張俊樹, 李 丹, 任偉新
(1. 合肥工業(yè)大學 土木與水利工程學院, 合肥 230009;2. 深圳大學 濱海城市韌性基礎設施教育部重點實驗室(籌), 廣東 深圳 518060)
螺栓作為連接件具有易于拆卸和承載能力強等優(yōu)點,廣泛應用于機械和土木工程等多個領域。螺栓的預緊力損失會降低結(jié)構(gòu)的承載能力,直接影響結(jié)構(gòu)的可靠性。為保證結(jié)構(gòu)的完整性、安全性和功能性,需要對螺栓連接的預緊力狀態(tài)進行檢測和監(jiān)測。
振動聲調(diào)制(vibro-acoustic modulation,VAM)是一種基于接觸非線性的超聲檢測方法,對結(jié)構(gòu)中的缺陷十分敏感,可以有效地檢測閉合微裂紋、復合材料分層和螺栓松動等接觸性缺陷,且不需要復雜的設備來發(fā)生和采集信號,是近年來非線性超聲檢測技術研究的熱點之一[1-4]。Klepka等[5]驗證了VAM檢測復合夾芯板沖擊損傷的有效性; Zhao等[6]利用壓電傳感器(piezoelectric transducer, PZT)產(chǎn)生低頻信號,通過快速傅里葉變換(fast Fourier transform, FFT)得到旁瓣幅值建立損傷指標,檢測螺栓預緊力大小; Liu等[7]利用線性掃頻信號替換高頻諧波,結(jié)合同步解調(diào)和短時傅里葉變換(short-time Fourier transform, STFT)從輸出信號中提取調(diào)制信息,用于檢測混凝土裂紋。
上述研究中,結(jié)構(gòu)的邊界條件大致可分為兩類:一類是放置在海綿墊上或用彈性繩懸掛,來模擬自由邊界條件,這種方法適用于條件可控的實驗室中;另一類是緊固在剛性基礎上,以消除邊界條件的影響。然而在實際應用中,結(jié)構(gòu)的邊界連接處也會發(fā)生損傷,例如螺栓連接邊栓的影響。現(xiàn)有的方法無法很好地分辨調(diào)制信號是由結(jié)構(gòu)還是邊界產(chǎn)生。Polimeno等[8]發(fā)現(xiàn)完好的懸臂板在夾具松動的情況下,與存在裂紋懸臂板的VAM信號相同,會在頻域中的高頻信號兩側(cè)產(chǎn)生類似的旁瓣。因此,如何在復雜變化的邊界條件影響下提取真實損傷的信息,對推動VAM在損傷檢測和監(jiān)測在實際中的應用至關重要。
在理想環(huán)境下,旁瓣幅值會隨著損傷的增大而增大,且在損傷大小一定時,幅值隨時間變化的序列是平穩(wěn)的,損傷程度與幅值大小也是一一對應的。然而由于邊界條件的不斷變化,旁瓣幅值序列不再平穩(wěn),一一對應的關系被打破,導致VAM無法有效識別損傷。研究表明,各階旁瓣幅值具有相同的變化趨勢,如果能找到平穩(wěn)的線性組合,就可以消除邊界條件引起的幅值序列非平穩(wěn)性。為消除長期監(jiān)測過程中的結(jié)構(gòu)邊界條件影響,本文引入?yún)f(xié)整檢驗,以有效地表征螺栓的預緊力狀態(tài)。
協(xié)整理論最初發(fā)展于計量經(jīng)濟學領域[9],主要基于平穩(wěn)性的概念。在研究過程中,若各變量之間具有協(xié)整關系,進行協(xié)整分析時,這些變量的線性組合會去除原始數(shù)據(jù)中的共同趨勢,剩下等價于該過程長期動態(tài)平衡的殘差。殘差平穩(wěn)表示結(jié)構(gòu)處于正常或無損狀態(tài),任何偏離平穩(wěn)的情況都可以表示被檢測的對象或結(jié)構(gòu)不在正常狀態(tài)下運行[10-11]。基于此,協(xié)整檢驗近些年被國內(nèi)外學者引入結(jié)構(gòu)健康監(jiān)測領域中,用于處理質(zhì)量、溫度等因素的影響。Dao等[12]對溫度影響下的蘭姆波信號進行小波變換,通過協(xié)整處理小波系數(shù)方差,分離出溫度的影響;刁延松等[13]取結(jié)構(gòu)加速度響應數(shù)據(jù)第一階時間序列AR(autoregressive)模型系數(shù)為協(xié)整變量,去除了溫度、質(zhì)量對結(jié)構(gòu)損傷識別的影響;Liang等[14]以固有頻率作為協(xié)整變量,成功將協(xié)整改進的損傷識別方法應用到南京地鐵口鋼桁架橋和天津永和大橋;李秀娟等[15-16]利用協(xié)整分別消除了溫度和動應力對壓電阻抗法的影響。
本文利用協(xié)整分析在處理環(huán)境因素中的優(yōu)點,提出了一種去除VAM中邊界條件影響的螺栓預緊力識別方法。通過STFT提取VAM信號頻域中的旁瓣幅值作為變量進行協(xié)整分析,分離邊界條件的影響,通過協(xié)整殘差識別連接板件的螺栓狀態(tài);再計算協(xié)整殘差的均方根(root mean square,RMS)值構(gòu)建預緊力指標PI(preloading index),實現(xiàn)預緊力狀態(tài)的識別。
無損檢測過程中,向被測試件同時輸入低頻振動和高頻信號,兩種激勵在螺栓松動處發(fā)生調(diào)制。低頻振動用于推動螺栓與板件接觸面的相對運動,使得松動處發(fā)生接觸作用,其頻率往往對應于一種固有頻率時效果較好;高頻信號則作為探測波收集信息,頻率通常是任意選擇的。當螺栓緊固時,結(jié)構(gòu)可視為線性系統(tǒng),接收到的信號為兩激勵的線性疊加,其頻域僅有兩列入射波對應的頻率;當螺栓松動時,結(jié)構(gòu)將在連接處變?yōu)榉蔷€性系統(tǒng),由于兩種激勵在螺栓松動處的相互作用,高頻信號會在連接處發(fā)生幅值和相位調(diào)制,進而產(chǎn)生了新的旁瓣調(diào)制諧波成分,即旁瓣信號,螺栓狀態(tài)VAM的基本原理如圖1所示。圖1中:LF為低頻頻率;HF為高頻頻率;f為頻率。左、右旁瓣在頻域上的位置可用式(1)、式(2)描述


(a) 螺栓緊固狀態(tài)的頻譜

(b) 螺栓松動狀態(tài)的頻譜圖1 VAM原理圖Fig.1 Schematic diagram of VAM
FLSj=FHF-jFLF
(1)
FRSj=FHF+jFLF
(2)
式中:FHF為高頻信號的頻率;FLF為低頻振動的頻率;j為旁瓣的階數(shù)。
由此可知,通過分析頻譜中的高頻旁瓣可判斷螺栓是否松動。此外,能量[17]、時頻[18]以及各種統(tǒng)計學方法[19]也被引入信號分析當中,用于改進VAM。然而利用VAM進行損傷檢測依然面臨一些實際問題:由于材料固有的非線性和邊界條件等影響,經(jīng)常能在沒有損壞的試件中,觀察到旁瓣成分,并且在低頻振動幅度較大時,十分常見。
協(xié)整分析是一種處理非平穩(wěn)序列的有效手段。如果有兩個或兩個以上的變量序列是非平穩(wěn)的,它們的線性組合可以產(chǎn)生新的平穩(wěn)變量,則認為該變量之間具有協(xié)整關系,這種穩(wěn)定線性組合稱為協(xié)整向量。
對于非平穩(wěn)變量y,經(jīng)過d次差分后變成平穩(wěn)序列,但若只進行d-1次差分,它仍然是非平穩(wěn)的,那么變量y可稱為d階單整,記為y~I(d);如果變量y是平穩(wěn)的,則記為y~I(0)。對于一組同為d階單整的非平穩(wěn)變量YT=(y1,y2,…,yn)∈Rn,當且僅當它們滿足式(3)時,稱它們具有協(xié)整關系
α1y1+α2y2+…+αnyn=εn
(3)
式中:εn為平穩(wěn)殘差序列;(α1,α2,…,αn)為協(xié)整向量。
ADF(augmented dichey-fuller)檢驗是檢驗序列平穩(wěn)性的一種經(jīng)典方法,又稱單位根檢驗。首先需要考慮一階自回歸模型
(4)
式中:β為確定的線性趨勢(如趨勢項或常數(shù)項);p為滯后長度,可由信息準則確定,從而使殘差序列為平穩(wěn)序列;η,αi為系數(shù);Δyn-i=yn-i-yn-i-1。
對式(4)中的yn作一階差分可得
(5)
式中,γ=η-1。
序列yn是否平穩(wěn)主要取決于γ值,如果γ=0,則回歸過程有一個單位根,此時序列yn是非平穩(wěn)的;當γ<0時,yn是平穩(wěn)的。ADF檢驗通過估計假設γ=0的概率來判斷序列的平穩(wěn)性,利用γ的最小二乘估計和標準差估計的比值構(gòu)造t統(tǒng)計量進行假設檢驗,將t統(tǒng)計量與臨界值進行比較,若小于給定顯著性水平的t統(tǒng)計量值,拒絕原假設,認為沒有單位根,yn是平穩(wěn)序列;否則接受原假設,認為yn是非平穩(wěn)序列。
EG(Engle-Granger)檢驗是Engle和Granger提出的基于回歸殘差的兩步檢驗,可用于檢驗變量xt和yt之間是否存在協(xié)整關系,具體步驟如下。
步驟1如果變量xt和yt是兩個一階單整的序列,那么兩者的回歸方程同協(xié)整方程,可表示為
yt=a+bxt+τt
(6)
通過普通最小二乘估計得到殘差序列為
(7)
式中:a為常數(shù)項;b為回歸系數(shù);τt為均值為0、方差為σ2的獨立正態(tài)隨機變量。
步驟2由于當xt和yt不存在協(xié)整關系時,它們的任何線性組合都是非平穩(wěn)的,因此檢驗殘差序列et是否平穩(wěn),即可判斷xt和yt是否具有協(xié)整關系。
當et序列通過ADF檢驗判斷為平穩(wěn)時,xt和yt具有協(xié)整關系,a與b為協(xié)整向量的系數(shù);反之不存在協(xié)整關系。
國內(nèi)外學者已經(jīng)提出多種損傷指標和信號處理方法[20-22]改進VAM,但實驗驗證的環(huán)境十分理想,經(jīng)常忽略邊界條件等因素的影響。
以上研究也表明,損傷引起的各階旁瓣幅值具有共同趨勢,即隨著損傷的增大而增大。參考計量經(jīng)濟學中協(xié)整的處理方法,同時排除共振峰偏移的影響[23],選取調(diào)制信號低頻側(cè)一階和二階旁瓣幅值作為協(xié)整變量。協(xié)整分析表明,當螺栓緊固時協(xié)整殘差是平穩(wěn)的,當螺栓松動時板件的接觸面和剛度等會發(fā)生變化,幅值序列不再滿足之前的協(xié)整關系,殘差變?yōu)榉瞧椒€(wěn),為螺栓狀態(tài)識別提供了可能。
假設基準樣本的協(xié)整殘差服從正態(tài)分布,通過設置殘差序列的上下限識別螺栓狀態(tài),一旦殘差超出控制線,則可以判斷螺栓發(fā)生松動。基于協(xié)整分析改進的VAM方法的螺栓預緊狀態(tài)識別流程,如圖2所示。

圖2 預緊力識別流程Fig.2 Flowchart of bolt looseness identification
為判斷板間預緊力狀態(tài),本文提出利用旁瓣幅值作為變量,進行協(xié)整檢驗得到殘差,將殘差序列的RMS值作為預緊力指標IP
(8)
式中:(x1,x2…xn)為協(xié)整殘差序列;n為殘差序列的樣本點數(shù)。IP與螺栓預緊力損失呈線性關系,可建立基于協(xié)整殘差的板間預緊力損失評估模型,更準確地判斷螺栓預緊力狀態(tài)。
實驗選取尺寸為120 mm×35 mm×5 mm,材質(zhì)為Q235的兩塊鋼板作為實驗試件。兩鋼板通過一強度級為8.8的M8螺栓連接,該螺栓稱為板間螺栓,預緊力大小稱為板間預緊力;邊界處用相同的螺栓固定在剛性基礎上,該螺栓稱為固定螺栓,預緊力大小稱為邊界固定力,如圖3所示。實驗通過改變邊界固定力大小來模擬邊界條件變化,計算IP識別板間預緊力狀態(tài)。

圖3 實驗配置示意圖Fig.3 Schematic of the specimen configurations
實驗采用PZT作為發(fā)生高頻信號和采集信號的傳感器,分別粘貼在板間螺栓懸臂側(cè)和邊界側(cè)400 mm中心處,稱為PZT1和PZT2。針對低頻激勵,利用力錘敲擊試件,采集振動信號,找到一階固有頻率作為低頻激勵的頻率,低頻振動由激振器直接作用在鋼板的懸臂末端,頻率和激振力大小分別為1 280 Hz和20 N;高頻信號由系統(tǒng)軟件LabVIEW編程,通過NI數(shù)據(jù)采集儀傳輸至功率放大器提高電壓后,由PZT1作用到鋼板上,其頻率是經(jīng)過調(diào)試后,選擇的效果較好的頻率,本文高頻激勵的頻率和放大后的電壓分別16 560 Hz和700 V。由PZT2采集VAM信號,NI數(shù)據(jù)采集儀記錄。
根據(jù)JGJ 82—2011《鋼結(jié)構(gòu)高強度螺栓連接技術規(guī)程》,計算得到強度級為8.8的M8螺栓的施工預緊力為23.144~31.560 N·m,為保證螺栓擰緊,將35N·m設為螺栓緊固時的預緊力。首先,利用扭力扳手將板間螺栓擰至緊固狀態(tài),以1 N·m為步長,從35N·m到1 N·m線性減小邊界固定力,再從1 N·m到35 N·m線性增加邊界固定力,每隔一個步長采集一次數(shù)據(jù),作為螺栓緊固狀態(tài)下的基準信號;再設置板間預緊力以5 N·m為步長,從30 N·m到5 N·m線性減小,在這6種板間預緊力的狀態(tài)下,均進行一次上述邊界固定力線性減小的過程,采集得到6組損傷信號。整個實驗過程總共采集到7組數(shù)據(jù),基準信號組70個信號,6組損傷信號各35個信號,合計280個信號。實驗裝置如圖4所示。

圖4 實驗裝置Fig.4 Experimental setups
4.2.1 邊界固定力對旁瓣幅值的影響
實驗證明當邊界螺栓發(fā)生松動,即使板間螺栓處于緊固狀態(tài),采集信號頻譜中也能觀察到旁瓣成分。邊界固定力20 N·m,板間預緊力35 N·m狀態(tài)下的FFT頻譜圖,如圖5所示。圖5中已將低頻振動部分濾除。此時板間螺栓緊固,邊界螺栓松動,頻譜中高頻信號兩側(cè)出現(xiàn)明顯的旁瓣,容易造成螺栓預緊力狀態(tài)的誤判。從圖5中還可以看出,高頻側(cè)與低頻側(cè)相同,各階旁瓣幅值依次遞減。

圖5 高頻信號兩側(cè)旁瓣信號傅里葉頻譜圖Fig.5 Fast Fourier transform of the sideband signals nearby the high-frequency signal
傳統(tǒng)的信號處理方法通常是利用FFT提取旁瓣幅值,建立預緊力指標ID(damage index)
ID=(ALB+ARB)/2
(9)
式中:ALB為低頻側(cè)一階旁瓣幅值;ARB為高頻側(cè)一階旁瓣幅值。結(jié)果如圖6和圖7所示。

圖6 板間預緊力為20 N·m和35 N·m的IDFig.6 ID of the bolt preloading at 20 N·m and 35 N·m

圖7 不同板間預緊力的ID誤差線Fig.7 ID error bars of the bolt preloading
圖6給出板間螺栓在兩種狀態(tài)下,ID在不同邊界固定力下的值。觀察發(fā)現(xiàn),不論板間預緊力大小是20 N·m還是35 N·m,邊界固定力的大小都會影響ID,使其在一定范圍內(nèi)浮動,很難從中提取穩(wěn)定的指標。
圖7是不同板間螺栓狀態(tài)下的ID誤差線,表示不同板間預緊力下,ID的浮動范圍,圖7中圓點為該板間預緊力下ID的均值。可以看出,ID受邊界固定力的影響會在一定范圍內(nèi)浮動,且不同板間預緊力狀態(tài)下的浮動范圍之間存在大量交叉,無法有效判斷板間螺栓狀態(tài)。因此,在傳統(tǒng)預緊力指標下,邊界固定力會對板間預緊力的識別造成重大影響,甚至淹沒真實的結(jié)果。
4.2.2 構(gòu)建旁瓣幅值序列
低頻振動由激振器產(chǎn)生,實際振幅遠大于高頻信號,為防止旁瓣過小難以分辨,首先濾除所有采集信號的低頻部分。為了更好地反映信號的時頻特性,采用STFT,得到的時頻圖如圖8所示。再歸一化并提取各階旁瓣幅值得到7組數(shù)據(jù),取每組數(shù)據(jù)的低頻側(cè)前兩階旁瓣幅值組成兩個序列。由基準信號組提取的兩個旁瓣幅值序列,如圖9所示。由圖9可知,兩個序列具有相同的變化趨勢。

圖8 VAM采集信號時頻圖Fig.8 Time-frequency spectra of VAM signal

圖9 板間螺栓緊固時的幅值序列Fig.9 The sideband series of the tightening bolt between plates
4.2.3 協(xié)整分析
根據(jù)2.2節(jié)內(nèi)容,對上述兩個序列進行ADF檢驗,計算t統(tǒng)計量,并行顯著性檢驗。對比5%顯著性水平的臨界值-1.941,可判斷兩序列是非平穩(wěn)的;再對序列作一階差分后,執(zhí)行上述相同步驟,可認為兩個一階差分序列是平穩(wěn)的。結(jié)果顯示兩個序列同為一階單整,滿足協(xié)整檢驗的條件,如表1所示。

表1 旁瓣幅值序列及其一階差分的ADF檢驗結(jié)果Tab.1 ADF test results of sideband series and its first difference
對上述兩序列進行EG檢驗,得到協(xié)整方程為
et=A1-1.171 016A2-0.257 21
(10)
式中:et為協(xié)整殘差;A1為一階幅值序列;A2為二階幅值序列。再對協(xié)整殘差作ADF檢驗,得到殘差的t統(tǒng)計量為-6.652,小于5%顯著性水平對應的臨界值,可以判斷兩序列之間存在協(xié)整關系。將余下6組幅值序列代入?yún)f(xié)整方程中,對比殘差的變化,結(jié)果如圖10所示。

圖10 不同板間預緊力的協(xié)整殘差Fig.10 Cointgration residual of different preload between plates
圖10中,縱向虛線表示不同板間預緊力工況的分界線。當板間預緊力小于35 N·m時,由于預緊力損失較小,板間螺栓輕微松動,兩幅值序列之間的協(xié)整關系改變,原本的協(xié)整關系不再適用,殘差開始向上偏移,部分超出控制線;當板間預緊力小于25 N·m時,板間螺栓發(fā)生明顯松動,殘差大量超出控制線范圍;隨著預緊力損失的增大,協(xié)整殘差的偏離距離也隨之增大,說明協(xié)整殘差不僅可以去除邊界條件的影響,而且可用于判斷板間螺栓預緊力狀態(tài)。將各個工況下的殘差代入式(9),計算得到IP,構(gòu)建基于協(xié)整殘差的板間預緊力損失評估模型
IP=0.006 34×LP-0.006 81
(11)
式中,LP為板間預緊力損失。隨著預緊力損失的增大,IP值也隨之增大,能夠有效識別預緊力狀態(tài),但在板間預緊力損失為10 N·m時,可能由于激振器過載導致誤差較大,如圖11所示。

圖11 基于協(xié)整殘差的板間預緊力損失評估模型Fig.11 Evaluation model of the bolt preloading loss based on cointegration residuals
螺栓連接結(jié)構(gòu)的邊界條件會對螺栓預緊力的識別造成影響,導致螺栓松動的誤判。本文基于協(xié)整檢驗處理旁瓣信號幅值,消除邊界條件的影響,構(gòu)建預緊力狀態(tài)評估模型。通過螺栓連接懸臂鋼板在邊界固定力變化工況下的VAM實驗,發(fā)現(xiàn)邊界固定力變化會使傳統(tǒng)的預緊力指標上下浮動,造成不同板間螺栓工況的預緊力指標數(shù)值大量交叉。但頻譜中,高頻信號兩側(cè)旁瓣幅值依次遞減,且具有相同的變化趨勢。
本文考慮邊界條件影響,選取了非平穩(wěn)的一階、二階旁瓣幅值序列為研究對象,進行協(xié)整檢驗,通過協(xié)整向量得到平穩(wěn)的協(xié)整殘差。結(jié)果表明,損傷發(fā)生后,序列不再滿足之前的協(xié)整關系,導致協(xié)整殘差偏移,驗證了協(xié)整處理邊界條件方法的有效性。基于所求的協(xié)整殘差,建立了具有魯棒性的預緊力指標IP,得到預緊力狀態(tài)評估模型,可在結(jié)構(gòu)長期監(jiān)測中消除邊界條件的影響,更加準確地識別螺栓預緊狀態(tài)。目前本文的方法僅在單螺栓結(jié)構(gòu)中得到驗證,針對復雜螺栓連接結(jié)構(gòu),需首先判斷松動螺栓位置,進而研究其預緊力大小,在后續(xù)工作中,將結(jié)合VAM信號的信息熵對此開展進一步的研究。