999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The least eigenvalue of the graph

2023-01-03 07:48:04GaoRunxiaYuGuidongCaiGaixiang
純粹數學與應用數學 2022年4期

Gao RunxiaYu GuidongCai Gaixiang

(1.Department of Social Undertakings,Anqing Vocational and Technical College,Anqing 246133,China;2.School of Mathematics and Physics,Anqing Normal University,Anqing 246133,China)

Abstract:Let G be a simple graph.The adjacency matrix is denoted by G.The least eigenvalue of A(G),denoted by λmin(G),is called the least eigenvalue of G.In this paper we first establish the relations between the number of edges and the least eigenvalue of the adjacency matrix of the graph,and then give some spectral conditions for a graph having Hamiltonian paths or Hamiltonian cycles,or being Hamilton-connected,or being traceable from every vertex in terms of the least eigenvalue of the adjacency matrix of the graph.This provides an effective method for us to study some properties for a graph.

Keywords:least eigenvalue,Hamiltonian path,Hamiltonian cycle,Hamilton-connected graph

1 Introduction

LetG=(V,E)be a simple graph of ordernwith vertex set

and edge setE=E(G).LetKnbe the complete graph of ordern.WriteKn?1+vforKn?1together with an isolated vertex,Kn?1+eforKn?1with a pendent edge,andKn?1+e+e′obtained fromKn?1+vby adding two edges betweenvand two vertices ofKn?1.The join ofGandH,denotedG∨H,is the graph obtained from disjoint union ofGandHby adding edges joining every vertex ofGto every vertex ofH.

The degree matrix ofGis denoted byD(G)=diag(dG(v1),dG(v2),···,dG(vn)),wheredG(v)denotes the degree of a vertexvin the graphG.The adjacency matrix ofGis defined to be a matrixA(G)=[aij]of ordern,whereaij=1 ifviis adjacent tovj,andaij=0 otherwise.The signless Laplacian matrix ofGis defined by

Obviously,A(G),Q(G)are real symmetric matrix.So their eigenvalues are real number and can be ordered.The largest eigenvalue ofA(G),denoted byλ(G),is said to be the spectral radius ofG.The least eigenvalue ofA(G),denoted byλmin(G),is said to be the least eigenvalue ofG.The unit eigenvector according toλmin(G)is said to be the first eigenvector ofG.The largest eigenvalue ofQ(G),denoted byq(G),is said to be the signless Laplacian spectral radius ofG.

LetGbe a simple graph of ordern.A Hamiltonian cycle of the graphGis a cycle of orderncontained inG,and a Hamiltonian path ofGis a path of orderncontained inG.A graph is traceable from every vertex if it contains a Hamilton path from every vertex.A graph is said to be Hamiltonian if it contains Hamiltonian cycles,and is said to be Hamilton-connected if every two vertices ofGare connected by a Hamiltonian path.The problem of deciding whether a graph is Hamiltonian is one of the most difficult classical problems in graph theory.Indeed,determining whether a graph is Hamiltonian is NP-complete.

Recently,the spectral theory of graphs has been applied to this problem.Reference[1]gives sufficient conditions for a graph to be traceable or Hamiltonian in terms of the spectral radius of the adjacency matrix of the graph or its complements.Reference[2]investigates the spectral radius of the signless Laplacian matrix of the complements of a graph,and present some conditions for the existence of Hamiltonian paths or cycles.The work motivated further research,one may refer to References[3-7].Reference[8]gives some(signless Laplacian)radius spectral conditions for a graph to be Hamiltonconnected.

However,until now there are few results about characterization the Hamiltonicity of a graph by least eigenvalue.In this paper,we still study the Hamiltonicity of a graph.However,we use the least eigenvalue of the adjacency matrix of the graph,and give some conditions for a graph having Hamiltonian paths or cycles,or being Hamilton-connected,or being traceable from every vertex.

2 Main results

主站蜘蛛池模板: 久久夜色撩人精品国产| 在线va视频| 亚洲精品中文字幕无乱码| 免费AV在线播放观看18禁强制| 精品国产自在现线看久久| 久久国产精品娇妻素人| 国产精品入口麻豆| 国产经典免费播放视频| 亚洲精品欧美重口| A级毛片无码久久精品免费| 五月天在线网站| 99精品视频九九精品| 亚洲国产中文欧美在线人成大黄瓜 | 欧美色香蕉| 青青草国产一区二区三区| 亚洲视频免费播放| 亚洲日本精品一区二区| 中文字幕有乳无码| 国产h视频在线观看视频| 亚洲国产精品一区二区第一页免| 日韩在线网址| 国产www网站| 精品一区二区无码av| 成人精品区| 91香蕉视频下载网站| 色偷偷一区二区三区| 久久99国产综合精品1| 久996视频精品免费观看| 久久午夜夜伦鲁鲁片无码免费| 色亚洲成人| 欧美天堂久久| 欧美日本在线| 久久精品人人做人人爽电影蜜月 | 久久亚洲日本不卡一区二区| 免费无码在线观看| 超碰91免费人妻| 高清视频一区| 久久亚洲美女精品国产精品| 国产91精品久久| 国产精品美女网站| 大陆精大陆国产国语精品1024| 谁有在线观看日韩亚洲最新视频| 欧美日韩综合网| 欧美第二区| 日韩精品亚洲一区中文字幕| 激情爆乳一区二区| 四虎永久在线精品影院| 精品亚洲麻豆1区2区3区| 亚洲V日韩V无码一区二区| 国产麻豆91网在线看| 亚洲一区网站| 亚洲欧美综合在线观看| 九一九色国产| 国产精品毛片在线直播完整版| 成人一区在线| 久久中文电影| A级全黄试看30分钟小视频| 特级毛片免费视频| 男女男免费视频网站国产| 精品视频一区二区三区在线播| 欧美日韩一区二区在线免费观看| 国产午夜不卡| 国产麻豆va精品视频| 久久国产精品麻豆系列| 欧美日韩va| 亚洲精品无码av中文字幕| 日本手机在线视频| 精品视频一区在线观看| 成人午夜网址| 91亚洲影院| 国产91九色在线播放| 4虎影视国产在线观看精品| 亚洲欧美日韩动漫| 爱色欧美亚洲综合图区| 精品三级网站| 日本精品影院| 亚洲精品老司机| 韩国自拍偷自拍亚洲精品| 国产美女免费| 国产午夜福利在线小视频| 2020久久国产综合精品swag| 怡春院欧美一区二区三区免费|