999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITELY MANY GAMMA FUNCTIONS*

2023-01-09 10:57:40FengQI祁鋒

Feng QI (祁鋒)

Institute of Mathematics,Henan Polytechnic University,Jiaozuo 454010,ChinaSchool of Mathematical Sciences,Tiangong University,Tianjin 300387,ChinaE-mail: qifeng618@yeah.net;qifen618@gmail.com; qifeng618@hotmail.com

In [17, Theorem 2.1] and [34, Theorem 4.1], the functions

2 A Lemma

For stating and proving our main results, we need a lemma below.

Lemma 2.1 Let

3 Complete Monotonicity

4. for all ρ ≥1 and θ ≥0, the second derivative [ln Fρ,θ(x)]''is a completely monotonic function on (0,∞).

Proof Taking the logarithm on both sides of (1.8) and computing give

By virtue of inequality (2.1), we derive readily that, when ρ ≥1 and θ ≥0, the second derivative [ln Fρ,θ(x)]''is completely monotonic on (0,∞). Hence, the first derivative [ln Fρ,θ(x)]'is increasing on (0,∞).

When ρ=1 and θ =0, it is easy to see that

4 A Simple Review

In this section, we simply review complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.

Let

is a completely monotonic function on (0,∞), where q ∈(0,1), ψq(x) is the q-analogue of the digamma function ψ(x), and λk> 0 for 1 ≤k ≤n. The function in (4.2) is the q-analogue of the one in (4.1).

From the proof of [34, Theorem 4.1], we can conclude that the linear combination

From the proof of [30, Theorem 5.1], we can conclude that if ρ ≤2 and θ ≥0, then the linear combination

5 Remarks

In this section, we mainly mention some conclusions of the paper [51], which was brought to the author’s attention by an anonymous referee.

Remark 5.1 It is well known that the Bernoulli numbers Bncan be generated by

which has a unique minimum and is logarithmically convex on (0,∞). This implies that the introduction of the parameter ρ in the function Fρ,θ(x) is significant and is not trivial.

Remark 5.3This paper is a revised version of the electronic preprint [23], and a companion of the series of papers [18, 20, 30, 34, 35, 40] and the references therein.

AcknowledgementsThe author thanks the anonymous referees for their careful corrections to, valuable comments on, and helpful suggestions regarding the original version of this paper.

主站蜘蛛池模板: 欧美乱妇高清无乱码免费| 在线亚洲小视频| 亚洲AV电影不卡在线观看| 亚洲69视频| 2021国产乱人伦在线播放| 性69交片免费看| 最新国产高清在线| 国产女同自拍视频| 欧美日本在线| 久久国产精品电影| 久久久精品久久久久三级| 亚洲人成网线在线播放va| 国产成人综合在线观看| 欧美成人aⅴ| 国产小视频免费| 99re热精品视频国产免费| 在线免费观看a视频| 九色在线视频导航91| 亚洲精品视频免费| 高清欧美性猛交XXXX黑人猛交| 99激情网| 激情午夜婷婷| 国产成人乱码一区二区三区在线| 国内精自线i品一区202| 亚洲最猛黑人xxxx黑人猛交| 亚洲中字无码AV电影在线观看| 日本亚洲国产一区二区三区| 日韩黄色精品| 四虎成人免费毛片| 国产成人精品午夜视频'| 一级毛片在线免费视频| 中国国产一级毛片| 午夜爽爽视频| 国产91麻豆视频| 午夜视频日本| 无码网站免费观看| 国产激情无码一区二区APP| av免费在线观看美女叉开腿| 91精品啪在线观看国产60岁 | 亚瑟天堂久久一区二区影院| 亚洲αv毛片| 黄色网站在线观看无码| 亚洲欧美精品在线| 在线观看热码亚洲av每日更新| 日韩中文精品亚洲第三区| 在线不卡免费视频| 国产美女精品在线| 国产不卡一级毛片视频| 狠狠色综合久久狠狠色综合| 爱做久久久久久| 毛片最新网址| 91精品国产91久久久久久三级| 免费在线不卡视频| 重口调教一区二区视频| 国产在线拍偷自揄观看视频网站| 国产国语一级毛片在线视频| 全部免费毛片免费播放| 婷五月综合| 国产激情无码一区二区免费| 在线免费不卡视频| 国产精品片在线观看手机版| 日本在线欧美在线| 亚洲欧美自拍视频| 国产打屁股免费区网站| 国产专区综合另类日韩一区| 在线观看欧美精品二区| 久久综合婷婷| 女人爽到高潮免费视频大全| 97se亚洲综合在线| 97在线公开视频| 亚洲国产精品不卡在线| 欧美色亚洲| 国产亚洲欧美日韩在线一区| 午夜福利免费视频| 国产在线欧美| 久久毛片网| 亚洲精品欧美日本中文字幕| 极品性荡少妇一区二区色欲 | 国产chinese男男gay视频网| 玖玖精品在线| 亚洲人成网线在线播放va| 亚洲国产成人麻豆精品|