郭 建,羅孝俊,管克蘭,呂銀知,曾艷紅,麥碧嫻
石化工業園員工PAHs的皮膚暴露及健康風險
郭 建1,2,羅孝俊1*,管克蘭1,2,呂銀知1,2,曾艷紅1,麥碧嫻1
(1.中國科學院廣州地球化學研究所,有機地球化學國家重點實驗室與廣東省資源環境利用與保護重點實驗室,廣東 廣州 510640;2.中國科學院大學,北京 100049)
本文選取典型石化城市茂名市某石化工業園30名員工(男女各15名)進行裸露(額頭、手掌)和遮蔽皮膚部位(前臂、小腿)的擦拭采樣,通過氣相色譜-質譜聯用儀(GC-MS)測定了擦拭樣品中15種多環芳烴的濃度(∑15PAHs)并計算了經皮膚暴露和手-口接觸的人體暴露劑量.結果表明,皮膚樣品中∑15PAHs的濃度范圍為21~1.9×104ng/m2,不同部位間PAHs濃度存在顯著性差異(<0.01),表現為額頭>手掌>前臂>小腿.PAHs以3~4環PAHs組成為主.男女性別間PAHs組成無顯著差異,∑15PAHs女性高于男性,但無統計差異性.經皮膚吸收的PAHs日暴露劑量(DADderm)女性[41ng/(kg×d)]顯著高于男性[28ng/(kg×d)].手-口接觸暴露劑量[0.34ng/(kg×d)]相比于皮膚暴露劑量[34ng/(kg×d)]可忽略不計.皮膚暴露劑量主要來自裸露部位皮膚的貢獻(88%).風險評價結果表明,PAHs的皮膚暴露和手-口接觸暴露不存在明顯的非致癌風險;但約7%員工的皮膚致癌風險高于可接受的水平(10-4),表明存在一定的PAH致癌風險.
多環芳烴;石化員工;皮膚暴露;健康風險
進入環境中的多環芳烴(PAHs)可通過消化道、呼吸道和皮膚等各種途徑進入人體,并對人體健康產生潛在的負面效應,從而對人體的呼吸系統、循環系統、神經系統、肝臟、腎臟等造成損傷[1-4].目前有16種PAHs被美國環境保護署(USEPA)列為優先控制的有機污染物.
當前,呼吸系統暴露和飲食暴露是人體污染物暴露研究的重點.研究表明,成人對于PM2.5中PAHs的呼吸暴露風險高于兒童,人們在冬季的PAHs呼吸暴露風險高于其他季節[5-6];燃煤或燃柴的家庭居民,因PAHs呼吸暴露可能存在較高的致癌風險[7].許多流行病學研究表明,人類的部分癌癥與飲食相關,包括通過飲食攝入PAHs[8-10].食物中的PAHs水平取決于其所處環境的PAHs水平以及食物自身的特性[11].皮膚暴露也是人體污染物暴露的一個重要途徑[12-14].皮膚吸附有機污染物的途徑包括接觸含污染物的介質(如附著于皮膚表面的顆粒物)、直接從空氣中以及衣物中吸收等.通過對戶外燒烤人群的PAHs暴露研究發現[15],皮膚對于低分子PAHs的攝入大于呼吸攝入,通過皮膚暴露排出的羥基PAHs與通過皮膚和呼吸聯合暴露排出的劑量相當.對于有機污染物的皮膚暴露劑量更多是通過環境中污染物濃度的測定,然后應用模型對皮膚暴露的劑量進行估算[16-17].當前,關于人體皮膚擦拭樣品及皮膚模擬吸收的研究逐漸增加[18].然而,與飲食暴露和呼吸系統暴露的研究相比,直接利用人體皮膚擦拭樣品研究PAHs皮膚暴露的研究仍較少.精細化不同皮膚部位的暴露貢獻研究仍不多見,皮膚暴露與手-口接觸暴露的相對重要性仍存有爭議[19].
本研究以中國南方重要的石油化工基地茂名市一個典型的石化工業園區為研究區域,以該園區的員工為研究對象,通過對員工不同部位皮膚擦拭樣品的分析,以期了解人體皮膚不同部位PAHs的暴露情況,計算皮膚吸收與手-口接觸的人體PAHs暴露劑量,并評價其健康風險,為全面評價人體PAHs暴露及風險提供參考.
于2020年12月下旬,在茂名市某石化工業園區對30名從業時間1a以上的員工(男女各15名)進行采樣.采樣前,使用索氏抽提法(二氯甲烷)對采樣紗布塊(7.5cm×7.5cm)凈化72h,紗布經真空干燥后,用錫箔紙包裹緊密并密封于樣品袋中,置于零下20℃保存備用.采樣人員配戴一次性手套,用異丙醇將已凈化的紗布浸泡至濕潤狀態,每個采樣部位使用1塊紗布,用紗布正反面分別擦拭采樣部位的表皮膚3次,再迅速將紗布塊用錫箔紙包裹緊密并密封于樣品袋內,置于零下20℃保存.同時采集場地空白對照樣品(將紗布置于空氣中約20s替代擦拭操作).使用軟尺測量采樣對象的額頭、手臂、小腿采樣部位的表面積數據;使用坐標紙計算手掌采樣部位表面積;測量采樣對象的身高和體重.要求被采樣者采樣前2h內不能水洗取樣部位.

使用氣相色譜-質譜聯用儀(SHIMADZU GC- MS-QP2020NX),在電子轟擊離子源(EI)及離子檢測(SIM)模式下進行樣品分析.載氣為高純氦氣,流速為1mL/min.進樣口溫度為290℃,離子源溫度為230℃,傳輸線溫度為280℃.在高壓不分流模式下自動進樣器進樣量為1μL.目標化合物使用色譜柱Rtx-5MS(30m×0.25mmID×0.25um,SHIMADZU)進行分離.色譜柱升溫程序如下:初始溫度80℃,保留5min,以4℃/min升溫至310℃,保留15min.16種目標PAHs與分子標志物的儀器檢出限為0.08~6.6ng.因萘具有較強的揮發性導致較低的回收率,萘不納入后續數據處理分析,本研究目標化合物為15種 PAHs(見表1),均屬于US EPA公布優先控制的PAHs污染物.



石化員工體表皮膚PAHs的每日平均攝入量(DADderm) 采用滲透系數模型進行計算,具體見式(1).PAHs的手-口接觸每日平均攝入量(DADoral)按照式(2)進行計算[12,16,20-22].


式中:face、hand、arm和others分別為頭頸部、雙手、雙上臂及雙前臂、小腿和其他部位皮膚表面的PAHs濃度,ng/m2;face、hand、armothers分別為頭頸部、雙手、雙上臂及雙前臂、小腿和其他部位的皮膚表面積,m2;p-l指皮膚表面脂質層PAHs的滲透系數,μm/h,其為化合物分子量與辛醇-水分配系數的函數,具體計算過程參見文獻[16];ED指暴露時間,h/d,按員工的實際工作時間取值8h/d;m指皮膚表面脂層厚度,μm,取值1.3μm[21];TE指轉換率,取值50%[23];SAC指接觸手掌表面積的比例,取值10%[24];EF指暴露頻率,contacts/d,相關文獻取值24contacts/d[23],本文按員工實際暴露時間取值8contacts/d;BW指體重,kg.
人體體表總面積參照文獻[25],使用身高及體重數據進行計算,見式(3)和式(4).

(4)
式中:w-male和w-female分別為男性和女性人體總表面積,m2;指身高,cm.其他部位表面積根據《人體損傷致殘程度分級》的“體表面積的九分估算法”進行計算[26].其中頭頸部占人體體表總表面積的9%,濃度采用額頭的PAHs濃度;雙上臂及雙前臂占人體體表總表面積的13%,濃度采用前臂的PAHs濃度;雙手占人體體表總表面積的5%,濃度采用手掌的PAHs濃度;其他部位(前軀、后軀、雙大腿、雙小腿、雙足、臀部、會陰等)占人體體表總表面積的73%,濃度采用小腿的PAHs濃度.
1.6.1 非致癌風險 通過非致癌風險的風險商值(HQs)和風險指數(HI)評價石化員工PAHs的皮膚和手-口接觸暴露健康風險,見式(5)和式(6)[27].


式中:RfDderm-i和RfDoral-i分別代表PAHs單體的皮膚和手-口接觸暴露的參考劑量,ng/(kg·d);EF指每年暴露的天數,根據員工實際工作天數取值,312d; AT指每年的總天數,取值365d;HI為不同PAHs單體風險商值之和,當HI值<1時,表明石化員工不存在明顯的非致癌風險;當HI值>1時,表明石化員工可能存在潛在的非致癌影響.因缺乏部分PAHs的RfDderm和RfDoral數據,本研究只選用苊、芴、蒽、熒蒽、芘和苯并[a]芘6種PAHs進行石化員工的非致癌健康風險評價.
1.6.2 致癌風險 采用苯并[a]芘毒性當量因子計算PAHs各單體的等效致癌毒性濃度(TEC),評估 PAHs 的皮膚暴露致癌風險,見式(7)[27]:
TEC=C′TEF(7)

PAHs 的皮膚暴露致癌風險(CSR)和手-口接觸暴露致癌風險(COR)見式(8)和式(9):


式中:CSF代表基于苯并[a]芘的皮膚攝入致癌斜率因子,取值37.47×10-6[ng/(kgBW×d)][29],EF取值312d,AT取值365d;DADderm-BaP、DADoral-BaP分別代表DADderm、DADoral的苯并[a]芘當量總濃度. USEPA 將致癌風險劃分為:可接受致癌風險水平(Risk<10-4),不可接受致癌風險水平(Risk310-4)[30].
由表1可見,除DahA及BghiP在樣品中未檢出外,其他13種PAHs均有不同程度的檢出.3~4環PAHs的檢出率和濃度均高于5~6環PAHs,這與李大雁等對某大型石化企業鄰近工業區大氣沉降中的PAHs研究結果一致[31].皮膚擦拭樣品∑15PAHs的濃度范圍為21~1.9×104ng/m2,無論男女,不同部位之間的∑15PAHs濃度均存在顯著性差異(單因素因子分析,<0.01),表現為額頭>手掌>前臂>小腿(圖1),其濃度范圍分別為3.6×103~1.9×104,170~ 1.7×103,49~1.6×103,21~490ng/m2,相應的幾何平均濃度為6.7×103,630,200,91ng/m2.石化員工裸露皮膚部位的S15PAHs濃度顯著高于衣物遮蔽部位,S15PAHs濃度最高部位(額頭)與濃度最低部位(小腿)之間的幾何平均濃度相差約74倍.由此可見,直接裸露的皮膚更容易吸附PAHs,衣物可有效阻隔和減少皮膚對PAHs的吸附.有研究表明,潔凈的衣物可有效減少氣相半揮發性有機污染物(SVOCs)的暴露,相反,受污染的衣物可放大氣相SVOCs的暴露[32]. Gong等[33]對人體皮膚擦拭樣品中鄰苯二甲酸酯濃度進行研究,結果表現為手掌>手背>前臂3額頭.Cao等[12]對多氯聯苯、多溴聯苯醚的皮膚擦拭樣品的研究也發現手掌的濃度要高于額頭,這與本研究正相反.鄰苯二甲酸酯、多溴聯苯醚及多氯聯苯都是人為制造的工業品,添加于很多工業品或者商用品中.手與物品接觸是該類化合物重要的暴露途徑.而PAHs不添加于任何工業品中,缺乏這一暴露途徑,這可能是其手掌濃度相對較低的原因.國外學者對鋪路工人手掌部位PAHs濃度的檢測結果為7.8×104ng/m2(16種PAHs)[34]、2.2×104ng/m2(9種PAHs)[35],比石化員工手掌部位的PAHs濃度高約2個數量級.

表1 15種PAHs的檢出率及濃度范圍
注: MDL為方法檢出限(method detection limit).
男女性∑15PAHs濃度范圍分別為33~1.3×104, 21~1.9×104ng/m2,相應的幾何平均濃度為490, 570ng/m2.同一部位樣品的∑15PAHs濃度都表現為女性>男性(圖1),但不存在統計學意義上的顯著性(額頭:= 0.19,手掌:= 0.52,前臂:= 0.20,小腿:= 0.48).

圖1 不同采樣部位及不同性別間的PAHs濃度
箱圖方框的下端和上端分別是數據的第25位和第75位百分位數;方框中的橫線為中位數;圓圈代表極端值

如圖2,對不同環數PAHs占總PAHs的比例分析可知,男性和女性,不同部位之間PAHs的組成變異性均較大,總體表現為3環>4環>5~6環,比例分別為15%~83%,4%~73%和 30名員工15種PAHs的體表皮膚每日平均攝入量(DADderm)及經手-口接觸每日平均攝入量(DADoral)范圍分別為17~69,0.10~0.92ng/(kg·d),幾何平均值分別為34,0.34ng/(kg·d),兩者相差約100倍,由此可見,相對PAHs的皮膚暴露途徑而言,經手-口接觸暴露的劑量可忽略不計. 進一步對員工裸露皮膚部位(頭頸部、手掌)和衣物遮蔽皮膚部位的DADderm分析可知,裸露部位和遮蔽部位的DADderm范圍分別為16~65,0.86~ 14ng/(kg·d),幾何平均值分別為29,3.6ng/(kg·d),裸露部位的DADderm顯著高于遮蔽部位(<0.01),兩者的貢獻率分別為88%和12%.由此可見,雖然人體遮蔽部位的表面積比例(86%)大于裸露部位(14%),裸露部位仍是人體皮膚攝入PAHs的主要部位.這與多氯聯苯(PCBs)、多溴聯苯醚(PBDEs)污染物的暴露部位貢獻明顯不同,PCBs和PBDEs在遮蔽部位的貢獻大于裸露部位[12].額頭PAH濃度高于其他部位PAH濃度幾個數量級是造成這種差異的主要原因.因此、臉部清潔應是有效降低人體皮膚PAH攝入的有效方式. 對30名員工不同性別之間的DADderm及DADoral分析可知(圖3),DADderm及DADoral均表現為女性>男性.其中,男女性DADderm的范圍分別為17~53,27~69ng/(kg·d),幾何平均值分別為28,41ng/ (kg·d),兩者間存在顯著性差異(<0.01);男女性DADoral的范圍分別為0.10~0.92,0.10~0.87ng/(kg·d),幾何平均值分別為0.32,0.36ng/(kg·d),兩者間不存在顯著性差異(= 0.44). 2.3.1 非致癌風險評價 30名石化員工6種PAHs的HI范圍為9.5×10-5~1.2×10-2,說明石化員工的皮膚和手-口接觸暴露不存在明顯的非致癌風險,這與國外學者對于石化工業排放的揮發性有機化合物(VOCs)導致的非致癌風險研究結果一致(HI< 1)[36-37].進一步對30名石化員工不同類別HI值總和的貢獻率分析可知,皮膚暴露的HI值總和(HIderm)和手-口接觸暴露的HI值總和(HIoral)對HItotal的貢獻率分別為97.2%和2.8%(表2);裸露皮膚部位的HI值總和(HIbare)和衣物遮蔽皮膚部位的HI值總和(HIcover)對HIderm的貢獻率分別為94.7%和5.3%,兩者之間存在顯著性差異(<0.01);男性皮膚HI值總和(HIderm-male)和女性皮膚HI值總和(HIderm-female)對HIderm的貢獻率分別為51.9%和48.1%,兩者之間不存在顯著性差異(=0.89);男性手-口接觸暴露的HI值總和(HIoral-male)和女性手-口接觸暴露的HI值總和(HIoral-female)對HIoral的貢獻率分別為46.0%和54.0%,兩者之間不存在顯著性差異(= 0.74). 2.3.2 致癌風險評價 30名石化員工15種PAHs的TEC范圍為1.1~510ng/m2,幾何平均值為30ng/m2.人體裸露和遮蔽皮膚部位的TEC范圍分別為6.7~3.6×103和0.038~22ng/m2,幾何平均值分別為160和2.5ng/m2,兩者之間存在顯著性差異(<0.01);男性和女性樣品的TEC范圍分別為1.1~410和3.9~510ng/m2,幾何平均值均為30ng/m2,兩者之間不存在顯著性差異(=0.94).30名石化員工3~6環PAHs的TEC值總和貢獻率分別為0.5%、0.5%、98.5%和0.5%(圖4).濃度貢獻率只有20.9%的5環PAHs貢獻了98.5%的致癌風險,其中濃度貢獻率只有9.3%的單體BaP貢獻了90.8%的致癌風險,這與珠江三角洲城市大氣中PAHs的致癌風險相似,濃度貢獻率約20%的5環PAHs貢獻了超過70%的致癌風險[38]. 表2 不同暴露途徑、暴露部位及性別的HI值貢獻率 30名石化員工15種PAHs的CSR范圍為9.0×10-7~1.3×10-4,CSR的平均值為2.3×10-5,其中處于可接受致癌風險水平范圍的員工比例為93%,處于不可接受致癌風險水平范圍的員工比例為7%.男性和女性的CSR范圍分別為9.0×10-7~1.1×10-4和2.0×10-6~1.3×10-4,兩者之間不存在顯著性差異(= 0.94).30名石化員工15種PAHs的COR范圍為4.0× 10-9~4.7×10-6,COR的平均值為7.5×10-7,均處于可接受的致癌風險水平范圍. 國內外的研究結果表明,石化園區比非石化園區的PAH暴露與致癌風險水平普遍較高.如中國南方某石化工業園區周邊0.5km內居民的PAHs呼吸暴露致癌風險為1.2×10-4[39],馬來西亞某石化工業園區5km內的3所小學兒童吸入PAHs的致癌風險為2.2×10-6[40],中國長江三角洲[41],中國臺灣[42],西班牙加泰羅尼亞[43],韓國大邱[44]等地區石化工業排放的VOCs致癌風險分別為1.1×10-5,9.3×10–5~1.7×10–4, 2.2×10?5~4.4×10?4,2.6×10?4.而非石化園區,如中國南方農村居民冬季家庭污染氣體中PAHs的致癌風險為8.1×10-6[45],中國寶雞市冬季PM2.5中成年人PAHs暴露的致癌風險為3.8×10-6[46],馬來西亞某石化工業園區20km外的3所小學兒童吸入PAHs的致癌風險為3.0×10-9[40];美國洛杉磯城市通勤者在路途中PAHs暴露的致癌風險為1.2×10-9[47].因此,石化工業排放的PAHs污染問題應當引起重視,受其影響的人群應注意做好個人防護措施,如盡量減少裸露的皮膚面積,注意個人衛生,勤洗手洗臉洗澡,及時更換臟衣物等. 圖4 石化員工各環PAHs的濃度貢獻率與TEC貢獻率 3.1 皮膚擦拭樣品中∑15PAHs濃度表現為額頭(6.7×103ng/m2)>手掌(630ng/m2)>前臂(200ng/m2)>小腿(91ng/m2);裸露皮膚部位的∑15PAHs濃度顯著高于衣物遮蔽皮膚部位,說明直接暴露的皮膚更容易吸附PAHs,衣物可有效阻隔和降低皮膚對PAHs的吸附;不同性別樣品的S15PAHs濃度表現為女性[41ng/(kg×d)]>男性[28ng/(kg×d)],但不存在顯著性. 3.2 石化員工15種PAHs的DADderm比DADoral高約100倍,相對PAHs的皮膚暴露途徑而言,手-口接觸暴露的劑量可忽略不計.兩性間的DADderm及DADoral均表現為女性>男性,但只有兩性間的DADderm存在顯著性差異(<0.01). 3.3 皮膚暴露對員工不存在明顯的非致癌風險,但約有7%的員工皮膚暴露導致皮膚癌的風險超過可接受水平,表明存在致癌風險,而手-口接觸暴露途徑的致癌風險均在可接受水平. [1] 劉明洋,李會茹,宋愛民,等.環境和人體中氯代/溴代多環芳烴的研究進展—污染來源,分析方法和污染特征 [J]. 中國環境科學, 2021, 41(4):1842-1855. Liu M Y, Li H R, Song A M, et al. A review of chlorinated/brominated polycyclic aromatic hydrocarbons in the environment and human: sources, analysis methods and pollution characteristics [J]. China Environmental Science, 2021,41(4):1842-1855. [2] Shaw G R, Connell D W. DNA adducts as a biomarker of polycyclic aromatic hydrocarbon exposure in aquatic organisms: relationship to carcinogenicity [J]. Biomarkers, 2001,6(1):64-71. [3] 付建平,趙 波,黎玉清,等.廢舊輪胎翻新過程中多環芳烴排放及健康風險 [J]. 環境科學, 2018,39(6):2963-2970. Fu J P, Zhao B, Li Y Q, et al. Discussion of emissions and health risk of polycyclic aromatic hydrocarbons (PAHs) from the retreading process of waste tires [J]. Environmental Science, 2018,39(6):2963- 2970. [4] 張 晗,陳 昱,呂占祿,等.溝塘水質及其周邊淺層地下水PAHs的風險評價 [J]. 中國環境科學, 2021,41(8):3808-3815. Zhang H, Cheng Y, Lv Z L, et al.Risk assessment of PAHs in ditch pond water and its surrounding shallow groundwater [J]. China Environmental Science, 2021,41(8):3808-3815. [5] 賀博文,聶賽賽,李儀琳,等.承德市PM2.5中多環芳烴的季節分布特征、來源解析及健康風險評價 [J]. 環境科學, 2022,43(5):2343- 2354. He B W, Nie S S, Li Y L, et al. Seasonal distribution characteristics, source analysis, and health risk evaluation of PAHs in PM2.5in Chengde [J]. Environmental Science, 2022,43(5):2343-2354. [6] Xia Z, Duan X, Tao S, et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Environmental Pollution, 2013,173:150-156. [7] 彭 彬,蘇玉紅,杜 偉,等.湖北農村燃柴和燃煤家庭大氣多環芳烴污染特征和呼吸暴露風險 [J]. 生態毒理學報, 2018,13(5):171-181. Peng B, Su Y H, Du W, et al. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei [J]. Asian Journal of Ecotoxicology, 2018,13(5):171-181. [8] 于紫玲,林 欽,孫閏霞,等.海南島沿海牡蠣體中PAHs的時空分布及其健康風險評價 [J]. 中國環境科學, 2015,35(5):1570-1578. Yu Z L, Lin Q, Sun R X, et al. Spatial-temporal distribution and health risk assessment of polycyclic aromatic hydrocarbons in oysters along the coast of Hainan Island. [J]. China Environmental Science, 2015, 35(5):1570-1578. [9] Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer [J]. Nutrition Research, 2013,33(12):983-994. [10] Harris K L, Banks L D, Mantey J A, et al. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis [J]. Expert. Opin. Drug. Metab. Toxicol., 2013,9(11): 1465-1480. [11] Martorell I, Perello G, Marti-CID R, et al. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend [J]. Environment International, 2010,36(5):424-432. [12] Cao Z, Chen Q, Zhu C, et al. Halogenated organic pollutant residuals in human bared and clothing-covered skin areas: source differentiation and comprehensive health risk assessment [J]. Environmental Science & Technology, 2019,53(24):14700-14708. [13] Xu Y, Cohen Hubal E A, Little J C. Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: sensitivity, uncertainty, and implications for biomonitoring [J]. Environmental Health Perspectives, 2010,118(2):253-258. [14] Weschler C J, Nazaroff W W. Dermal uptake of organic vapors commonly found in indoor air [J]. Environmental Science & Technology, 2014,48(2):1230-1237. [15] Lao J Y, Xie S Y, Wu C C, et al. Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes [J]. Environmental Science & Technology, 2018,52(15):8330-8338. [16] Weschler C J, Nazaroff W W. SVOC exposure indoors: fresh look at dermal pathways [J]. Indoor Air, 2012,22(5):356-377. [17] Salthammer T, Zhang Y, Mo J, et al. Assessing human exposure to organic pollutants in the indoor environment [J]. Angewandte Chemie International Edition, 2018,57(38):12228-12263. [18] Abdallah M A, Pawar G, Harrad S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants [J]. Environment International, 2015,84: 64-70. [19] Rantakokko P, Kumar E, Braber J, et al. Concentrations of brominated and phosphorous flame retardants in Finnish house dust and insights into children's exposure [J]. Chemosphere, 2019,223:99-107. [20] Liu X T, Yu G, Cao Z G, et al. Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption [J]. Environment International, 2017,98:113-119. [21] Nazzaro-Porro M, Passi S, Bonifortil, et al. Effects of aging on fatty acids in skin surface lipids [J]. The Journal of investigative dermatology, 1979,73(1):112-117. [22] 王 喆,劉少卿,陳曉民,等.健康風險評價中中國人皮膚暴露面積的估算 [J]. 安全與環境學報, 2008,(4):152-156. Wang Z, Liu S Q, Chen X M, et al. Estimates of the exposed dermal surface area of Chinese in view of human health risk assessment [J]. Journal of Safety and Environment, 2008,(4):152-156. [23] Stapleton H M, Kelly S M, Allen J G, et al. Measurement of polyhrominated diphenyl ethers on hand wipes: Estimating exposure from hand-to-mouth contact [J]. Environmental Science & Technology, 2008,42(9):3329-3334. [24] Zartarian V G, Xue J P, Ozkaynak H, et al. A probabilistic arsenic exposure assessment for children who contact CCA-treated playsets and decks, part I: Model methodology, variability results, and model evaluation [J]. Risk Analysis, 2006,26(2):515-531. [25] 劉國華,盛迪曄.基于三維測量的人體表面積計算公式的比較 [J]. 解剖學報, 2019,50(5):627-632. Liu G H, Sheng D Y. Comparison of human body surface area calculation formulas with three-dimensional anthropometry [J]. Acta Anatomica Sinica, 2019,50(5):627-632. [26] 最高人民法院,最高人民檢察院,公安部,等.人體損傷致殘程度分級[M]. 北京:中國法制出版社, 2022:51-53. Supreme People's Court, Supreme People's Procuratorate, Ministry of Public Security, et al. Grading of human injury and disability [M]. Beijing: China Legal Publishing House, 2022:51-53. [27] T/CSES 40-2021 多環芳烴環境健康風險評估技術規范 [S]. T/CSES 40-2021 Technical specification for environmental health risk assessment of polycyclic aromatic hydrocarbons [S]. [28] Nisbet I C T, Lagoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992,16(3):290-300. [29] Hussain M, Rae J, Gilman A, et al. Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons [J]. Archives of Environmental Contamination Toxicology, 1998,35(3):527-531. [30] Zhang Y, Zheng H, Zhang L, et al. Fine particle-bound polycyclic aromatic hydrocarbons (PAHs) at an urban site of Wuhan, central China: Characteristics, potential sources and cancer risks apportionment [J]. Environmental Pollution, 2019,246:319-327. [31] 李大雁,齊曉寶,吳 健,等.大型石化企業鄰近區域大氣沉降中多環芳烴賦存特征及源解析 [J]. 環境科學, 2021,42(1):106-113. Li D Y, Qi X B, Wu J, et al. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons in atmospheric deposition in areas adjacent to a large petrochemical enterprise [J]. Environmental Science, 2018,42(1):106-113. [32] Beko G, Morrison G, Weschler C J, et al. Measurements of dermal uptake of nicotine directly from air and clothing [J]. Indoor Air, 2017,27(2):427-433. [33] Gong M, Weschler C J, Zhang Y. Impact of clothing on dermal exposure to phthalates: observations and insights from sampling both skin and clothing [J]. Environmental Science & Technology, 2016,50(8):4350-4357. [34] Vaananen V, Hameila M, Kalliokoski P, et al. Dermal exposure to polycyclic aromatic hydrocarbons among road pavers [J]. The Annals of Occupational Hygiene, 2005,49(2):167-178. [35] Q Z. Biomonitoring workers exposed to polycyclic aromatic hydrocarbons in asphalt during road paving [D]. USA, University of Cincinnati, 1997. [36] Thepanondh S, Varoonphan J, Sarutichart P, et al. Airborne volatile organic compounds and their potential health impact on the vicinity of petrochemical industrial complex [J]. Water, Air, & Soil Pollution, 2010,214(1-4):83-92. [37] Hsu C Y, Chiang H C, Shie R H, et al. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk [J]. Environmental Pollution, 2018,240:95-104. [38] 鄒昃灝,趙時真,田樂樂,等.珠江三角洲城市大氣中多環芳烴的污染特征、來源解析和健康風險評估 [J]. 地球化學, 2021,50(6):644- 653. Zou Z H, Zhao S Z, Tian L L, et al. Pollution characteristics, source apportionment, and health risk assessment of priority PAHs in the urban air of the Pearl River Delta [J]. Geochimica, 2021,50(6):644- 653. [39] 夏 凌.石化區環境空氣中多環芳烴的健康風險評估及其對周邊居民內暴露的影響 [D]. 廣州:暨南大學, 2014. Xia L. Health riskassessment of atmospheric PAHs and its impact on internal exposurein the residents around a petrochemical area [D]. Guangzhou: Jinan University, 2014. [40] Sopian N A, Jalaludin J, Abu Bakar S, et al. Exposure to particulate PAHs on potential genotoxicity and cancer risk among school children living near the petrochemical industry [J]. International Journal of Environmental Research and Public Health, 2021,18(5):2575-2595. [41] Mo Z, Shao M, Lu S, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015,533:422-431. [42] Chen M-J, Lin C-H, Lai C-H, et al. Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex [J]. Aerosol and Air Quality Research, 2016,16(8):1954-1966. [43] Ramirez N, Cuadras A, Rovira E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site [J]. Environment International, 2012,39(1):200-209. [44] Shuai J, Kim S, Ryu H, et al. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea [J]. BMC Public Health, 2018,18(1):528. [45] Du W, Chen Y, Zhu X, et al. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China [J]. Atmospheric Environment, 2018,191: 1-8. [46] 張海東,孔祥華.寶雞市冬季PM2.5中多環芳烴污染及健康風險評價 [J]. 四川環境, 2020,39(3):51-58. Zhang H D, Kong X H. PAHs Pollution and health risk assessment of PM2.5in Baoji City in winter [J]. Sichuan Environment, 2020,39(3): 51-58. [47] Lovett C, Shirmohammadi F, Sowlat M H, et al. Commuting in Los Angeles: cancer and non-cancer health risks of roadway, light- rail and subway transit routes [J]. Aerosol and Air Quality Research, 2018,18(9):2363-2374. A study on employees’ skin exposure to polycyclic aromatic hydrocarbons and health risk in a petrochemical industrial park. GUO Jian1,2, LUO Xiao-jun1*, GUAN Ke-lan1,2, LV Yin-zhi1,2, ZENG Yan-hong1, MAI Bi-xian1 (1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)., 2022,42(11):5427~5435 In the study, skin wipe samples were collected from four typical skin parts (forehead, palm, forearm and shank) of 30 volunteers (15 men and 15 women), who work in a Petrochemical Industrial Park in Maoming City (a typical petrochemical city). The concentrations of 15 polycyclic aromatic hydrocarbons (∑15PAHs) in wiping samples were determined by gas chromatography-mass spectrometry (GC-MS), and the human exposure doses through skin exposure and hand-mouth contact were calculated. The concentration of Σ15PAHs in skin samples ranged from 21 to 1.9×104ng/m2. The PAH concentrations exhibited significant differences among different skin parts (<0.01) with the order of forehead > palm > forearm > shank. PAHs are mainly composed of 3~4rings. Although no statistical difference was observed in ∑15PAHs between female and male, the daily dermal absorption doses of PAH (DADderm) was significantly higher in female [41ng/(kg×d)] than male [28ng/(kg×d)]. The hand-mouth exposure dose [0.34ng/(kg×d)] was negligible to compare with the dermal absorption dose [34ng/(kg×d)]. The bared skins contribute to 88% of dermal absorption dose. There was no obvious non-carcinogenic risk but risks of skin cancer were higher than the acceptable level (1×10-4) for 7% staff, indicating potential skin cancer risk. polycyclic aromatic hydrocarbons;petrochemical employees;skin exposure;health risk X511 A 1000-6923(2022)11-5427-09 郭 建(1984-),男,廣東茂名人,中國科學院廣州地球化學研究所(中國科學院大學)博士研究生,主要研究方向為有機污染物的暴露評估及健康風險評價.發表論文6篇. 2022-04-26 國家自然科學基金資助項目(41877386,41931290);廣東省科技項目(2020B1212060053,2019B121205006) * 責任作者, 研究員, luoxiaoj@gig.ac.cn2.2 PAHs的皮膚及手-口接觸暴露劑量

2.3 PAHs的健康風險評價


3 結論