于慶鑫,劉 碩*,馬麗娜,門志遠,李陶陶,蔡露瑤,孫 萌
哈爾濱農田土壤中微塑料的賦存特征及影響因素分析
于慶鑫1,劉 碩1*,馬麗娜2,3,門志遠1,李陶陶1,蔡露瑤1,孫 萌1
(1.哈爾濱師范大學地理科學學院,黑龍江 哈爾濱 150025;2.哈爾濱工業(yè)大學環(huán)境學院,黑龍江 哈爾濱 150090;3.哈爾濱工業(yè)大學城市水資源與水環(huán)境國家重點實驗室,黑龍江 哈爾濱 150090)
為探究農田土壤中微塑料(Microplastics, MPs)賦存特征及影響因素,通過體式顯微鏡、傅里葉變換紅外光譜儀、掃描電鏡(SEM)等方法定性定量地分析了哈爾濱農田土壤中MPs的豐度、外觀特征以及類型,并以有無農用膜為分類對比分析了MPs在農田土壤中的賦存特征.結果表明:研究區(qū)農田土壤中MPs豐度范圍在198.32~1002.61n/kg,平均值約為485.80n/kg,有農用膜覆蓋的土壤中MPs豐度是無農用膜覆蓋的1.69倍.垂直空間分布上,隨著深度增加,MPs豐度降低.耕層土壤平均豐度約為(567.70±210.53) n/kg,犁底層MPs豐度降為(403.80±141.66) n/kg,降幅達到40.59%.在有農用膜覆蓋的土壤中,占比最高的MPs類型為PE(46.61%),在無農用膜覆蓋的土壤中,占比最高的MPs類型為PP(38.76%).土壤的顆粒組成對土壤中MPs的分布有著極大的影響,其中黏粒是影響MPs豐度的主要因素(=-0.6,<0.05).本文的研究結論可為農田土壤MPs污染評估的規(guī)范化提供參考數據,并為MPs在土壤中的遷移提供基礎.
微塑料;哈爾濱;農田土壤;分布特征;影響因素
據統(tǒng)計,全球每年至少生產300萬t塑料[1],預計2050年將會達到330億t[2],但塑料回收比例小于5%[3].廢舊的塑料經過風化與侵蝕,逐漸變成粒徑£5mm的微塑料(Microplastics,MPs),造成了環(huán)境污染問題.土壤環(huán)境中存在MPs污染問題于2012年首次被發(fā)現[4],目前已成為環(huán)境與生態(tài)領域的重要問題.土壤基質中含有豐富的有機物,加之部分MPs被包裹在土壤團聚體中,因此土壤環(huán)境中MPs的分離與鑒定成為了研究的熱點與難點.2018年Hurley[5]提出了芬頓試劑可高效消解有機質,次年,湯慶峰[6]提出采用超聲處理的方法來提高MPs的分離效率,土壤中MPs的分離與提取技術得以進一步完善.雖然分析方法和計數方式各有不同,但仍能得出這樣的結論,即世界各地土壤存在不同程度地污染.
已有研究表明,陸地的MPs儲蓄量是海洋中的4~23倍[5],土壤成為了MPs的重要匯集地.在對西班牙[7]多個地區(qū)土壤樣品進行研究時,均檢測出不同濃度的MPs,澳大利亞某區(qū)MPs濃度更是高達67500mg/kg[8].與此同時,我國上海郊區(qū)的菜地土壤、水稻田、云南的河岸森林緩沖帶等地土壤中MPs污染現象也十分普遍[9].Wang等[10]與Mcgechan等[11]均表明,MPs顆粒進入土壤環(huán)境后并非全部固定在原地,而是會在外力作用下發(fā)生遷移,除留存在表層外,一部分移向更深層,產生積累,另一部分會繼續(xù)擴散進入地下水等其他環(huán)境介質中,造成二次污染.而后,Nava等[12]研究發(fā)現土壤管理制度與耕作制度等人類活動都會對MPs的賦存與遷移產生影響,進而影響能量通量與食物網.因此,對不同農業(yè)管理模式下土壤中MPs的空間分布特征的研究尤為重要. MPs在陸地系統(tǒng)中不僅分布廣泛,而且造成的問題更為復雜[13].土壤是維持生物生長發(fā)育與多樣性的物質基礎,由于MPs具有疏水性、比表面極大,更容易吸附土壤環(huán)境中重金屬[14]、PCBs[15]、PAHs[16]等污染物,加速了在土壤環(huán)境中的遷移,因此MPs的大量賦存會通過土壤進入生態(tài)系統(tǒng),嚴重時甚至會影響土壤中的生物,帶來生態(tài)風險. He[17]研究表明,蚯蚓受到MPs影響后腸道組織出現損傷,還會出現誘導氧化應激并刺激神經毒性反應;還有研究發(fā)現MPs可以通過食物鏈進入人體內,影響人體內環(huán)境穩(wěn)態(tài)、免疫系統(tǒng)等,損害人體健康[18].小粒徑的MPs對土壤性質和生物活動有著更大的威脅,粒徑在1mm以下的MPs生物負面效應尤為強烈[19].
東北地區(qū)是世界三大黑土區(qū)之一,黑土富含暗黑色腐殖質自然肥力較高,是最適宜耕種的土壤類型之一.為明確東北地區(qū)農田土壤MPs分布特征,以哈爾濱市農田較為集中的松北區(qū)為對象展開研究.該區(qū)域地勢平坦土壤肥沃,農田面積廣闊,種植類型豐富.本研究根據MPs粒徑不同,將其劃分為5個梯度,分別為:<100μm、100~200μm、200~500μm、500~ 1000μm、>1000μm,詳細探究農田MPs賦存特征及影響因素,并進一步分析土壤顆粒組成對MPs分布的影響,為農田土壤中MPs污染評估的規(guī)范化提供可靠參考數據,為今后有效控制塑料制品的使用提供依據.
哈爾濱市松北區(qū)(45°12′~46°25′N, 126°7′~ 127°39′E)屬于東北黑土農業(yè)區(qū),是哈爾濱市發(fā)展規(guī)劃中大力發(fā)展現代都市農業(yè)、設施農業(yè)、“田園打卡地”工程等項目的重點區(qū)域,但隨著塑料制品被廣泛地使用在農業(yè)生產中, MPs的潛在污染也成為了該區(qū)不可忽視的問題.

圖1 研究區(qū)域及采樣點空間分布
2021年6月21日至6月23日對哈爾濱市松北區(qū)耕地土壤進行采樣.依據代表性及可比性原則,對松北區(qū)周邊村屯的農田土壤進行布點,共設置平面樣點22個,其中無農用膜覆蓋的采樣點13個,有農用膜覆蓋的采樣點有9個.每個樣點采0~20cm(耕層)和20~30cm(犁底層)兩個土壤剖面處的土樣(圖1).在每個樣點選取3m×3m農田樣地,按梅花點法采集5個樣點的土壤混合成一個樣品,質量約1kg,并用GPS進行定位,記錄中心點坐標,共獲得樣品44個.樣品帶回實驗室后過篩,除去>5mm的石塊、植物殘體等雜質,再用四分法棄去多余土壤后密封保存?zhèn)溆?樣品的采集與制備均按照《農田土壤環(huán)境質量監(jiān)測技術規(guī)范(NY/T 395-2012)》[20]進行.
將土壤樣品通過孔徑為2mm的不銹鋼篩,烘干至恒重.將飽和氯化鋅溶液(=1.5g/cm)通過孔徑為0.45μm的玻璃纖維濾膜過濾等待使用.取50g過篩土壤樣品與150mL飽和氯化鋅溶液混合,磁力攪拌30min[21].將上清液靜置后進行密度浮選,浮選后加入芬頓試劑,并保證pH值在3~5,混合均勻后放入設置為50℃的恒溫箱內,消解72h后進行真空抽濾,并將附著有MPs的濾膜避光保存用于后續(xù)分析.
本研究利用體式顯微鏡進行定量統(tǒng)計,遵循Nor and Obbard的描述標準[22],將MPs豐度量化為n/kg.利用Mei等[23]的方法對MPs與其他雜質進行區(qū)分后,MPs豐度,記錄形狀及顏色.粒徑分為5個梯度: <100μm、100~200μm、200~500μm、500~1000μm以及>1000μm.用顯微鏡與掃描電鏡SEM(S-4800)相結合的方式觀察并統(tǒng)計MPs的分布與形貌特征.對在顯微鏡下篩選出的MPs通過傅里葉紅外光譜儀(VERTEX 80)進行成分鑒定.使用KBr作為分束器,波數范圍在(4000~400)cm-1,分辨率為4.00cm-1,樣品掃描次數為16次,在透視模式下對疑似MPs進行成分鑒定和官能團的表征,并與標準品譜庫進行對比,匹配度在80%及以上的可確定聚合物類型.
稱取研磨好的土壤樣品1g,加入10mLH2O2后,不斷攪拌,靜置至無氣泡產生,以去除樣品中有機質.去除上層清液后加入10%的鹽酸溶液,靜置至無氣泡產生,除去樣品中的碳酸鹽.去除上清液后,加入10%的六偏磷酸鈉分散劑.在超聲振蕩儀上振蕩十分鐘以保證樣品均勻分散在溶液中.使用Mastersizer 2000型激光粒度儀進行粒度測定[24],測定范圍在0.02~2000μm,樣品平行分析誤差<5%.
實驗過程中,均采用不銹鋼、玻璃、鋁箔等非塑料材質制品對土壤樣品進行采集、保存與研究,實驗人員全程衣著棉質實驗服、佩戴橡膠手套,以避免外界環(huán)境對樣品造成污染,保證研究結果的準確性與可靠性. 采用T檢驗分析差異性,皮爾遜檢驗分析相關性,以<0.05作為標準.
如圖2所示在所采集的樣品中,均檢測出MPs的存在,基本可以說明:MPs在哈爾濱農田土壤中存在十分普遍.(為減少實驗過程中的誤差,實際實驗結果為去除空白對照組后的結果)總體上MPs在有無農用膜覆蓋、不同深度的農田土壤中,豐度特征均存在較大差異.耕層土壤中,有農用膜覆蓋的土壤中MPs數量約為(431.10~1002.61)n/kg,約是無膜覆蓋的1.69倍.在有農用膜覆蓋的樣品中,犁底層(406.33~683.39n/kg)中MPs豐度小于耕層豐度,表現出隨著深度的增加MPs豐度逐漸降低的規(guī)律.而綜合所有耕層土壤樣品,平均豐度約為(567.70±210.53)n/kg,犁底層MPs豐度降為(403.80±141.66)n/kg.農用膜經過一定時間的風化作用發(fā)生裂解,形成大量的MPs累積在土層中.同時這組對比也表明,農用膜是農田土壤MPs的重要來源之一,但仍有很大一部分來自于其他源頭,例如化肥袋殘余碎片、食品包裝袋等[24].塑料制品在破碎裂解后,首先在土壤表層逐漸累積,而后一部分塑料碎片隨著動物活動、灌溉等作用發(fā)生遷移[25].由于MPs具有比表面積大、疏水性、難降解等特點[26],土壤結構也較為復雜,因此大部分MPs仍存留在土壤表層.存留在耕層的MPs吸附在種子或作物根系上,直接影響作物的正常生長[27].

圖2 有、無農用膜覆蓋土壤不同深度下MPs豐度
土壤的團聚體效應使其具有較大的保留和積聚MPs顆粒的潛力.由表1可見,近年來我國不同區(qū)域土壤環(huán)境中MPs的豐度及粒徑,差異顯著.本研究區(qū)MPs豐度范圍在(198.32~1002.61)n/kg,平均值約為485.80n/kg,遠低于陜西、云南等區(qū)域,但高于上海、遼寧、山西及杭州等地.雖然MPs污染的研究現今還沒有統(tǒng)一的標準,但從國內外已有的研究來看,在研究賦存特征時,豐度、粒徑范圍、形狀等研究內容逐漸趨同,發(fā)現的MPs種類由較為常見的PP(聚丙烯Polypropylene)、PE(聚乙烯Polyethylene)、PS(聚苯乙烯Polystyrene)逐漸增多,例如PET(聚對苯二甲酸乙二醇酯Polyethylene terephthalate)、PVC(聚氯乙烯Polyvinyl Chloride)、RY(人造絲 Rayon)等.此外在本研究區(qū)還發(fā)現了PA(聚酰胺 Polyamide)、PAN(聚丙烯腈Polyacrylonitrile)、PMMA(聚甲基丙烯酸甲酯Polymethyl methacrylate).

表1 我國不同地區(qū)土壤MPs分布及特征
2.2.1 粒徑與顏色 MPs的粒徑大小對環(huán)境中生物的危害作用存在尺寸效應,由圖3可見,有無農用膜覆蓋的土樣中,MPs粒徑越小含量越高,這與Yu等[34]的研究恰好吻合.農用膜相比其他塑料更為輕薄,也更易破碎或發(fā)生延展,破碎后首先進入土壤表層,后又加之土壤顆粒的機械磨損,裂解成粒徑更小的MPs.在向下遷移的過程中,粒徑越小的MPs,越容易在在土壤中愈容易在干濕循環(huán)作用下,通過土壤孔隙向下遷移,當土壤孔隙飽和時,MPs也可能向上遷移[35].

圖3 農田土壤中MPs粒徑分布
MPs的顏色不僅可以指示其來源,還會影響環(huán)境中動物的攝食行為. Massos等[36]甚至發(fā)現彩色MPs表面可能會附著更多的有害重金屬元素,帶來更大的毒性效應.本研究區(qū)內MPs顏色隨深度的變化無明顯差異(圖4),而有農用膜覆蓋的土壤中白色MPs含量顯著高于無底膜覆蓋,無農用膜覆蓋的土壤中藍色和黃色占比明顯增大,此外顏色分布無其他明顯規(guī)律.

圖4 農田土壤中MPs顏色分布
2.2.2 形狀 體式顯微鏡和掃描電鏡的觀察發(fā)現,土壤中樣品中MPs主要形狀有纖維狀、碎片狀、薄膜狀、以及微珠狀四種.結果顯示(圖5),纖維狀MPs在有農用膜覆蓋的土壤樣品中占比最大,比無覆蓋的約高出33.28%,外觀細長,少有纏繞、卷曲.其次為形狀不規(guī)則,質地較輕薄,略透光的薄膜狀.由此可見,農用膜的使用是土壤中MPs的重要來源之一.在無農用膜覆蓋的農田中,纖維狀MPs依然占比最高,不同的是,在有膜覆蓋的土壤樣品中,粒徑范圍<100μm占比最高,約占28.33%,而無膜覆蓋的土壤中含量最高的粒徑范圍在100~200μm,約占26.26%.這不僅說明除農用膜外仍有其他來源,還說明了農用膜相較于其他來源的MPs更易風化變小.在無農用膜覆蓋的農田土壤中,質地較為堅硬的碎片狀MPs占比超過纖維狀和薄膜狀,在耕層和犁底層將分別占28.29%和33.86%,在各形狀中占比最高.在掃描電鏡下觀察發(fā)現(圖6):薄膜狀和碎片狀MPs表面有少許磨痕、裂紋,且其形狀特征使其與環(huán)境介質接觸面積更大,因此會吸附其他污染物[37].微珠狀MPs是四種形狀中含量和占比均最小的形狀,無膜覆蓋的土樣中MPs比有農用膜覆蓋中占比更高.

圖5 農田土壤中MPs形狀分布

圖6 掃描電鏡下四種形狀MPs
不同深度下的分布一定程度地反映了形狀對遷移的影響.對比不同條件下4種形狀的MPs占比變化,發(fā)現微珠狀和碎片狀更容易向深層土壤中遷移.這是因為微珠狀和碎片狀MPs粒徑更小,容易通過孔隙向下遷移[28].

圖7 研究區(qū)發(fā)現的MPs紅外光譜及各成分占比
2.2.3 成分 根據MPs中不同官能團吸收峰強度不同這一特性,利用傅里葉紅外變換光譜儀對環(huán)境中的MPs進行檢測,準確率超過89%[38].本文利用Wang等[26]建立的分類系統(tǒng)進行源解析,對比標準品與本研究區(qū)檢出樣品成分和形狀(圖7),發(fā)現了8種MPs: PE、PP、PET、PS、PA、PMMA、PVC以及PAN.在有農用膜覆蓋的土壤中,PE(46.61%)、PP(29.81%)占比明顯高于其他種類,這正是因為該區(qū)使用的農用膜主要成分是PE與PP.而在無農用膜覆蓋的土壤中,占比最高的則為PP(38.76%)、PE(29.45%)、PS(10.56%).在采樣時調研了農田周邊出現的塑料制品,作為MPs可能來源的庫.經過對比發(fā)現:檢出的纖維狀和膜狀MPs主要為PE和PP,用作農用膜、塑料袋等的PE制品以及制成編織袋等PP制品[35]經風化后會產生纖維狀MPs,還有少部分PA,其可能來源于衣物.碎片狀MPs成分更復雜,主要成分為PP、PET、PS、PMMA以及PVC、PAN,用作飲料瓶的PET制品,用作汽車配件的PP制品,制成泡沫包裝、一次性餐盒的PS制品等[38],都會逐漸以碎片的形態(tài)進入土壤環(huán)境.對比研究發(fā)現土壤樣品中檢出的微珠狀MPs,與用于灌溉本研究區(qū)的河流中微珠狀MPs極其相似,這既證明了來源也表明了水圈中的MPs已有遷移至土壤中的跡象0.
影響土壤中MPs賦存的因素眾多,除農用膜的存在外,土壤機械組成也會影響MPs的賦存.將研究區(qū)樣品土壤粒度測定結果與土壤顆粒等級的國際分類標準相對比,發(fā)現哈爾濱農田土壤主要類型有砂質壤土、粉砂壤土、壤土、以及砂質黏壤土.統(tǒng)計結果表明:砂質壤土中MPs豐度均值約為556.5n/kg,在幾類土壤中最高,其次為砂質黏壤土、壤土、粉砂質壤土(圖8).通過皮爾遜相關系數的分析,三種顆粒中主要影響MPs豐度值的是黏粒=-0.60(<0.05)和砂礫=-0.58(<0.05),均屬于中等程度相關.這是因為黏粒在三類顆粒中,粒徑最小,比表面積大,粒間孔隙較小,再加之黏粒本身的吸濕性和粘結性強,不利于MPs的遷移導致兩者間產生負相關. Yu等0通過研究同樣發(fā)現土壤機械組成與MPs豐度值間存在相關性,但其認為砂礫和粉砂是影響豐度的主要因素,這與土壤的其他性質例如有機質含量、土壤肥力等有關,還需要進一步研究.

圖8 不同顆粒組成下MPs豐度分布
Fig.8 Microplastic abundance distribution under different particle composition
3.1 哈爾濱農田土壤中MPs豐度范圍在198.32~ 1002.61n/kg,平均值約為485.80n/kg,有纖維狀、薄膜狀,碎片狀微珠狀四種形態(tài)組成.農用膜的使用影響著MPs的粒徑占比與形狀占比,對MPs顏色影響不顯著.
3.2 垂直空間分布上表現為,隨著深度增加,MPs豐度降低.耕層土壤平均豐度(567.70±210.53)n/kg高于犁底層MPs豐度(403.80±141.66)n/kg.
3.3 該區(qū)通過定性分析檢測出八種MPs,在有農用膜覆蓋的土壤中,占比最高的是PE(46.61%),在無農用膜覆蓋的土壤中,占比最高的則為PP(38.76%).纖維狀和膜狀MPs主要為PE和PP,少部分PA;碎片狀MPs成分更復雜,主要成分為PP、PET、PS、PMMA以及PVC、PAN;微珠狀MPs主要成分是PA、PET、PP,這在一定程度上指示了塑料的來源.最主要的來源是農用膜的使用,其次為生產、生活過程中產生的次生MPs.
3.4 土壤機械組成與MPs賦存具有一定相關性:三種顆粒中主要影響MPs豐度值的是黏粒=-0.60 (<0.05).
綜上所述,農用膜的長期使用會使土壤中殘留的MPs不斷積累,對土壤耕層與犁底層的性質與功能有一定程度地消極影響.土壤的機械組成影響著MPs的空間分布,未來可以以此為基礎進一步探究不同土壤質地農用膜的選擇,來使農作物的質量與數量的以保證,同時保護環(huán)境降低生態(tài)風險.
[1] Nizzetto L, Langaas S, Futter M. Pollution: Do microplastics spill on to farm soils? [J]. Nature: International Weekly Journal of Science, 2016,537(7621):488-488.
[2] Rochman Chelsea M, Browne Mark Anthony,Halpern Benjamin S, et al. Classify plastic waste as hazardous [J]. Nature: International Weekly Journal of Science, 2013,494(7436):169-171.
[3] Souza Machado Anderson Abel, Kloas W, Zarfl C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018,24(4):1405-1416.
[4] Rillig Matthias C. Microplastic in terrestrial ecosystems and the soil? [J]. Environmental science & technology, 2012,46(12):6453-6454.
[5] Hurley R R, Lusher A L, Olsen M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices [J]. Environmental Science and Technology, 2018,52(13): 7409–7417.
[6] 湯慶峰,李琴梅,魏曉曉等.環(huán)境樣品中微塑料分析技術研究進展[J]. 分析測試學報, 2019,38(8):1009-1019.
Tang Q F, Li Q M, Wei X X, et al. Advances in the analysis of microplastics in environmental samples [J]. Journal of Analytical Testing, 2019,38(8):1009-1019.
[7] Filgueiras A V, Jesús Gago, Campillo J A, et al. Microplastic distribution in surface sediments along the Spanish Mediterranean continental shelf [J]. Environmental Science and Pollution Research, 2019,26(21):21264-21273.
[8] Stephen, Fuller, Anil, et al. A Procedure for measuring microplastics using pressurized fluid extraction [J]. Environmental Science & Technology, 2016,50(11):5774-5780.
[9] 陳 蘇,馮天朕,劉 穎,等.微塑料對土壤生態(tài)系統(tǒng)及陸生生物的影響[J]. 沈陽大學學報:自然科學版, 2022,34(4):8.
Chen S, Feng T Z, Liu Y, et al. Effects of microplastics on soil ecosystem and terrestrial organisms [J]. Journal of Shenyang University: Natural Science Edition, 2022,34(4):8.
[10] Wang J, Luo Y, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film [J]. Environmental Pollution, 2013,180:265-273.
[11] Mcgechan M B. SW-soil and water: transport of particulate and colloid-sorbed contaminants through soil, part 2: trapping processes and soil pore geometry [J]. Biosystems Engineering, 2002,83(4):387- 395.
[12] Nava V, Frezzotti M L, Leoni B. Raman spectroscopy for the analysis of microplastics in aquatic systems [J]. Applied Spectroscopy, 2021, 75(11):1341-1357.
[13] Scheurer M, Bigalke M. Microplastics in Swiss Floodplain Soils [J]. Environmental Science and Technology, 2018,52(6):3591-3598.
[14] Zhou Y, Liu X, Wang J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019,133798.1- 133798.10.
[15] Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014,48(9): 4869-4876.
[16] Frias J, Sobral P, Ferreira A M. Organic pollutants in microplastics from two beaches of the Portuguese coast [J]. Marine Pollution Bulletin, 2010,60(11):1988-1992.
[17] He Defu, Yongming Luo, Lu Shibo, et al. Microplastics in soils: analytical methods, pollution characteristics and ecological risks [J]. Trends in Analytical Chemistry, 2018,109.
[18] Wong J K H, Lee K K, Tang K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions [J]. Science of the Total Environment, 2020, 719(Jun.1):137512.1-137512.15.
[19] Jing J, Guo X, Huang L, et al. Source, migration and toxicology of microplastics in soil [J]. Environment International, 2020,137:105263.
[20] NY/T 395-2012 農田土壤環(huán)境質量監(jiān)測技術規(guī)范[S].
NY/T 395-2012 Technical Specification for Monitoring Farmland soil Environmental Quality [S].
[21] Liu M, Lu S, Yang S, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018,242(Pt A):855-862.
[22] Nor N H M, Obbard J P. Microplastics in Singapore’s coastal mangrove ecosystems [J]. Marine Pollution Bulletin, 2014,79(1/2): 278-283.
[23] Mei H A, Xn A, Man T B, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary [J]. Science of The Total Environment, 2020,707:135601.
[24] Bond A L, Provencher J F, Elliot R D, et al. Ingestion of plastic marine debris by Common and Thick-billed Murres in the northwestern Atlantic from 1985 to 2012 [J]. Marine Pollution Bulletin, 2013,77 (1/2):192-195.
[25] Bas B, William R C and Senga G D. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental science & technology, 2019,53(19):11496-11506.
[26] Wang F Z. Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China [J]. Science of The Total Environment, 2019,691(C):697-712.
[27] Dong Y, Gao M, Qiu W, et al. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil [J]. European Journal of Medicinal Chemistry: Chimie Therapeutique, 2021,(211-): 211.
[28] 韓麗花,李巧玲,徐 笠,等.大遼河沉積物中微塑料的污染特征 [J]. 中國環(huán)境科學, 2020,40(4):1649-1658.
Han L H, Li Q L, XuL, et al. The pollution characteristics of microplastics in Daliao River sediments [J]. China Environmental Science, 2020,40(4):1649-1658.
[29] Bianying Zhou et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film [J]. Journal of Hazardous Materials, 2020,388.
[30] 楊光蓉,陳歷睿,林敦梅.土壤微塑料污染現狀、來源、環(huán)境命運及生態(tài)效應 [J]. 中國環(huán)境科學, 2021,41(1):353-365.
Yang G R, Chen L R, Lin D M. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil [J]. China Environmental Science, 2021,41(1):353-365.
[31] Ding L, Zhang S, Wang X, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China [J]. Science of The Total Environment, 2020,720:137525.
[32] Wang T, Zou X, Li B, et al. Preliminary study of the source apportionment and diversity of microplastics: taking floating microplastics in the South China Sea as an example [J]. Environmental Pollution, 2019,245:965-974.
[33] Zhang G S, Liu Y L. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018,642:12-20.
[34] Yu L, Liu J, Chen Y, Tao et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China [J]. Science of the Total Environment, 2021, 756:143860.
[35] David O'Connor, Pan Shizhen, Shen Zhengtao, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles [J]. Environmental Pollution, 2019,249:527-534.
[36] Massos A, Andrew Turner. Cadmium, lead and bromine in beached microplastics [J]. Environmental Pollution, 2017,227.
[37] Hodson M E, Duffus-Hodson C A, CLARK A, et al. Plastic bag de-rived-microplastics as a vector for metal exposure in terrestrial inverte-brates [J]. Environmental Science & Technology, 2017,51(8): 4714-4721.
[38] 張宇波,成麗君.基于紅外光譜成像技術的環(huán)境微塑料檢測研究[J]. 塑料科技, 2020,48(8):53-55.
Zhang Y B, Cheng L J. Detection of environmental microplastics based on infrared spectral imaging [J]. Plastic Science and Technology, 20,48(8):53-55.
[39] Amy, L, Lusher, et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True's beaked whale Mesoplodon mirus [J]. Environmental Pollution, 2015,V199:185-191.
Analysis on the occurrence characteristics and influencing factors of microplastics in Harbin agricultural soils.
YU Qing-xin1, LIU Shuo1*, MA Li-na2,3, MEN Zhi-yuan1, LI Tao-tao, CAI Lu-yao1, SUN Meng1
(1.College of Geographical Science, Harbin Normal University, 150025, Harbin, China;2.School of Environment, Harbin Institute of Technology, 150090, Harbin, China;3.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China)., 2023,43(2):793~799
To investigate the characteristics and influencing factors of microplastics (MPs) in agricultural soils, the abundance, appearance characteristics and types of MPs in Harbin agricultural soils were analyzed qualitatively and quantitatively by body microscopy, Fourier transform infrared spectrometer and Scanning Electron Microscopy(SEM). The characteristics of MPs in agricultural soils were analyzed by comparison with the presence or absence of agricultural films as a classification. The results showed that the abundance of MPs in agricultural soils in the study area ranged from 198.32 to 1002.61n/kg, with a mean value of about 485.80n/kg, and the abundance of MPs in soils with agricultural film cover was 1.69 times higher than that without agricultural film cover. In the vertical spatial distribution, the abundance of MPs decreased with increasing depth. The average abundance of MPs was about (567.70±210.53) n/kg in the plow layer soil, and the abundance of MPs decreased to (403.80±141.66)n/kg in the plow bottom layer, with a decrease of 40.59%. The highest percentage of MPs type was PE (46.61%) in the soil with agricultural film cover and PP (38.76%) in the soil without agricultural film cover. The particle composition of the soil had a great influence on the distribution of MPs in the soil, with clay particles being the main factor affecting the abundance of MPs (=-0.6,<0.05). The findings of this paper can provide reference data for the standardization of MPs contamination assessment in agricultural soils and provide a basis for the migration of MPs in soils.
microplastics;Harbin;agriculture soils;distribution characteristics;influencing factors
X53
A
1000-6923(2023)02-0793-07
于慶鑫(1998-),女,黑龍江哈爾濱人,哈爾濱師范大學碩士研究生,主要研究內容為土壤微塑料.
2022-07-01
哈爾濱工業(yè)大學城市水資源與水環(huán)境國家重點實驗室開放基金項目(SMK202203)
* 責任作者, 教授, hitls@126.com