999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

大面積柔性有機太陽電池:器件設計與印刷技術

2022-10-17 12:39:42施淋楓袁皓孟祥川胡笑添陳義旺
包裝工程 2022年19期

施淋楓,袁皓,孟祥川,2,胡笑添,2,陳義旺,2,3

大面積柔性有機太陽電池:器件設計與印刷技術

施淋楓1,袁皓1,孟祥川1,2,胡笑添1,2,陳義旺1,2,3

(1.北京大學長三角光電科學研究院,江蘇 南通 226010;2.南昌大學 化學化工學院/高分子及能源化學研究院(IPEC),南昌 330031;3.江西師范大學 高等研究院/氟硅能源材料與化學教育部重點實驗室,南昌 330022)

為研究者提供OSCs制造技術相關的全面見解和最新進展,分析現有的技術瓶頸和無法解決的規模效率損失,以獲得可擴展和可打印的大面積光伏組件。從功能層材料的選擇、印刷工藝研究現狀和大面積效率損失等方面展開綜述,重點闡述柔性高效大面積有機光伏器件印刷制備的技術難題。文中將進一步推動可印刷有機半導體材料在下一代清潔能源中的集成應用,并在可穿戴電子、光伏建筑一體化和物聯網等應用領域引起廣泛關注。

有機光伏電池;模組化設計;柔性器件;印刷技術

與傳統光伏器件相比,可柔性是有機太陽電池(OSCs)最突出的優勢,其顯示出巨大的商業潛能。目前已有研究工作者在界面/活性層合成,器件結構設計,透明電極修飾和印刷技術創新等領域開展廣泛研究,單結OSCs的最大光電轉換效率(PCE)已超過19%,符合商業化應用標準,但印刷技術的合理選擇、大面積印刷的性能損失和柔性組件的結構設計仍然是限制柔性OSCs商業化的瓶頸。關于可印刷柔性大面積OSCs的打印技術/功能材料以及光伏組件的效率損失分析的最新進展,目前還沒有詳細的綜述。文中綜述柔性有機太陽電池(OSCs)和組件(OSMs)的各種印刷技術、性能損失和模塊化設計的最新研究進展,為可印刷和大規模有機半導體材料提供了一站式參考。

1 簡介

與晶體硅太陽電池和基于無機半導體材料的薄膜太陽電池相比,有機太陽電池(Organic Solar Cells,OSCs)具有質輕、價廉、可溶液加工和可柔性等諸多優點,在可穿戴電子設備的集成設計和與卷對卷(Roll-to-Roll,R2R)大面積印刷技術的適應性上表現出巨大潛能[1-5]。近年來,隨著有機光伏材料和器件結構的飛速創新,通過旋涂法制備的剛性OSCs的功率轉換效率(Power Conversion Efficiency,PCE)有了明顯提高,目前最佳PCE值已達到19%以上,這說明了其已具有一定的商業化價值[6-12]。此外,隨著各種R2R印刷方法的發展和研究的深入,印刷OSCs的PCE也已接近17%,這進一步驗證了溶液印刷光電器件的可行性[13-17],因此,柔性可印刷OSCs在可穿戴能源、便攜式電子設備和異形顯示設備中具有廣闊的應用前景,這引起了人們的廣泛關注。

圖1顯示了柔性OSCs的器件結構以及基于剛性和柔性襯底、大面積和小面積襯底的OSCs的PCE值發展趨勢[13,15,18-100]。如圖1a所示,常規的OSCs器件一般包括頂部背電極層、p型有機半導體給體材料和n型有機半導體受體材料組成的光敏層,以及底部透明電極層,同時,為了保證足夠的電荷收集和傳輸,在透明電極層/背電極層與光敏層之間常使用兩層緩沖層材料[101-102],因此,需要從上述5層中優化OSCs的整體機械力學穩定性(包括耐彎折、耐拉伸、扭轉、皮膚親和性等)。首先,柔性透明電極會顯著影響OSCs的光電性能和力學穩定性。完美的透明電極需要具備以下特點:理想的方塊電阻、合適的透光率、光滑的表面粗糙度、足夠的機械強度和良好的熱穩定性[103-107]。然而,當前高效OSCs的透明電極通常是脆性的氧化銦錫(Indium Tin Oxide,ITO)材料,該材料不符合柔性OSCs的制備要求。因此,為了能找到在極端彎曲條件下有良好綜合性能的柔性透明電極,人們在制備ITO電極替代品方面做了許多研究工作,在這些替代品中,最具代表性材料有銀納米線或網格、超薄金屬層、碳基材料和導電聚合物等[72,107-118]。另外,OSCs光電性能的進一步優化還取決于高性能耐彎折緩沖層和光敏層材料的發展。因出色的空穴和電子選擇和收集能力,聚(3,4–乙二氧噻吩)∶聚(苯乙烯磺酸鹽)(PEDOT∶PSS)陽極緩沖層和聚電解質陰極緩沖層是最常用于柔性OSCs的材料[72,119-127]。此外,具有光伏性能可設計性和厚度不敏感性的新型給體/受體材料的分子設計和合成為柔性OSCs的發展提供了必要的基礎[6,7,9,10,12,31,61-78]。迄今為止,柔性OSCs的最佳PCE值已超過16%(基于柔性銀納米線襯底),該PCE已初步達到了光伏器件商業化的最低標準[74]。總之,進一步開發高性能緩沖層和具有理想柔性、環境穩定性、最佳形貌和相分離結構的光敏層材料對于發展柔性OSCs來說仍有重要意義[128-139]。

圖1 有機太陽電池結構及性能

為了滿足OSCs長遠應用的實際需求,相應的大面積器件制備工藝也很重要。與發展較好的小面積OSCs的相比,各種R2R印刷技術制備的大面積OSCs效率損失顯著,尤其是在柔性襯底上[75,77,140-144]。2009年,Krebs等[145-147]總結了不同制備OSCs的成膜方法,他們指出旋涂技術不適合大規模柔性OSCs的生產,并介紹了一系列用來制備柔性大面積OSCs的印刷技術。這些技術主要有半月板刮涂、狹縫擠出印刷、凹版印、絲網印刷、噴墨打印等。最近,Li等[148]報道了一種高效的順序沉積制備準平面異質結OSCs的方法,即通過基于非鹵化溶劑體系的連續沉積來制備可印刷OSCs,獲得了16.77%的PCE值。Hou等[83]采用半月板刮涂技術,在1.0 cm2面積上基于鹵素或非鹵素溶劑體系制備的剛性OSCs效率達到15.5%或10.6%。Min等采用逐層刮涂的策略在PM6:Y6系統上制備OSCs,獲得了16.35%的PCE。此外,11.52 cm2的太陽電池組件獲得了11.86%的記錄性PCE,其幾何填充因子(Geometrical Fill Factor,GFF),也就是組件對于入射光的實際有效利用面積超過90%[81]。很容易發現,從實驗室小規模制備到工業大面積生產,如何保持優良的光伏特性一直是OSCs商業化轉變的致命弱點。因此,在旋涂或印刷過程中探索本體異質結(BHJ) OSCs的形貌演化機制很有必要。Chen等[15]證實了通過狹縫擠出印刷制備可將柔性OSCs擴展到大面積有機太陽電池組件(15 cm2),且不會造成明顯的性能損失。他們首先利用在旋涂和狹縫擠出印刷技術中的剪切沖量來調整富勒烯/非富勒烯OSCs體系有機光敏層的形貌演變,并獲得了狹縫擠出印刷和旋涂之間的定量剪切沖量轉換因子。與此同時,對于PTB7–Th:PC71BM和PBDB–T:ITIC光敏層,基于1.04 cm2的柔性狹縫擠出印刷OSCs的PCE分別達到9.10%和9.77%。在滿足機械穩定性和制備重現性的前提下,15 cm2柔性有機太陽電池組件(Organic Solar Modules,OSMs)的效率可達8.90%。與小面積OSCs的制備相比,大面積OSCs印刷制備過程中的形貌演化控制規律和印刷技術都發生了變化,因此有必要對基于各種印刷方法制備的柔性大面積光電器件進行全面回顧。

文中綜述了大面積OSCs的研究現狀和高效印刷制備方式的發展現狀,主要集中在以下兩方面。

1)用于大面積印刷制備的柔性有機光伏材料。為了實現OSCs和OSMs的高質量大面積印刷,形貌和相分離的可控性研究以及活性層的厚度不敏感設計是必不可少的,相關研究已被廣泛報道,包括富勒烯受體體系、非富勒烯受體體系、全聚合物體系和三元共混體系等。

2)大面積制備OSCs的印刷方法。很多可大面積化的沉積制備技術已被證實可以用來制備OSCs或OSMs,這些技術主要包括半月板刮涂、狹縫擠出印刷、凹版印刷、絲網印刷、噴墨打印等。總之,通過結合以上兩點可以成功制備出低效率損失和高重現性的大面積柔性OSCs,這將有利于未來OSCs或OSMs的工業化制備和商業化發展。

2 高性能大面積OSCs的印刷制備思路

目前,具有優異光電性能的OSCs制備方式通常是采用旋涂技術,這可確保光敏層形成納米級的互穿網絡結構,同時在最佳效率條件下,光敏層的膜厚僅為110 nm左右,這些限制了柔性大面積OSCs的商業應用。首先,光敏層形貌和相分離結構的一致性會嚴重影響因等比例放大器件面積而導致的OSCs性能下降。然而,由于每種涂布/印刷方法都有其既定的操作模式,因此很難控制大面積BHJ薄膜的形貌和相分離結構一致性。其次,目前高效給體/受體光敏層的綜合性能與膜厚有關,而商業化的R2R印刷技術還無法制備高精度的大面積納米級薄膜,這意味著其制備再現性較差。最后,結合上述關鍵問題,光敏層可能存在大量的點缺陷,這在粗糙度相對較高的柔性襯底(如銀納米線、銀網或ITO/PET透明電極等)上會加劇形貌劣化,從而導致器件效率不理想,因此,設計具有顯著成膜性能、厚度不敏感性的給體/受體材料以及探索旋涂工藝與R2R印刷技術之間的定量轉換關系,能幫助實現制備高質量的柔性大面積OSCs或OSMs[149-151]。

以前的文獻中,人們為印刷制備高性能OSCs做了大量工作,包括調整光敏層結構和合成對厚度不敏感的給體/受體材料。相分離結構、相純度和給體/受體聚集程度組成的形貌決定了薄膜的質量,可通過多種處理方法對其進行優化,例如三元共混設計、熱退火或溶劑–蒸汽處理等。上述優化過程對于保持形貌一致性以實現大面積R2R印刷的高效厚膜器件具有重要意義[6-12,152-158]。除了形貌控制外,合成具有高載流子遷移率和低復合特性的新型給體/受體材料也適用于厚度不敏感性器件的制備[151]。其中一個有效的思路是將分子鏈做成face-on堆砌的分子排列結構,這可以進一步促進載流子的梯度傳輸。在本節中,重點討論了大面積OSCs光敏層的形貌一致性控制,并簡要總結新型厚度不敏感性光敏層材料的設計[159]。通常,從旋涂OSCs到具有大面積光活性區域的印刷器件,可以觀察到明顯的效率損失,這已通過大量研究工作得到驗證。造成這種現象的原因很復雜,例如:玻璃襯底和柔性襯底的形貌差異,針對大面積制備的不同印刷方法的適應性,以及隨著器件尺寸的增加而導致成膜均勻性的變化等[159]。總之,主要原因在于不同器件面積、不同印刷方法制備的OSCs光敏層形貌一致性難以保證。形貌一致性包括2個方面,即內部相分離結構和活性層的薄膜厚度。

3 大面積制備的印刷技術及器件結構設計

隨著剛性OSCs的PCE大幅提高至19%以上,大面積柔性OSCs和有機太陽電池組件(OSMs)已經引起了研究人員的廣泛興趣和研究報道[12]。一般來說,旋涂工藝是制備OSCs的主要應用技術,但旋涂工藝并不適合OSCs的大批量生產。因為隨著旋涂制備OSCs有效面積的增大,活性層形貌和相分離會發生一些無意和非理想的退化,這些都會影響器件的整體性能。因此,針對高效剛性和柔性OSCs的大面積R2R印刷技術逐漸發展起來[4,5,13,15-17]。

考慮到生產效率和實際應用,低溫印刷柔性OSCs的研究意義遠高于剛性器件,這也是OSCs相對于無機太陽電池的優勢所在。為了實現柔性OSCs的商業化生產,各種R2R打印方法已被廣泛探索和報道。然而,目前還沒有標準且優秀的印刷技術來制備高效的大面積光電器件,因此開發合適的R2R印刷方法也是一個緊迫的挑戰[4-5,15]。根據印刷油墨是否與柔性襯底接觸,通常印刷/涂布技術可分為接觸式和非接觸式(圖2)[149-154,159-160]。其中刮涂、狹縫擠出印刷、凹版印刷、噴墨打印、絲網印刷、噴涂、平板刮涂、柔版印刷都是制備OSCs的有效印刷方法。Viana等[161]提出了印刷參數與薄膜質量之間的聯系,將其應用在柔性塑料襯底(PET、PEN、PI等)上制造印刷電子設備,并介紹了薄膜質量總是與表面潤濕性、粘附性和延展性有關。對于柔性塑料襯底來說,印刷薄膜的均勻性和成膜質量較差是由于表面能量低,這個問題可以通過在印刷前進行額外表面處理(UVO或PLASMA處理)來解決。因此,在感光層從濕潤狀態轉變為固態薄膜的過程中,控制早期材料聚集和相分離行為對其形貌演變非常重要。然而,選擇一個特定的印刷參數來確定不同印刷/涂布方法之間的內在關系是不切實際的。Chen等[15]報道了通過計算沖量積累并采用旋涂工藝和狹縫擠出印刷方法制備富勒烯和非富勒烯受體體系OSCs光敏層形貌演變機制的研究工作。通過形貌、分子構象測試以及粗粒化分子動力學模擬,他們發現了基于剪切沖量累積量的不同沉積方式下光敏層形貌和相分離之間的明顯關系。他們進一步研究了不同印刷方式下的光敏層形貌一致性,驗證了旋涂和狹縫擠出印刷之間剪切沖量的定量轉換系數,發現該系數可適用于各種OSCs體系。

3.1 半月板刮涂

半月板刮涂是制備高效OSCs的有效方法,可初步替代旋涂技術(圖3)[13-16,83,92]。半月板涂覆工藝是利用半月板的水平位移將油墨涂覆在剛性或柔性襯底上,從而得到納米或微米厚度的薄膜。有機薄膜的印刷質量可以通過控制半月板與印刷襯底的距離、襯底的表面能和半月板的位移率來實現。其中,半月板與印刷襯底的距離對薄膜厚度有直觀的影響,半月板液面的連續存在也可以保證印刷過程的順利進行。襯底的表面能會調節襯底材料上油墨的潤濕性,這不僅對薄膜厚度有影響,而且對薄膜質量有巨大影響。半月板涂布速度()對薄膜厚度()的影響是復雜的,它們之間的主要關系遵循兩種模型。第一個是蒸發模型,它要求半月板涂層速度小于4 mm/s,log()與log()的斜率約為?0.97。在該模型中,半月板離開油墨表面后,印刷油墨會迅速變干,半月板與襯底之間的溶劑蒸發決定了光敏層溶液的沉積質量。當半月板刮涂速度大于20 mm/s時,涂布過程遵循Landau?Levich模型。在這種模式下,log()與log()的斜率約為0.65,由于半月板刮涂速度非常快,印刷油墨并未完全變干(圖3d)。因此,需要一個額外的處理來確保薄膜質量[162]。除了設備參數需要調整外,油墨的表面張力、黏度等流變性能對最終成膜質量也有明顯影響。干燥后的薄膜最終厚度可以通過下式計算。

圖2 OSCs當前主流的印刷制備方法

(1)

式中:為薄膜厚度;為半月板與襯底之間的距離;為印刷油墨的濃度;為干燥薄膜的密度。

2008年,Mens等[163]首次報道了采用MDMO– PPV:PC61BM體系的光敏層通過半月板刮涂工藝制備OSCs。在相同的油墨條件下,半月板涂層薄膜中的PC61BM顯示出比旋涂薄膜中更高的結晶度,這與固態核磁共振表征結果相一致。這一結果表明,由于溶劑的快速蒸發過程,與半月板涂層薄膜相比,旋涂薄膜可能不完全適用于熱力學平衡規律。利用這一特殊現象,Ma等[83]通過半月板刮涂制備OSCs,證實光敏層內給體和受體材料的平衡結晶性。結合三元共混策略,基于PBDB–T:PTB7–Th:FOIC的光電器件PCE值達到12.02%。2018年,Hou等[43]通過半月板涂覆工藝,用環保溶劑(四氫呋喃/異丙醇和鄰二甲苯/1–苯基萘)制備了高效的OSCs,基于PBTA–TF:IT–M體系可以獲得11.7%的優異PCE。同時,當器件尺寸增加到1 cm2時,基于半月板刮涂的THF/IPA主溶劑的OSCs獲得了10.6%的PCE。此外,他們通過共聚聚合物合成了一種效率超過15%的給體材料。因為該共聚物最優化的溶解度,基于環境友好型溶液(THF)的半月板刮涂的光電器件達到了令人印象深刻的13.1%的PCE。他們還為OSCs設計了陰極緩沖層材料(NDI–N和NDI–Br),采用NDI–N作為緩沖層,用半月板刮涂工藝制備的1 cm2大面積OSCs器件實現了13.2%的PCE[92]。最近,Min等[13]報道了幾項關于通過半月板刮涂工藝制備的具有雙層結構的平面異質結高效OSCs的研究工作。他們提出,由于復雜的形貌控制規律,本體異質結結構不適合大面積的OSCs批量制備。相比之下,雙層結構具有許多獨特的特點,包括可控的“p-i-n”形態、良好的電荷傳輸和提取性能以及良好的普適性。結合半月板刮涂工藝,基于PM6∶Y6系統的逐層OSCs的最佳PCE達到16.35%。更重要的是,他們制備了11.52 cm2的OSMs,其幾何填充因子約為90%,最佳PCE值為11.86%(圖3a)。最近,Li等[148]報告了通過非鹵化溶劑連續沉積的分級體異質結策略來制造高質量的OSCs。通過這種方式,空氣環境中半月板刮涂的OSCs實現了16.77%的高PCE。

a 基于逐層(LbL)的大面積太陽組件的工藝流程 b 有效面積為11.52 cm2的太陽組件圖像[13] c 帶DIO的BHJ、無DIO的G-BHJ和帶DIO時G-BHJ在整個薄膜中聚合物重量含量的變化[148] d 使用葉片涂層NDI-N作為緩沖層的器件J-V和外部量子效率(EQE)曲線[92] e 薄膜厚度與半月板刮涂速度的關系 f 墨滴在疏水襯底上干燥時收縮和表面活性劑釘扎效應[162]

與旋涂器件相比,除了OSCs相對樂觀的效率外,半月板刮涂還有一個最突出的優勢,那就是節省原材料。一般來說,旋涂OSCs需要40~55 μL的光敏層溶液來滿足器件的制備,而半月板涂層只需要7~9 μL。對于未來商業化生產的OSCs來說,降低材料損耗是非常重要的。值得注意的是,半月板刮涂中的溶劑蒸發率也遠低于旋涂處理中的溶劑蒸發率。這種緩慢的成膜過程可能會導致光敏層中給體和受體過度聚集或結晶[164]。因此,調節并合理適當利用這一現象很有必要(圖3d)。

3.2 狹縫擠出印刷

狹縫擠出印刷也是一種印刷高效大面積OSCs的有效方法,它被認為是有機光電器件R2R生產最具前景的方法(圖4)[165-171]。通過精密控制,狹縫擠出設備可連續印刷多層圖紋的剛性或柔性OSCs,這就減少了多次刻蝕過程,簡化了制備步驟,因此非常適合大面積OSCs的生產。在印刷過程中,油墨通過壓力槽或輸液泵被擠入槽頭,在此進行圖案化和預成型階段。因此,適當控制進料速度、槽間距、圖案精度和印刷定位精度非常重要。與半月板刮涂工藝類似,狹縫擠出印刷也需要注意模頭與襯底之間的距離以及模頭或襯底的移動速度。只要上述參數能被嚴格控制,狹縫擠出印刷將是一項具有高度自動化的優秀技術。狹縫擠出印刷工藝的原理圖和實物照片如圖4a所示,模頭是槽模設備中最重要的部件,它需要具備耐腐蝕、抗氧化、精度高等特點。膜厚控制也是值得進一步探討的問題,它會在模頭中受到印刷油墨預成膜的影響。預成膜與槽距(0.2~100 mm)和油墨黏度(1~20 Pa·s)有關,因此油墨流變性與設備參數的協調控制成為生產高質量薄膜的關鍵[4,62,165]。同時,狹縫擠出印刷為薄膜提供了一個緩慢的干燥過程,對其內部結構的形態和相分離調節處理是必不可免的。狹縫擠出印刷制備的干膜厚度可由下式計算。

(2)

式中:為干膜厚度;為進料速度;為膠帶速度;為襯底寬度;為印刷油墨中的固體含量;為干膜密度。

2011年,Zimmermann等[167]通過狹縫擠出印刷技術制備了基于P3HT:PCBM系統的柔性OSCs,其PCE為0.64%。后來,Tan等[166]結合狹縫擠出印刷技術,在PV2000和PCBM系統上實現了全溶液和環境可加工有機光伏組件的PCE為7.56%。2017年,Bao等[85]證明了一種光敏層設計,該光敏層包括大面積、利用給體和受體之間具有合適的相分離結構的溶液處理的全聚合物OSCs。通過使用不同結晶度的光敏層材料(給體和受體),他們驗證了給體和受體的微相分離域的尺寸與共軛聚合物的結晶度成反比。由于這一特殊現象,通過狹縫擠出印刷工藝制備了大面積(10 cm2)的全聚合物OSCs,并實現了5%的PCE。Russell等[168]報道了一種高效的狹縫擠出印刷全聚合物OSCs,其活性層為PTzBI∶N2200系統,PCE高達9.1%,這是狹縫擠出印刷全聚合物OSCs的最佳效率。此外,Vak等[169]開發了一種用于OSCs的溫控狹縫擠出印刷技術,并研究了襯底和溶液溫度對器件性能、薄膜形態、分子結構和載流子輸運的影響。當使用溫度為120 ℃和90 ℃的熱襯底和溶液,他們制備了剛性和柔性OSCs,PCE分別為10.0%和7.0%。2019年,Min等[170]使用PBDB-T-SF∶IT-4F體系作為狹縫擠出印刷的OSCs的光敏層,并在剛性襯底上實現了12.9%的PCE,與旋涂或半月板刮涂工藝相比,其PCE更高。同時,通過狹縫擠出印刷技術制造的基于柔性襯底的OSCs和OSMs效率分別達到12%和9%以上,這表明該大面積生產技術的可行性。最近,為了探索在不同模具溫度和襯底溫度下的聚集和結晶演化,Ma等[171]在狹縫擠出印刷過程中對PM7∶IT4F系統進行了原位測量。由于改善了激子解離、電荷傳輸和抑制了非輻射電荷重組,在60 ℃模具溫度和60 ℃襯底溫度下,OSCs獲得13.2%的PCE值。

雖然狹縫擠出印刷可能是最適合OSCs商業化生產的印刷技術,但在實際應用過程中仍有許多問題有待解決。首先是制備重現性性,目前對于高質量薄膜的大規模生產,狹縫擠出印刷仍有困難,大部分的研究報告顯示,可通過在印刷薄膜上選擇高質量的區域來制備光電器件,但連續且一致的高效制備技術還沒有實現。因此,加深對薄膜形貌和相分離調控的理解是必要的,這對柔性OSCs的商業化發展至關重要。其次是對新的制備技術的探索,在以前的報道中,一些成熟的技術如熱印刷和閃蒸干燥以及新穎的器件結構如雙層印刷工藝是非常實用的,因此,應該嘗試更多優秀的方法來制備基于狹縫擠出印刷工藝的OSCs,這對于發展完美的狹縫擠出印刷技術也是非常重要的。

3.3 模組化OSCs的R2R印刷技術

R2R印刷技術一種特殊的印刷技術,已廣泛應用于工業用品、塑料、玻璃、金屬片、陶瓷片、電子板等的制備。印刷油墨的高效率和高質量成膜特性使R2R印刷能夠連續制備有機薄膜。一般來說,一個完整的R2R印刷技術由多個部件組成,包括放卷區、放卷區、表面處理區、印模區、糾偏區、超聲波清洗區、退火區、電暈區、風淋區、防靜電區等。在印刷過程中,柔性塑料襯底被支撐在R2R放卷區和收卷區并做協調運動,從而實現塑料襯底的定向運動。在具體的制備過程中,首先是塑料襯底的清洗過程,一般采用醇類溶劑(乙醇、異丙醇等)多次超聲波處理,并低溫退火處理。然后,印刷模頭(通常是槽模頭)以設定的速度在襯底上涂抹油墨。為保證印刷質量,在R2R印刷中加入電暈處理工藝,這將提高襯底的表面能,從而優化油墨的滲透。結合與油墨成膜條件相匹配的退火工藝,可以得到具有條形圖案的干膜。對于OSCs的模組化條狀定位設計,襯底的定位偏差可以通過糾偏區域實現,因此,合理改進R2R印刷技術實際上可以完成除金屬背電極以外的所有OSCs結構的制備,從而實現完整的印刷器件流程。由于低溫溶液制備的技術特點,OSCs的印刷工藝與R2R印刷技術完美兼容(圖5),對此的進一步研究也是實現有機器件商業化的關鍵。

a 模塊制備的總體程序 [167] b 具有獨立控制參數的槽模涂層的概念圖 c 槽模涂層裝備的照片和實現的帶有ZnO層的高質量BHJ薄膜 [170] d 熱槽模具涂層示意圖 e R2R熱槽模具涂層的實驗裝備 f 槽模涂層OSCs的J–V特性[169] g 用于監測成膜過程中形態演變的原位印刷技術示意圖[171]

Krebs等[62]早期就對R2R印刷制備OSCs作出了代表性的研究工作。他們通過狹縫擠出印刷在ITO/PET襯底上沉積ZnO、P3HT∶PCBM和PEDOT∶PSS油墨,然后通過絲網印刷覆蓋頂部金屬銀電極。通過這種方法,他們制備了一個全印刷的倒置OSCs(具體配置為PET/ITO/ZnO/P3HT∶PCBM/PEDOT∶PSS/Ag),其性能可與實驗室小面積旋轉涂器件的PCE相媲美。此外,全印刷器件在潮濕的環境中表現出優異的穩定性,這優于普通器件,但它很容易被氧氣影響。與旋涂器件類似,R2R印刷技術中也存在各種優化思路和薄膜改善方案。在印刷參數方面,可以通過調整卷繞張力、基材移動速度、送墨速度、模頭與襯底間距、槽模頭間距等來實現均勻成膜和厚度控制。此外,也可以應用一些常見的后處理工藝,如溶劑退火、溶劑添加劑、給體/受體配置、溶劑退火和納米級相分離調節等,其處理效果比旋涂技術更顯著。與旋涂工藝相比,R2R印刷參數的控制比旋涂速度和加速度的確定更簡單,材料損耗也少很多。既能降低生產成本,又能減少環境污染,這對商業轉型至關重要。更重要的是,R2R印刷技術提供了更具體、更精確的變量控制,這對于印刷工藝的標準化很重要,這也是旋涂工藝的最大劣勢。例如,對于旋涂工藝,為了獲得準確的給體/受體比例,需要10多種不同的給體/受體比例,這需要消耗大約100 mg的聚合物材料和60 min。相比之下,對于R2R印刷,至少需要200種不同的給體/受體比例,但僅需要使用60 mg聚合物材料和35 s。這充分展示了R2R印刷技術的先進性[174]。

狹縫擠出印刷和半月板刮涂在OSCs的光電性能方面也存在明顯的缺陷,特別是FF損耗。印刷有機器件的測試結果通常呈現“S”型曲線,這與正常器件的“J”型曲線不同。這種現象可能是由于光敏層或界面處的能級勢壘引起的載流子傳輸或提取的損失造成的。光浸泡處理可以緩解這一問題,它可以逐漸將“S”形曲線轉變為“J”形曲線,從而實現FF的恢復。不幸的是,這種FF損失會在幾天后再次出現,需要進一步重復光浸泡處理[175]。這一動態降解過程可能與光電導率的變化、ZnO電子傳輸層中雜質的降解或封裝器件中殘留氧氣的影響有關。光浸泡處理通常會帶來大量的能量損失,增加生產成本,并使有機器件的生產過程復雜化。同時,這不適合大面積OSCs的連續制備,因此需要開發或尋找新技術來解決這一缺陷,這也是R2R印刷有機器件商業化生產的最大障礙。總的來說,雖然R2R印刷有明顯的缺陷,但它仍然是實現OSCs商業化生產的最佳技術。特別是柔性器件,下一階段將圍繞有機器件中這一技術的研究和設備開發。

a 用PDTTDABT生產R2R的照片以及成品模塊的疊層和在太陽模擬器下測試單個模塊的照片[172] b R2R印刷設備的照片[15] c OSCs模塊及其作為LED條紋和兒童夾克保暖口袋的能源供給者[173] d R2R涂層的PET–ITO卷軸和樣品條[173]

Krebs等[176]定義了大面積印刷OSCs的完整制備工藝,旨在實現有機器件從實驗室的小面積制備到工業界的大面積生產轉移。但在生產成本方面,他們的研究沒有考慮到人工成本、材料消耗以及相關的水電費用。報告的主要研究內容是通過印刷一種新型的透明電極來取代ITO電極,這樣可避免OSCs每,層的圖案化過程。基于這種通過R2R印刷技術實現的無ITO透明電極設計,結合含銅的Kapton箔和鈦金屬背電極,全印刷的有機器件得到0.061%的低PCE,sc為42.57 mA,oc為0.178 V和填充因子(FF)為25%。雖然這種方法為有機器件的印刷制備提供了指導和參數規范,但由于光電轉換效率低,不值得進一步研究。Bundgaard等[172]展示了通過空氣中的全溶液處理和狹縫擠出印刷技術,結合印刷的金屬網格背電極制備的半透明柔性OSCs。這進一步擴大了印刷技術在連續大面積制造OSCs中的應用潛力。Wei等[177]在ITO/PET襯底上沉積了電子傳輸層和光敏層,制備了2節或4節串聯的OSCs和OSMs。對于單結電池、雙結串聯電池和四結串聯電池,有機器件的光電效率分別達到5.75%、5.82%和5.18%。在校準后的太陽模擬器下照射強度為100 mW/cm2的AM 1.5G照明下,四節串聯OSCs可正常工作。這些結果初步證明,目前商業化的R2R印刷技術可以實現全印刷OSCs的制備,這是其他印刷技術所不具備的優勢,因此,進一步的印刷探索和設備升級應該是首要任務。Chen等[15]報道了一種將狹縫擠出R2R印刷設備制備的柔性有機光伏器件升級到模塊規模(15 cm2)而沒有明顯效率損失的一般方法。首先應用涂布/印刷過程中的剪切沖力來調整富勒烯和非富勒烯受體系統的BHJ活性層的形態演變,并得到狹縫擠出印刷和旋涂之間剪切沖量的定量轉換系數。基于1.04 cm2通過狹縫擠出印刷的柔性OSCs的PCE在PTB7-Th∶PC71BM和PBDB-T∶ITIC系統中達到9.10%和9.77%。對于15 cm2的柔性模塊,其有效效率也達到了7.58%和8.90%,并具備令人滿意的機械力學穩定性和制備重現性。

4 結語

隨著科技的飛速發展,可穿戴電子設備逐漸在生活中發揮著越來越重要的作用,因此,柔性連續電源器件作為其核心部件之一,其研究具有科學和實際應用意義,可應用于電動汽車、便攜式電子設備和物聯網領域。具有優良光電轉換性能和環境穩定性的大面積OSCs有望適應未來民用光伏器件的實際應用,特別是柔性OSCs在可穿戴電子領域具有巨大潛力。遺憾的是,盡管在剛性和柔性襯底上,單結OSCs的最大PCE已經超過19%和16%,但現有的制備技術(旋涂等)、功能層材料和器件配置都不適合大面積OSMs的工業制備,因此,即使在選擇性能最好的給體/受體材料體系時,印刷技術的合理選擇、大面積印刷工藝的巨大性能損失仍然是限制OSCs商業化的瓶頸。

在此,文中總結了柔性OSCs各功能材料的可行性選擇,各種印刷技術的優勢和挑戰,以及OSMs性能的優化思路。文中旨在為讀者提供與先進的印刷制備OSCs相關的全面見解和最新進展,通過分析現階段的技術瓶頸和大面化制備OSCs過程中的效率損失,以獲得高性能、可印刷的大面積光伏組件。希望通過這篇綜述,為推動下一代柔性光伏清潔能源的商業化提供一站式參考,并突出低溫溶液法印刷有機光伏組件的技術優勢。同時也相信,只要合理設計光伏材料、設計合理的模組化OSCs結構和合適的印刷技術選擇,就能實現低效率損失的柔性有機光伏器件的連續印刷制備,未來有機太陽電池的商業化制造也將近在咫尺。

[1] YAO Hui-feng, YE Long, ZHANG Hao, et al. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials[J]. Chemical Reviews, 2016, 116(12): 7397-7457.

[2] LI Yong-fang. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption[J]. Accounts of Chemical Research, 2012, 45(5): 723-733.

[3] LI Gang, ZHU Rui, YANG Yang. Polymer Solar Cells. Nature Photonics, 2012, 6: 153-161.

[4] WANG Guo-dong, ADIL M A , ZHANG Jian-qi, et al. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(45): 1805089.

[5] LI Yao-wen, XU Gui-ying, CUI Chao-hua, et al. Flexible and Semitransparent Organic Solar Cells. Advanced Energy Materials, 2018, 8: 1701791.

[6] YUAN Jun, ZHANG Yun-qiang, ZHOU Liu-yang , et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3(4): 1140-1151.

[7] CUI Yong, YAO Hui-feng, ZHANG Jian-qi, et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(19): 1908205.

[8] AN Qiao-shi, WANG Jian, GAO Wei, et al. Alloy-like Ternary Polymer Solar Cells with over 17.2% Efficiency. Science Bulletin, 2020, 65(7): 538-545.

[9] LIU Qi-shi, JIANG Yu-fan, JIN Ke, et al. 18% Efficiency Organic Solar Cells. Science Bulletin, 2020, 65(4): 272-275.

[10] CHEN Hui, ZHAO Ting-xing LI Long, et al. 17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(37): 2102778.

[11] NING Hai-jun, JIANG Qiu-ju, HAN Peng-wei, et al. Manipulating the Solubility Properties of Polymer Donors for High-performance Layer-by-Layer Processed Organic Solar Cells. Energy & Environmental Science, 2021, 14: 5919-5928.

[12] CUI Yong, XU Ye, YAO Hui-feng, et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(41): 2102420.

[13] SUN Rui, WU Qiang, Guo Jie, et al. A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule 2020, 4(2): 407-419.

[14] ZHANG Lin, LIN Bao-jun, HU Bo, et al. Blade-Cast Nonfullerene Organic Solar Cells in Air with Excellent Morphology, Efficiency, and Stability[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(22): 1800343.

[15] MENG Xiang-chuan, ZHANG Lin, XIE Yuan-peng, et al. A General Approach for Lab-to-Manufacturing Translation on Flexible Organic Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(41): 1903649.

[16] YE Long, XIONG Yuan, ZHANG Qian-qian, et al. Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials , 2018, 30(8): 1705485.

[17] SUN Rui, GUO Jing, SUN Chen-kai, et al. A Universal Layer-by-Layer Solution-Processing Approach for Efficient Non-Fullerene Organic Solar Cells[J]. Energy & Environmental Science, 2019, 12(1): 384-395.

[18] SHAHEEN S E, BRABEC C J, SARICIFTCI N S, et al. 2.5% Efficient Organic Plastic Solar Cells[J]. Applied Physics Letters, 2001, 78(6): 841-843.

[19] YAKIMOV A, FORREST S R. High Photovoltage Multiple-Heterojunction Organic Solar Cells Incorporating Interfacial Metallic Nanoclusters[J]. Applied Physics Letters, 2002, 80(9): 1667-1669.

[20] PEUMANS P, YAKIMOV A, FORREST S R. Erratum: “Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells” [J. Appl. Phys. 93, 3693 (2003)][J]. Journal of Applied Physics, 2004, 95(5): 2938.

[21] UCHIDA S, XUE Jian-geng, RAND B P, et al. Organic Small Molecule Solar Cells with a Homogeneously Mixed Copper Phthalocyanine: C60 Active Layer[J]. Applied Physics Letters, 2004, 84(21): 4218-4220.

[22] LI Gang, SHROTRIYA V, HUANG Jin-song, et al. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nature Materials, 2005, 4: 864-868.

[23] KAWANO K, ITO N, NISHIMORI T, et al. Open Circuit Voltage of Stacked Bulk Heterojunction Organic Solar Cells[J]. Applied Physics Letters, 2006, 88(7): 073514.

[24] ZHOU Yue, WANG Xiao-xue, ACAUAN L, et al. Ultrahigh-Areal-Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbon-Nanotube Arrays[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(30): e1901916.

[25] THOMPSON B C, FRéCHET J M J. Polymer-Fullerene Composite Solar Cells. Angewandte Chemie. International Edition, 2008, 47(1): 58-77.

[26] CHEN H Y, HOU Jian-hui, ZHANG Shao-qing, et al. Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency. Nature Photonics, 2009, 3: 649-653.

[27] LIANG Yong-ye, XU Zheng, XIA Jiang-bin, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(20): E135-E138.

[28] PRICE S C, STUART A C, YANG Li-qiang, et al. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells[J]. Journal of the American Chemical Society, 2011, 133(12): 4625-4631.

[29] HE Zhi-cai, ZHONG Cheng-mei, SU Shi-jian, et al. Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure. Nature Photonics, 2012, 6: 591-595.

[30] LIU Yong-sheng, CHEN Chun-chao, HONG Zi-ruo, et al. Solution-Processed Small-Molecule Solar Cells: Breaking the 10% Power Conversion Efficiency[J]. Scientific Reports, 2013, 3: 3356.

[31] LIU Yu-hang, ZHAO Jing-bo, LI Zheng-ke, et al. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells[J]. Nature Communications, 2014, 5: 5293.

[32] ZHAO Jing-bo, LI Yun-ke, YANG Guo-fang,et al. Efficient Organic Solar Cells Processed From Hydrocarbon Solvents. Nature Energy, 2016, 1: 15027.

[33] LI Sun-sun, YE Long, ZHAO Wen-chao, et al. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(42): 9423-9429.

[34] ZUO Xiao, XUE Jia, LIMING Ding. Ternary Organic Solar Cells Offer 14% Power Conversion Eefficiency[J]. Science Bulletin, 2017, 62(23): 1562-1564.

[35] Che Xiao-zhou, LI Yong-xi, QU Yue, et al. High Fabrication Yield Organic Tandem Photovoltaics Combining Vacuum- and Solution-Processed Subcells with 15% Efficiency. Nature Energy, 2018, 3: 422427.

[36] CUI Yong, YAO Hui-feng, ZHANG Jian-qi, et al. Over 16% Efficiency Organic Photovoltaic Cells Enabled by a Chlorinated Acceptor with Increased Open-Circuit Voltages[J]. Nature Communications, 2019, 10(1): 2515.

[37] QIN Jin-zhao, CHEN Zhi-hao, BI Peng-qing, et al. 17% Efficiency All-Small-Molecule Organic Solar Cells Enabled By Nanoscale Phase Separation With a Hierarchical Branched Structure. Energy & Environmental Science, 2021, 14(11): 5903-5910.

[38] LIN Yu-ze, WANG Jia-yu, ZHANG Zhi-guo, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(7): 1170-1174.

[39] ZHOU Jiao-yan, ZUO Yi, WAN Xiang-jian, et al. Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit[J]. Journal of the American Chemical Society, 2013, 135(23): 8484-8487.

[40] DENG Dan, ZHANG Ya-jie, ZHANG Jian-qi, et al. Fluorination-Enabled Optimal Morphology Leads to over 11% Efficiency for Inverted Small-Molecule Organic Solar Cells[J]. Nature Communications, 2016, 7: 13740.

[41] KREBS F C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques[J]. Solar Energy Materials and Solar Cells, 2008, 93(4): 394-412.

[42] PADINGER F, RITTBERGER R, SARICIFTCI N. Effects of Postproduction Treatment on Plastic Solar Cells[J]. Advanced Functional Materials, 2003, 13(1): 85-88.

[43] ZHAO Wen-chao, LI Sun-sun, YAO Hui-feng, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.

[44] ZHAO Wen-chao, QIAN D-ping, ZHANG Shao-qing, et al. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(23): 4734-4739.

[45] FAN Qun-ping, SU Wen-yan, WANG Yan, et al. Synergistic Effect of Fluorination on Both Donor and Acceptor Materials for High Performance Non-Fullerene Polymer Solar Cells with 13.5% Efficiency[J]. Science China Chemistry, 2018, 61: 531-537.

[46] FAN Bao-bing, ZHANG Di-fei, LI Mei-jing, et al. Achieving Over 16% Efficiency for Single-Junction Organic Solar Cells. Science China Chemistry, 2019, 62: 746–752.

[47] LIU Ming, FAN Pu, HU Qin, et al. Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells[J]. Angewandte Chemie (International Ed in English), 2020, 132(41): 18288-18292.

[48] CUI Yong, YAO Hui-feng, YANG Chen-yi, et al. Organic solar cells with an efficiency approaching 15%.2018, 223–230.

[49] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 34). Progress Photovoltaics Research and Applications, 2009, 17: 320-326.

[50] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 36). Progress Photovoltaics Research and Applications, 2010, 18:346-352.

[51] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 38). Progress Photovoltaics Research and Applications, 2011, 19: 565-572.

[52] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 40). Progress Photovoltaics Research and Applications, 2012, 20,:606-614.

[53] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 42). Progress Photovoltaics Research and Applications,. 2013, 21:827-837.

[54] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 32). Progress Photovoltaics Research and Applications, 2008, 16: 435-440.

[55] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 45). Progress Photovoltaics Research and Applications, 2015, 23: 1-9.

[56] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 47). Progress Photovoltaics Research and Applications, 2016, 24: 3-11.

[57] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 48). Progress Photovoltaics Research and Applications, 2016, 24: 905-913.

[58] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 29). Progress Photovoltaics Research and Applications, 2007, 15: 35-40.

[59] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 49). Progress Photovoltaics Research and Applications, 2017, 25(4): 3-13.

[60] LEVI D H, GREEN M A, HISHIKAWA Y, et al. Solar Cell Efficiency Tables (version 51). Prog. Photovoltaics Research and Applications, 2018, 26(1): 3-12.

[61] LUNGENSCHMIED C, DENNLER G, NEUGEBAUER H, et al. Flexible, Long-Lived, Large-Area, Organic Solar Cells. Solar Energy Materials and Solar Cells, 2007, 91(5): 379-384.

[62] KREBS F C, GEVORGYAN S A, ALSTRUP J. A Roll-to-Roll Process to Flexible Polymer Solar Cells: Model Studies, Manufacture and Operational Stability Studies[J]. Journal of Materials Chemistry, 2009, 19(30): 5442-5451.

[63] LI Yong-fang. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption[J]. Accounts of Chemical Research, 2012, 45(5): 723-733.

[64] YUE Wei, LARSEN-OLSEN T T, HU Xiao-lian, et al. Synthesis and Photovoltaic Properties from Inverted Geometry Cells and Roll-to-Roll Coated Large Area Cells from Dithienopyrrole-Based Donor-Acceptor Polymers[J]. Journal of Materials Chemistry A, 2013, 1(5): 1785-1793.

[65] MACHUI F, LUCERA L, SPYROPOULOS G D, et al. Large Area Slot-Die Coated Organic Solar Cells on Flexible Substrates with Non-Halogenated Solution Formulations[J]. Solar Energy Materials and Solar Cells, 2014, 128: 441-446.

[66] FAN Xi, XU Bing-gang, LIU Sheng-hua, et al. Transfer-Printed PEDOT: PSS Electrodes Using Mild Acids for High Conductivity and Improved Stability with Application to Flexible Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14029-14036.

[67] GASPARINI N, LUCERA L, SALVADOR M, et al. High-Performance Ternary Organic Solar Cells with Thick Active Layer Exceeding 11% Efficiency[J]. Energy & Environmental Science, 2017, 10(4): 885-892.

[68] SONG S, LEE K T, KOH C W, et al. Hot Slot Die Coating for Additive-Free Fabrication of High Performance Roll-to-Roll Processed Polymer Solar Cells[J]. Energy & Environmental Science, 2018, 11(11): 3248-3255.

[69] SUN Yan-na, CHANG Mei-jia, Meng Ling-xian, et al. Flexible Organic Photovoltaics Based on Water-Processed Silver Nanowire Electrodes. Nature Electronics, 2019, 2, 513–520.

[70] GILLETT A J, PRIVITERA A, DILMURAT R, et al. The Role of Charge Recombination to Triplet Excitons in Organic Solar Cells[J]. Nature, 2021, 597(7878): 666-671.

[71] SUN Lu-lu, ZENG Wen-wu, XIE Cong, et al. Flexible All-Solution-Processed Organic Solar Cells with High- Performance Nonfullerene Active Layers. Advanced Materials, 2020, 32(14): 1907840.

[72] CHEN Zhen-yu, SONG Wei, YU Kui-bao, et al. Small-Molecular Donor Guest Achieves Rigid 18.5% and Flexible 15.9% Efficiency Organic Photovoltaic via Fine-Tuning Microstructure Morphology. Joule, 2021, 5(9): 2395-2407.

[73] SONG Wei, YU Kui-bao, ZHOU Erjun, et al. Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Power-per-Weight Performance. Advanced Functional Materials, 2021, 31(30): 2102694.

[74] WAN Juan-yong, XIA Yong-gao, FANG Jun-feng, et al. Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency[J]. Nano-Micro Letters, 2021, 13(1): 44.

[75] YAN Ting-ting, SONG Wei, HUANG Jia-ming, et al. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(39): 1902210.

[76] SONG M, YOU D S, LIM K, et al. Highly Efficient and Bendable Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes. Advanced Functional Materials, 2013, 23(34): 4177-4184.

[77] QIN Fei, SUN Lu-lu, CHEN Hong-ting, et al. 54 cm2Large-Area Flexibongle Organic Solar Modules with Efficiency above 13[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(39): 2103017.

[78] WANG Zheng-guo, HAN Yunfei, YAN Ling-peng, et al. High Power Conversion Efficiency of 13.61% for 1 cm2Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure-Printed Silver Nanowire Electrodes. Advanced Functional Materials, 2021, 31(4): 2007276.

[79] DONG Sheng, JIA Tao, ZHANG Kai, et al. Single-Component Non-halogen Solvent-Processed High- Performance Organic Solar Cell Module with Efficiency over 14%. Joule, 2020, 4(9): 2004-2016.

[80] WANG Guo-dong, ZHANG Jian-qi, YANG Chen, et al. Synergistic Optimization Enables Large-Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small-Area Rigid Devices[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(49): 2005153.

[81] ZHAO Wen-chao, ZHANG Yun, ZHANG Shao-qing, et al. Vacuum-Assisted Annealing Method for High Efficiency Printable Large-Area Polymer Solar Cell Modules[J]. Journal of Materials Chemistry C, 2019, 7(11): 3206-3211.

[82] ZHANG Chu-jun, LUO Qun, WU Han, et al. Roll-to-Roll Micro-Gravure Printed Large-Area Zinc Oxide Thin Film as the Electron Transport Layer for Solution-Processed Polymer Solar Cells. Organic Electronics, 2017, 45: 190-197.

[83] ZHAO Wen-chao, ZHANG Shao-qing, ZHANG Yun, et al. Environmentally Friendly Solvent-Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Blade-Coating Method. Advanced Materials, 2018, 30(4): 1704837.

[84] MAO Lin, TONG Jin-hui, XIONG Si-xing, et al. Flexible Large-Area Organic Tandem Solar Cells with High Defect Tolerance and Device Yield[J]. Journal of Materials Chemistry A, 2017, 5(7): 3186-3192.

[85] GU Xiao-dan, ZHOU Yan, GU K, et al. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7(14): 1602742.

[86] SHIN I, AHN H, YUN J H, et al. High-Performance and Uniform 1 cm2Polymer Solar Cells with D1-A-D2-A-Type Random Terpolymers. Advanced Energy Materials, 2018, 8(7): 1870028.

[87] DONG Sheng, ZHANG Kai, JIA Tao, et al. Suppressing the Excessive Aggregation of Nonfullerene Acceptor in Blade-Coated Active Layer by Using n-Type Polymer Additive to Achieve Large-Area Printed Organic Solar Cells with Efficiency Over 15%. EcoMat, 2019, 1(1): e12006.

[88] DONG Sheng, ZHANG Kai, XIE Bo-ming, et al. High-Performance Large-Area Organic Solar Cells Enabled by Sequential Bilayer Processing via Nonhalogenated Solvents. Advanced Energy Materials, 2019, 9(1): 1802832.

[89] GUO Jie, MIN Jie. A Cost Analysis of Fully Solution-Processed ITO-Free Organic Solar Modules. Advanced Energy Materials, 2019, 9(3): 1802521.

[90] JI Guo-qi, ZHAO Wen-chao, WEI Jun-feng, et al. 12.88% Efficiency in Doctor-Blade Coated Organic Solar Cells through Optimizing the Surface Morphology of a ZnO Cathode Buffer Layer[J]. Journal of Materials Chemistry A, 2019, 7(1): 212-220.

[91] XING Zhi, MENG Xiang-chuan, SUN Rui, et al. An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells. Advanced Functional Materials, 2020, 30(21): 2000417.

[92] KANG Qian, YE Long, XU Bo-wei, et al. A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm 2 Organic Solar Cells. Joule, 2019, 3(1): 227-239.

[93] DONG Xin-yun, SHI Pei, SUN Lu-lu, et al. Flexible Nonfullerene Organic Solar Cells Based on Embedded Silver Nanowires with an Efficiency up to 11.6%[J]. Journal of Materials Chemistry A, 2019, 7(5): 1989-1995.

[94] CHEN Xiao-bin, XU Gui-ying, ZENG Guang, et al. Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(14): 1908478.

[95] JIA Zi-yan, CHEN Zeng, CHEN Xu, et al. 19.34 cm2 Large-Area Quaternary Organic Photovoltaic Module with 12.36% Certified Efficiency. Photonics Research, 2021, 9(3): 324-330.

[96] DONG Sheng, ZHANG Kai, LIU Xiang, et al. Efficient Organic-Inorganic Hybrid Cathode Interfacial Layer Enabled by Polymeric Dopant and Its Application in Large-Area Polymer Solar Cells[J]. Science China Chemistry, 2019,62(1): 67-73.

[97] HUANG Kuan-min, LIN C M, CHEN S H, et al. Nonfullerene Polymer Solar Cell with Large Active Area of 216 cm2and High Power Conversion Efficiency of 7.7%. Solar RRL, 2019, 3(8): 1900071.

[98] JIANG Xue-shi, SUN Lu-lu, WANG Wen, et al. 10 cm2Nonfullerene Solar Cells with Efficiency Over 10% Using HXMoO3-Assisted Growth of Silver Electrodes with a Low Threshold Thickness of 4 nm. Journal of Materials Chemistry A 2020, 8: 69-76.

[99] HUANG Kuan-min, WONG Ying-qin, LIN Man-chun, et al. Highly Efficient and Stable Organic Solar Cell Modules Processed by Blade Coating with 5.6% Module Efficiency and Active Area of 216 cm2. Progress in Photovoltaics Research and Application, 2019, 27(3): 264-274.

[100]STROHM S, MACHUI F, LANGNER S, et al. P3HT: Non-Fullerene Acceptor Based Large Area, Semi- Transparent PV Modules with Power Conversion Efficiencies of 5%, Processed by Industrially Scalable Methods[J]. Energy & Environmental Science, 2018, 11(8): 2225-2234.

[101]HEEGER A J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(1): 10-27.

[102]CHEN Lin X. Organic Solar Cells: Recent Progress and Challenges. ACS Energy Letters, 2019, 4(10): 2537-2539.

[103]SONG Y, CHANG S, GRADECAK S, et al. Visibly-Transparent Organic Solar Cells on Flexible Substrates with All-Graphene Electrodes. Advanced Energy Materials, 2016, 6(20): 1600847.

[104]KOO D, JUNG S, SEO J, et al. Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule, 2020, 4(5): 1021-1034.

[105]ZUO Li-jian, ZHANG Shu-hua, LI Han-ying, et al. Toward Highly Efficient Large-Area ITO-Free Organic Solar Cells with a Conductance-Gradient Transparent Electrode[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(43): 6983-6989.

[106]QIN Jian-qiang, LAN Lin-kai, CHEN Shan-shan, et al. Recent Progress in Flexible and Stretchable Organic Solar Cells. Advanced Functional Materials, 2020, 30(36): 2002529.

[107]YIN Lu-jie, LI Ying-tao, YAO Xin-cheng, et al. MXenes for Solar Cells[J]. Nano-Micro Letters, 2021, 13(1): 78.

[108]LI Teng, LI Sheng-you, LI Xu-yi, et al. A Leaf Vein-Like Hierarchical Silver Grids Transparent Electrode Towards High-Performance Flexible Electrochromic Smart Windows. Science Bulletin, 2020, 65(3): 225-232.

[109]ZILBERG K, GASSE F, PAGUI R, et al. Highly Robust Indium-Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides. Advanced Functional Materials. 2014, 24(12): 1671-1678.

[110]WU Jun-bo, AGRAWAL M, BECERRIL H A, et al. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes[J]. ACS Nano, 2010, 4(1): 43-48.

[111]CAI Wei-wei, ZHU Yan-wu, LI Xue-song, et al. Large Area Few-Layer Graphene/Graphite Films as Transparent Thin Conducting Electrodes[J]. Applied Physics Letters, 2009, 95(12): 123115.

[112]PANG Shu-ping, HERNANDEZ Y, FENG Xin-liang, et al. Graphene as Transparent Electrode Material for Organic Electronics[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(25): 2779-2795.

[113]TUNG V C, CHEN Li-min, ALLEN M J, et al. Low-Temperature Solution Processing of Graphene–Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors[J]. Nano Letters, 2009, 9(5): 1949-1955.

[114]LIU Zhao-yang, PARVEZ K, LI Rong-jin, et al. Transparent Conductive Electrodes from Graphene/PEDOT: PSS Hybrid Inks for Ultrathin Organic Photodetectors[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(4): 669-675.

[115]CAI Guo-fa, DARMAWAN P, CUI Meng-qi, et al. Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6(4): 1501882.

[116]DONG Ying-ying, ZOU Yan, YUAN Jian-yu, et al. Ternary Polymer Solar Cells Facilitating Improved Efficiency and Stability[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(52): e1904601.

[117]ZHANG Cheng, JI Chen-gang, PARK Y B, et al. Thin-Metal-Film-Based Transparent Conductors: Material Preparation, Optical Design, and Device Applications. Advanced Optical Materials, 2021, 9(3): 2001298.

[118]PAN Wei, HAN Yun-fei, WANG Zhen-guo, et al. An Efficiency of 14.29% and 13.08% for 1 cm2and 4 cm2Flexible Organic Solar Cells Enabled by Sol-Gel ZnO and ZnO Nanoparticle Bilayer Electron Transporting Layers[J]. Journal of Materials Chemistry A, 2021, 9(31): 16889-16897.

[119]LIU Tie-feng, SUN Lu-lu, DONG Xin-yun, et al. Low-Work-Function PEDOT Formula as a Stable Interlayer and Cathode for Organic Solar Cells. Advanced Functional Material, 2021, 31(51): 2107250.

[120]SHAO Shu-yan, LIU Jian, BERGQVIST J, et al. In Situ Formation of MoO3in PEDOT: PSS Matrix: A Facile Way to Produce a Smooth and less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells[J]. Advanced Energy Materials, 2013, 3(3): 349-355.

[121]RAFIQUE S, ABDULLAH S M, MAHMOUD W E, et al. Stability Enhancement in Organic Solar Cells by Incorporating V2O5 Nanoparticles in the Hole Transport Layer[J]. RSC Advances, 2016, 6(55): 50043-50052.

[122]YANG Hong-bin, SONG Qun-liang, LU Zhi-song, et al. Electrochemically Polymerized Nanostructured Poly(3.4- ethylenedioxythiophene)-Poly(styrenesulfonate) Buffer Layer for a High Performance Polymer Solar Cell. Energy & Environmental Science, 2010, 3: 1580-1586.

[123]YUN Jin-min, YEO J S, KIM J, et al. Solution-Processable Reduced Graphene Oxide as a Novel Alternative to PEDOT: PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(42): 4923-4928.

[124]KANG H, HONG S, LEE J, et al. Electrostatically Self-Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells. Advanced Materials, 2012, 24(22): 3005-3009.

[125]PAN Fei, SUN Chen-kai, LI Ying-fen, et al. Solution-Processable N-Doped Graphene-Containing Cathode Interfacial Materials for High-Performance Organic Solar Cells[J]. Energy & Environmental Science, 2019, 12(11): 3400-3411.

[126]ZHANG Jing-wen, XU Gui-ying, TAO Feng, et al. Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(10): e1807159.

[127]KWON J, TAKEDA Y, SHIWAKU R, et al. Three- Dimensional Monolithic Integration in Flexible Printed Organic Transistors. Nature Communications, 2019, 10: 54.

[128]LIU Sha, YUAN Jun, DENG Wan-yuan, et al. High- Efficiency Organic Solar Cells with Low Non-Radiative Recombination Loss and Low Energetic Disorder. Nature Photonics, 2020, 14: 300-305.

[129]LIU Le, KAN Yuan-yuan, GAO Ke, et al. Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity[J]. Advanced Materials, 2020, 32(11): 1907604.

[130]LIAO Qing, KANG Qian, YANG Yi, et al. Tailoring and Modifying an Organic Electron Acceptor Toward the Cathode Interlayer for Highly Efficient Organic Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(7): 1906557.

[131]GAO Jin-hua, GAO Wei, MA Xiao-ling, et al. Over 14.5% Efficiency and 71.6% Fill Factor of Ternary Organic Solar Cells with 300 nm Thick Active Layers. Energy & Environmental Science, 2020, 13: 958-967.

[132]BAO Su-nan, YANG Hang, FAN Hong-yu, et al. Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80[J]. Advanced Materials, 2021, 33(48): e2105301.

[133]ZHAN Ling-ling, LI Shui-xing, LAU T K, et al. Over 17% Efficiency Ternary Organic Solar Cells Enabled by Two Non-Fullerene Acceptors Working in an Alloy-Like Model. Energy & Environmental Science, 2020, 13: 635-645.

[134]HUANG Wen-chao, JIANG Zhi, FUKUDA K, et al. Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule, 2020, 4(15): 128-141.

[135]LEE D Y, NA S I, KIM S S. Graphene Oxide/PEDOT: PSS Composite Hole Transport Layer for Efficient and Stable Planar Heterojunction Perovskite Solar Cells[J]. Nanoscale, 2016, 8(3): 1513-1522.

[136]FAN Xi, NIE Wan-yi, TSAI H, et al. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(19): 1900813.

[137]SHEN Ting, BINKS D, YUAN Ji-feng, et al. Enhanced-Performance of Self-Powered Flexible Quantum Dot Photodetectors by a Double Hole Transport Layer Structure[J]. Nanoscale, 2019, 11(19): 9626-9632.

[138]FENG Jiang-shan, YANG Zhou, YANG Dong, et al. E-Beam Evaporated Nb2O5 as an Effective Electron Transport Layer for Large Flexible Perovskite Solar Cells. Nano Energy, 2017, 36(1): 1-8.

[139]ZHANG Jing-wen, XUE Rong-ming, XU Gui-ying, et al. Self-Doping Fullerene Electrolyte-Based Electron Transport Layer for All-Room-Temperature-Processed High-Performance Flexible Polymer Solar Cells. Advanced. Functional Materials, 2018, 28(13): 1705847.

[140]QIN Yun-peng, BALAR N, PENG Zheng-xing, et al. The Performance-Stability Conundrum of BTP-Based Organic Solar Cells. Joule, 2021, 5(8): 2129-2147.

[141]S?NDERGAARD R, MANCEAU M, J?RGENSEN M, et al. New Low-Bandgap Materials with Good Stabilities and Efficiencies Comparable to P3HT in R2R-Coated Solar Cells. Advanced Energy Materials, 2012, 2(4): 415-418.

[142]S?NDERGAARD R, H?SEL M, ANGMO D C, et al. Roll-to-Roll Fabrication of Polymer Solar Cells[J]. Materials Today, 2012, 15(1/2): 36-49.

[143]TAVAKOLI M M, AZZELLINO G, HEMPEL M, et al. Synergistic Roll-to-Roll Transfer and Doping of CVD-Graphene Using Parylene for Ambient-Stable and Ultra-Lightweight Photovoltaics. Advanced Functional Materials, 2020, 30(31): 2001924.

[144]FAN Bao-bing, DU Xiao-yan, LIU Feng, et al. Fine-Tuning of the Chemical Structure of Photoactive Materials for Highly Efficient Organic Photovoltaics. Nature Energy 2018, 3: 1051-1058.

[145]KREBS F C, FYENBO J, TANENBAUM D M, et al. The OE-a OPV Demonstrator Anno Domini 2011[J]. Energy & Environmental Science, 2011, 4(10): 4116-4123.

[146]KREBS F C, J?RGENSEN M, NORRMAN K, et al. A Complete Process for Production of Flexible Large Area Polymer Solar Cells Entirely Using Screen Printing-First Public Demonstration[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 422-441.

[147]GEVORGYAN S A, MADSEN M V, ROTH B, et al. Lifetime of Organic Photovoltaics: Status and Predictions. Advanced Energy Materials, 2016, 6(2): 1501208.

[148]ZHANG Ying, LIU Kuan, HUANG Jia-ming, et al. Graded Bulk-Heterojunction Enables 17% Binary Organic Solar Cells via Nonhalogenated Open Air Coating[J]. Nature Communications, 2021, 12(1): 4815.

[149]ZHANG Di-fei, FAN Bao-bing, YING Lei, et al. Recent Progress in Thick-Film Organic Photovoltaic Devices: Materials, Devices, and Processing[J]. SusMat, 2021,1(1): 4-23.

[150]SUN Yan-na, LIU Tao, KAN Yuan-yuan, et al. Flexible Organic Solar Cells: Progress and Challenges. Small Science, 2021, 1(5): 2100001.

[151]BAI Yi-ming, ZHAO Chun-yan, ZHANG Shuai, et al. Printable SnO2 Cathode Interlayer with up to 500 nm Thickness-Tolerance for High-Performance and Large-Area Organic Solar Cells. Science China Chemistry, 2020, 63: 957-965.

[152]LIU Long-zhu, CHEN Shi-yan, QU Yang-yang, et al. Nanographene-Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18%. Advanced Materials, 2021, 33(30): 2101279.

[153]MENG Hui-feng, LIAO Chen-tong, DENG Min, et al. 18.77?% Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer[J]. Angewandte Chemie (International Edition), 2021, 133(41): 22728-212735.

[154]LI Ya-wen, ZHANG Zhen-zhen, HAN Xiao-na, et al. Fine-Tuning Contact via Complexation for High- Performance Organic Solar Cells. Chinese Chemical Society Chemistry, 2022, 4(3): 1087-1097.

[155]CAI Chun-sheng, YAO Jia, CHEN Lie, et al. Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells[J]. Angewandte Chemie (International Edition), 2021, 60(35): 19053-19057.

[156]LIU Ming, FAN Pu, HU Qin, et al. Naphthalene‐ Diimide‐Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. Angewandte Chemie (International Edition), 2020, 132(41): 18288-18292.

[157]PAN Fei, BAI Song, WEI Xian, et al. 3D Surfactant-Dispersed Graphenes as Cathode Interfacial Materials for Organic Solar Cells. Science China Materials, 2021, 64: 277-287.

[158]YAO Jia, QIU Bei-bei, ZHANG Zhi-guo, et al. Cathode Engineering with Perylene-Diimide Interlayer Enabling over 17% Efficiency Single-Junction Organic Solar Cells[J]. Nature Communications, 2020, 11(1): 2726.

[159]FUKUDA K, YU K, SOMEYA T. The Future of Flexible Organic Solar Cells. Advanced Energy Materials, 2020, 10(25): 2000765.

[160]KIM J, OUYANG D, LU Hai-feng, et al. High Performance Flexible Transparent Electrode via One-Step Multifunctional Treatment for Ag Nanonetwork Composites Semi-Embedded in Low-Temperature-Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials, 2020, 10(15): 2070066.

[161]BURGUéS-CEBALLOS I, STELLA M, LACHARMOISE P, et al. Towards Industrialization of Polymer Solar Cells: Material Processing for Upscaling[J]. Journal of Materials Chemistry A, 2014, 2(42): 17711-17722.

[162]DENG Ye-hao, ZHENG Xiao-peng, BAI Yang, et al. Surfactant-Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient Photovoltaic Modules. Nature Energy, 2018, 3: 560-566.

[163]BOYER C, LIU Jing-quan, WONG Ling-jiun, et al. Stability and Utility of Pyridyl Disulfide Functionality in RAFT and Conventional Radical Polymerizations. Journal Polymer Science Part A Polymer Chemistry, 2008, 46(21): 7207-7224.

[164]LIU Si-qi, CHEN Dong, HU Xiao-tian, et al. Printable and Large-Area Organic Solar Cells Enabled by a Ternary Pseudo-Planar Heterojunction Strategy. Advanced Functional Materials, 2020, 30(36): 2003223.

[165]SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet Printing-Process and Its Applications[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(6): 673-685.

[166]ZIMMERMANN B, SCHLEIERMACHER H-F, NIGGEMANN M, et al. ITO-Free Flexible Inverted Organic Solar Cell Modules with High Fill Factor Prepared by Slot Die Coating. Solar Energy Materials and Solar Cells, 2011, 95(7): 1587-1589.

[167]CHANG Yi-ming, LIAO Chuang-yi, LEE C C, et al. All Solution and Ambient Processable Organic Photovoltaic Modules Fabricated by Slot-Die Coating and Achieved a Certified 7.56% Power Conversion Efficiency. Solar Energy Materials and Solar Cells, 2019, 202: 110064.

[168]ZHONG Wen-kai, HU Qin, JIANG Yu-feng, et al. In Situ Structure Characterization in Slot-Die-Printed All-Polymer Solar Cells with Efficiency Over 9%. Solar RRL, 2019, 3(7): 1900032.

[169]NA S I, SEO Y H, NAH Y C, et al. High Performance Roll-to-Roll Produced Fullerene-Free Organic Photovoltaic Devices via Temperature-Controlled Slot Die Coating. Advanced Functional Materials, 2019, 29(6): 1805825.

[170]WU Qiang, GUO Jie, SUN Rui, et al. Slot-die Printed Non-fullerene Organic Solar Cells with the Highest Efficiency of 12.9% for Low-cost PV-driven Water Splitting. Nano Energy 2019, 61: 559-566.

[171]LIN Bao-jun, ZHOU Xiao-bo, ZHAO Heng, et al. Balancing the Pre-aggregation and Crystallization Kinetics Enables High Efficiency Slot-die Coated Organic Solar Cells with Reduced Non-radiative Recombination Losses. Energy & Environmental Science, 2020, 13(8): 2467-2479.

[172]BUNDGAARD E, HAGEMANN O, MANCEAU M, et al. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells. Macromolecules, 2010, 43(19): 8115-8120.

[173]SCHR?DNER M, SENSFUSS S, SCHACHE H, et al. Reel-to-Reel Wet Coating by Variation of Solvents and Compounds of Photoactive Inks for Polymer Solar Cell Production[J]. Solar Energy Materials and Solar Cells, 2012, 107: 283-291.

[174]ALSTRUP J, J?RGENSEN M, MEDFORD A J, et al. Ultra Fast and Parsimonious Materials Screening for Polymer Solar Cells Using Differentially Pumped Slot-Die Coating[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2819-2827.

[175]LILLIEDAL M R, MEDFORD A J, MADSEN M V, et al. The Effect of Post-Processing Treatments on Inflection Points in Current-Voltage Curves of Roll-to-Roll Processed Polymer Photovoltaics. Solar Energy Materials and Solar Cells, 2010, 94(12): 2018-2031.

[176]KREBS F C, TROMHOLT T, J?RGENSEN M. Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-Roll Processing[J]. Nanoscale, 2010, 2(6): 873-886.

[177]ZHANG Jian-qi, ZHAO Yi-fan, FANG Jin, et al. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy. Small, 2017, 13(21): 1700388.

Large-area Flexible Organic Solar Cells: Modular Design and Printing Technologies

SHI Lin-feng1, YUAN Hao1, MENG Xiang-chuan1,2, HU Xiao-tian1,2, CHEN Yi-wang1,2,3

(1. Peking University Yangtze Delta Institute of Optoelectronics, Jiangsu Nantong 226010, China; 2. College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang 330031, China; 3. Institute of Advanced Scientific Research (iASR)/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China)

The work aims to provide investigators with comprehensive insights and recent advances related to OSCs manufacturing technology, analyze existing technical bottlenecks and unsolved scale efficiency losses to obtain scalable and printable large-area photovoltaic modules. This review introduced the selection of functional layer materials, the current status of printing process research and large-scale efficiency loss, and focused on the technical challenges in printing and preparation of flexible and high-efficiency large-area organic photovoltaic devices. This will promote the integrated application of printable organic semiconductor materials in next-generation clean energy, and attract widespread attention in application to wearable electronics, building-integrated photovoltaics, the Internet of Things, etc.

organic photovoltaic, modular design, flexible device, printing technology

TS801.4

A

1001-3563(2022)19-0011-16

10.19554/j.cnki.1001-3563.2022.19.002

2022–07–12

國家自然科學基金(51833004,22005131,52173169,52222312)

施淋楓(1991—),女,中級,主要研究方向為印刷光電器件。

胡笑添(1990—),男,博士,研究員,主要研究方向為印刷光電器件。

責任編輯:曾鈺嬋

主站蜘蛛池模板: 亚洲视频免费播放| 2020国产精品视频| 成年午夜精品久久精品| 亚洲三级片在线看| 六月婷婷激情综合| 国产高潮视频在线观看| 无码中文字幕精品推荐| 国产成人无码AV在线播放动漫| 精品综合久久久久久97超人| 亚洲乱码在线视频| 夜夜操国产| 欧美翘臀一区二区三区| 看你懂的巨臀中文字幕一区二区| 亚洲国产天堂久久九九九| 欧美第一页在线| 99久久亚洲综合精品TS| 丝袜无码一区二区三区| 91精品国产无线乱码在线| 亚洲第一区精品日韩在线播放| 日本www在线视频| 亚洲狼网站狼狼鲁亚洲下载| 欧美一区二区三区不卡免费| 亚洲成人高清在线观看| 亚洲第一天堂无码专区| 亚洲AV免费一区二区三区| 97se亚洲综合在线天天| 青青草原国产一区二区| 夜夜操狠狠操| 在线精品自拍| 精品色综合| 黄色网在线免费观看| 国产极品美女在线| 日本欧美成人免费| 国产一级精品毛片基地| 日本欧美成人免费| 国产毛片一区| 亚洲无码A视频在线| 中文字幕天无码久久精品视频免费| 国产成人综合亚洲欧美在| 无码精品国产dvd在线观看9久 | 欧美福利在线播放| 在线网站18禁| 激情在线网| 国产欧美视频在线观看| 亚洲欧州色色免费AV| 91av成人日本不卡三区| 色悠久久综合| 91 九色视频丝袜| 国产黄在线免费观看| 中美日韩在线网免费毛片视频| 国产日韩精品欧美一区灰| 国产精品福利社| 国产日韩欧美中文| 日韩不卡高清视频| 四虎永久免费地址在线网站| 亚洲男人天堂网址| 国产精品人莉莉成在线播放| 91原创视频在线| 色哟哟国产精品一区二区| 一级成人a毛片免费播放| 欧美在线导航| 成人第一页| 中国特黄美女一级视频| 亚洲有无码中文网| 色偷偷男人的天堂亚洲av| 成人国产精品一级毛片天堂| 一级毛片在线播放免费观看| 亚洲首页国产精品丝袜| 丁香婷婷激情综合激情| 国产精品男人的天堂| 在线毛片免费| 午夜不卡视频| 亚洲天堂日本| 五月天香蕉视频国产亚| 国产精品美女自慰喷水| 日本福利视频网站| 在线国产三级| 伊人欧美在线| 日韩欧美亚洲国产成人综合| 亚洲91在线精品| 无码又爽又刺激的高潮视频| 72种姿势欧美久久久久大黄蕉|