费一区视频| 亚洲天堂日韩av电影| 99re热精品视频中文字幕不卡| 国产精品成人不卡在线观看| 国产aⅴ无码专区亚洲av综合网| 国产成人91精品免费网址在线| 无码中文字幕乱码免费2| 一本一道波多野结衣av黑人在线| 亚洲视频a| 国产又黄又硬又粗| 中文字幕2区| 欧美亚洲欧美| 波多野结衣在线se| 四虎国产精品永久一区| 亚洲香蕉久久|