李 賀,王書航,車霏霏,姜 霞,牛 勇
巢湖、洞庭湖、鄱陽湖沉積物重金屬污染及來源的Meta分析
李 賀,王書航,車霏霏,姜 霞,牛 勇*
(中國環境科學研究院,湖泊水污染治理與生態修復技術國家工程實驗室,國家環境保護湖泊污染控制重點實驗室,北京 100012)
對2004~2021年關于巢湖、洞庭湖、鄱陽湖沉積物中重金屬濃度的研究進行了分析,并對3個湖泊沉積物的重金屬地質累積、潛在生態風險和毒性進行了蒙特卡洛分析,以清晰、客觀、全面地描述3個湖泊沉積物的重金屬污染情況.結果表明,3個湖泊均存在不同程度的Cu、Zn、Pb、Ni、Cr和Cd污染,總體污染程度上,鄱陽湖>洞庭湖>巢湖.地累積指數表明,Cd是3個湖泊中最主要的污染元素,巢湖沉積物中Cd處于偏中度污染水平占比為84.76%,洞庭湖沉積物中Cd處于偏重度污染水平占比為32.64%,鄱陽湖沉積物中Cd偏重度污染水平占比達到46.64%.巢湖、洞庭湖和鄱陽湖RI值中Cd元素為主要貢獻者,占比分別為80.26%、91.04%和90.03%.巢湖整體處于中低風險,洞庭湖RI值高風險概率為60.74%;鄱陽湖重金屬RI值高風險概率68.95%,生態風險高.毒性結果表明,三個湖泊沉積物毒性較高的是Pb和Cr,巢湖沉積物中的重金屬毒性處于低度毒性水平,洞庭湖沉積物中度毒性水平的累積概率為69.03%,鄱陽湖中度毒性水平的累積概率為7.18%.巢湖、洞庭湖、鄱陽湖重金屬污染情況各不相同,重金屬大體上存在3~4個不同來源:工業源、交通源、農業源和自然源,巢湖交通源為主要影響,污染較輕;洞庭湖和鄱陽湖主要污染源為工業活動,污染較重.
巢湖;洞庭湖;鄱陽湖;重金屬;污染評價
重金屬是湖泊沉積物的主要污染物,具有致毒性、累積性、放大性等特征,嚴重威脅水生生物安全以及人類健康[1-2].作為水體底棲環境的主要固相介質,沉積物與上覆水體存在密切聯系[3].沉積物還是水體中各種污染物的儲存庫,進入到水體的重金屬會在各種作用下蓄積在沉積物中,但蓄積的重金屬會在環境條件變化時再次釋放出來,破壞上覆水體環境質量、危害水生生物[4-5].因此,研究沉積物中重金屬含量變化是水體污染評價和調控的重要基礎[6-8].
隨著長江流域經濟的快速發展,生態資源透支嚴重,環境污染問題日益凸顯,長江流域湖泊也面臨多種污染問題,尤其是長效污染物重金屬的污染問題[9].國家長江保護修復攻堅戰行動計劃開始后,長江流域內巢湖、洞庭湖和鄱陽湖等湖泊重金屬污染研究也在同步進行,已開展許多關于巢湖、洞庭湖和鄱陽湖沉積物中重金屬含量調查,但在不同的研究中出現了不同的重金屬含量水平.巢湖2020年沉積物重金屬Cr含量是2018年研究中Cr含量的4倍[10-11];有研究表明巢湖底泥處于清潔狀態,還有研究表明巢湖仍然存在偏重度的 Hg 污染和偏中度的 Cd 污染[12].洞庭湖沉積物中Cd含量調查也存在較大差異[13-15].在已經開展的很多鄱陽湖沉積物重金屬研究中Cu 和 Cd 為主要污染元素,但在2017年的研究中Pb、Cr對總毒性的貢獻較大[16-17],我們認為這種差異主要由于重金屬在沉積物中濃度分布不均勻所致,空間部分的不均勻受到pH值、溫度等多因素的影響[18],這種差異結論存在,不利于管理者對于湖泊沉積物重金屬污染情況的了解,同時也增加了污染防治策略制定的難度,因此,需要更好的一種評價方式去描述湖泊沉積物的污染狀態.
近年來,Meta分析逐步在環境污染現狀分析中使用,主要用于彌補研究區域內長時間調查數據缺失問題,例如,使用Meta分析評估了長江三角洲農田表土重金屬污染的時間趨勢;還有研究人員整合了2450份出版物中的數據,繪制了中國農田土壤中重金屬的空間分布圖,還有對中國耕地As污染情況的分析[19-21].在缺乏監測數據的情況下,對已公布的數據開展Meta分析用于研究各種環境介質污染情況具有重要價值.目前,Meta分析還沒有發展成一個系統的分析過程來進行環境污染評估,現在可用的方法通常是從相關出版物收集污染物數據并重新分析,以描述研究區域的污染狀態.
因此,本文以長江中下游巢湖、洞庭湖和鄱陽湖沉積物重金屬調查研究為基礎,基于Meta分析的基本原理系統性分析沉積物重金屬污染水平,并采用蒙特卡洛方法對重金屬地累積特征和潛在生態風險狀態展開不確定性分析[22],從而更加清晰、客觀的呈現湖泊沉積物重金屬污染水平、風險等級以及湖泊之間污染的差異.研究結果可為長江中下游湖泊重金屬污染防治提供參考,研究方法可為世界其他湖泊污染狀況診斷提供借鑒.
1.1.1 Meta分析 Meta分析是一種統計方法,用于綜合分析眾多研究中的大量數據并整合結果,其本質是將多個研究結果中的子效應量進行綜合評價,從而得到感興趣的總效應量[23-24],其主要步驟是使用正式的方法進行文獻檢索、研究篩選(包括根據預定義標準對合格的研究進行批判性評估)、數據提取、編碼和通常的統計分析,以及每個步驟的詳細、透明的文檔記錄,在開展巢湖、洞庭湖和鄱陽湖沉積物重金屬積累特征時遵循了Meta分析基本原理及步驟.
1.1.2 蒙特卡洛模擬 蒙特卡洛模擬法是以統計抽樣理論為基礎,利用隨機數,經過對隨機變量已有數據的統計進行抽樣實驗或隨機模擬,以求得統計量的某個數字特征并將其作為待解決問題的數值解[22].在分析巢湖、洞庭湖和鄱陽湖沉積物重金屬積累特征時,通過經典蒙特卡洛模擬方法來處理評價結果的不確定性,采用CrystalBall工具軟件分別對地質累積指數(簡稱geo)、潛在生態風險指數(簡稱RI)和毒性(簡稱TU)進行了1000次模擬計算來反映3個湖泊重金屬污染情況.
本文通過中國知網(CNKI)和Web of Science收集了2002~2021年巢湖、洞庭湖和鄱陽湖沉積物中重金屬的監測數據,在數據庫中使用的搜索詞是SU=(’巢湖‘+’洞庭湖‘+’鄱陽湖‘)*’沉積物‘*’重金屬‘和ts=(chaohu lake) or ts=(dongting lake) or ts= (poyang lake) and ts=sediment and ts=(heavy metal),符合篩選條件的文章主要集中在2004~2021年.最后,如圖所示,篩選獲得了其中52份文獻資料,370多份數據記錄[7,11-17,25-68].首先,本文選擇的文章種應包括巢湖、洞庭湖、鄱陽湖全湖表層沉積物(頂部5cm)的調查.其次,還應包括調查點的明確數量、重金屬含量.在所有已收集的研究中,沉積物中重金屬的總含量基本上通過單酸或混合酸消化進行分析,并采用了嚴格的質量控制和保證,圖2為篩選文獻中3個湖泊的采樣點位置.

圖1 文獻篩選過程與結果

1.3.1 樣本數加權平均(SNWM)在實際調查中,調查點的數量越多,獲得的濃度水平的代表性就越大.因此,本研究使用調查點的數量進行樣本數加權平均.

式中:N是數據記錄中的采樣數,C是數據記錄中的重金屬濃度,是數據記錄的數量.N和C是從原始研究中獲得的.
1.3.2 地累積指數法 地累積指數法常被用于定量研究沉積物中重金屬的污染程度,該方法能夠直觀反映外源重金屬在沉積物中的富集程度[69].本研究將對全國重要湖泊重金屬累積程度進行評估,具體計算過程如下:

式中:B為沉積巖(普通頁巖)中該元素的地球化學背景值;C為元素在沉積物中的含量;為考慮各地巖石差異可能會引起背景值的變動而取的系數(一般取值為1.5);geo為地累積指數,依據地累積指數大小將重金屬污染程度劃分為5個等級,geo<0,清潔狀態;0
1.3.3 潛在生態風險指數法 Hakanson提出的將重金屬含量、生態、環境與毒理性綜合的潛在生態風險指數法[70],既簡單快速又標準地對生態風險進行了等級劃分.具體計算公式如下:




表1 潛在生態危害與風險等級
1.3.4 毒性 毒性用于評估沉積物中重金屬對水環境的影響[72],以使各種重金屬引起的毒性正常化,從而比較它們的相對效應,定義為測定濃度(C)與可能效應水平值(PEL)(P)的比率[73-74].總毒性(STU)是TU的總和.



表2 文獻信息和沉積物指導值統計描述
注:a:安徽省江淮流域土壤地球化學背景值,b: 洞庭湖區土壤地球化學背景值,c: 江西省C層土壤的各元素背景值.
表2顯示了所選52篇論文(巢湖20篇、洞庭湖18篇、鄱陽湖14篇)中沉積物的重金屬濃度統計結果.主要開展了3個湖泊的Cu、Zn、Pb、Ni、Cr、Cd重金屬研究,巢湖、洞庭湖和鄱陽湖Cd 加權均值較高為0.43、3.18和1.24mg/kg,分別是其環境背景值的3.75、10.26、11.50倍,均高于南四湖[75](0.23mg/kg)、艾比湖[76](0.17mg/kg)和烏倫古湖[77](0.33mg/kg).洞庭湖除Cr加權均值外,其他元素的濃度略高于環境背景值,鄱陽湖Cr 加權均值為其環境背景值的1.24倍,巢湖Cr加權均值相對為環境背景值的1.23倍,但3個湖泊Cr元素加權均值也高于陽澄湖[78]和艾比湖,此外3個湖泊Cu、Zn、Pb、Ni加權均值也高于或接近其余4個湖泊.從變異系數來看,巢湖Pb、Cr和Cd的變異系數分別為46%、51%和44%,洞庭湖Zn和Cd的變異系數分別為39%和45%,鄱陽湖Zn、Cr和Cd的變異系數為66%、49%和66%,其他元素的變異系數為10%~37%.結果表明,3個湖泊Cr和Cd的濃度在空間上有很大差別,濃度水平存在很大的不確定性.
2.2.1geo分析 根據已收集到的數據,對地累積指數進行1000次模擬計算,計算3個湖泊沉積物中6種重金屬元素,得到各重金屬元素的geo指數,如圖3所示.3個湖泊Cdgeo最高,巢湖沉積物中Cd處于輕度污染水平和偏中度污染水平占比分別為15.24%、84.76%,洞庭湖沉積物中Cd處于中度污染水平占比為58.41%,處于偏重度污染水平占比為32.64%,鄱陽湖沉積物中Cd中度污染及以上水平占比達到89.31%;除Cd外,巢湖和洞庭湖沉積物Zn Igeo最高,巢湖處于偏中度污染水平占比為12.72%;洞庭湖處于輕度污染水平占比為55.30%,其余元素均處于清潔或輕度污染水平;鄱陽湖沉積物Nigeo最高,處于輕度污染水平達到83.55%,其余元素均處于清潔或輕度污染水平.3個湖泊地累積指數顯示的污染程度而言,鄱陽湖>洞庭湖>巢湖.
2.2.2 RI分析 根據統計數據,對3個湖泊沉積物重金屬潛在生態風險進行1000次模擬計算,計算3個湖泊沉積物中6種重金屬元素,得到RI,如圖4、5所示.巢湖、洞庭湖和鄱陽湖RI值中Cd元素為主要貢獻者,占比分別為80.26%、91.04%和90.03%,貢獻值最低為Zn元素,分別為1.69%、0.51%和0.55%.其余元素貢獻占比1.59%~4.90%,貢獻值偏低.圖5表明,巢湖重金屬RI低風險概率為47.49%,中風險為52.51%,巢湖整體處于中低風險;洞庭湖重金屬RI中風險概率為39.26%,高風險概率為60.74%,洞庭湖生態風險較高,整體處于中高風險;鄱陽湖重金屬RI低風險、中風險和高風險概率分別為3.74%,27.31%和68.95%,鄱陽湖生態風險也較高.總體來看,鄱陽湖生態風險最高,洞庭湖次之,巢湖生態風險最低.



2.2.3 TU分析 針對3個湖泊沉積物中重金屬的毒性特征,進行了1000次模擬計算,統計結果如圖6、7所示.圖6顯示了不同金屬元素的毒性對總毒性貢獻,巢湖沉積物中重金屬的總毒性依次為Pb、Cr、Zn、Ni、Cu和Cd;洞庭湖沉積物中重金屬總毒性最高為Pb,其次為Cr,最低為Cu;鄱陽湖中重金屬總毒性最高也為Pb,3個湖泊中Pb和Cr總毒性較高,表明3個湖泊Pb和Cr元素毒性較高.圖7顯示了3個湖泊沉積物總毒性的風險分布特征,巢湖沉積物中的重金屬毒性低度毒性水平的累積概率為100%,處于低毒性水平,風險較低;洞庭湖沉積物中的重金屬毒性低度毒性水平的累積概為30.97%,中度毒性水平的累積概率為69.03%,整體處于中低度毒性水平;鄱陽湖沉積物中的重金屬毒性低度毒性水平的累積概率為92.82%,中度毒性水平的累積概率為7.18%,整體處于低度毒性水平.3個湖泊毒性水平:洞庭湖>鄱陽湖>巢湖.


巢湖處于位于安徽省江淮丘陵與長江之間,是“引江濟淮”工程重要的鏈接點,與安徽主要城市合肥、巢湖等相接,其周邊人類活動頻繁,重金屬污染情況復雜,來源多樣.根據2.3結果分析可知,巢湖表層沉積物Igeo和RI分析中,Cd污染風險最高,其次是Zn;表層沉積物重金屬TU分析中,Pb毒性最高,其次是Cr.研究表明[10],巢湖流域產業結構與水污染程度聯系十分緊密,如合肥市電力、熱力的生產和供應業、食品制造、有色金屬冶煉及壓延加工業、文教體育用品制造業、家具制造業、農林牧漁業等造成巢湖表層沉積物重金屬污染問題.其中 Cd污染原因可能是流域內電鍍工業企業污水未進入污水處理廠,直接進入南淝河,最終匯入巢湖[11];其次巢湖周邊農業區生產中商品有機肥、農藥以及農家肥大量投入產生Cd 排放,圍湖造田等不良耕作更加劇了這一過程[83],水溶性肥料的使用也會帶來超標的 Cd、As[84].巢湖周邊交通干道密布,汽車潤滑油的使用及金屬分解會帶來大量 Zn[85],造成巢湖Zn污染;汽車制動過程的器械摩擦、設備磨損均會產生Pb、Cr[86-87],造成巢湖Pb、Cr污染.巢湖重金屬來源主要包括自然源、農業源、交通源、工業源,其中交通源占主體,其次為自然源,工業源整體貢獻較小,主要是因為周邊城市城市化剛剛抵達巢湖湖濱,濱湖工業體系構建不完全,但周邊基礎設施建設已展開,路網縱橫、交通繁忙,進而成為主要污染貢獻源[11].巢湖整體處于受人類活動影響的初步階段,污染較輕,但仍要開展重金屬的預防工作.
洞庭湖位于湖南省東北部,長江中游荊江南岸,是我國第二大淡水湖,受人類活動的影響,已經明顯分化為東、西、南的3個湖區[51],是長江至關重要且擁有調蓄作用的湖泊.2.3的結果表明洞庭湖表層沉積物中Cdgeo和RI指數最高,污染較重;TU分析中Pb、Cr占比較高.研究表明[53]洞庭湖重金屬污染主要來自與“四水”流域的人類活動.Cd含量較高的原因是有色金屬采礦與冶煉工業,大量富含重金屬的工業廢水排放有關[88-89],其次洞庭湖流域處于南方喀斯特地貌區域,碳酸鹽巖風化成土的巨大的巖/土體積變化以及Cd的地球化學性質,很容易導致Cd的相對富集,并在地表徑流等自然搬運過程進入湖泊,此外圍湖造田造成的水土流失等也增加了Cd的入湖通量[90].Pb除來自巖石風化外,流域上游Pb-Zn礦床礦石、煤和柴油燃燒等人為源也占一定比例,大氣沉降也越來越成為沉積物中活動Pb的重要潛在來源[91].Cr和Ni受自然因素影響較大,主要與巖石的自然風化和侵蝕有關;但在一定程度上也受到了人為活動的影響,可能與沿岸生活污水以及湖區周邊畜禽養殖廢水和農業徑流有關[89].洞庭湖重金屬污染主要受人為活動影響,其主要來源包括工業源、自然源、農業和生活污水源,洞庭湖重金屬污染的空間特征與洞庭湖輸入河流和周邊城市的特征密切相關,尤其是湘江沿岸大量的有色金屬采礦和冶煉和岳陽市化工企業的發展[45].洞庭湖重金屬整體處于中重度污染.因此,要綜合考慮整個流域,制定污染控制和管理戰略,優化相應城市的產業結構,逐步恢復洞庭湖水生系統.
鄱陽湖流域廣闊,遍布江西全省,主要的河流有修水、贛江、撫河、信江和饒河,又由湖口與長江接壤,是長江中下游平原重要的湖泊之一[92].根據2.3結果可知,鄱陽湖表層沉積物中Cd Igeo指數和RI指數占比最高,TU分析同樣是Pb、Cr占比較高.研究表明[93]“五河”輸入是入湖污染負荷的主要來源,其占污染負荷總量的80%左右,樂安河(饒河南支)中、下游的德興銅礦、信江中游的永平銅礦、信江流經貴溪市大型有色金屬冶煉廠、撫河上游的鈾礦、贛南有色金屬采礦區等攜帶大量工業廢水進入鄱陽湖.湖區東南部德興礦區已探明鉛鋅礦有數百萬噸,在銅礦、鉛鋅礦開采和冶煉過程中會釋放出Pb、Hg、Zn、Cu、As和Cd進入環境[94];其次鄱陽湖周邊為江西傳統農業大縣南昌縣和余干縣,大量農藥化肥的施用導致了Cd等重金屬殘留于土壤,通過降水、地表徑流帶入湖泊河流[56],流域內水土流失嚴重,土壤中肥料極易隨地表徑流進入鄱陽湖,也導致面源污染負荷增加[93].鄱陽湖重金屬污染主要來自與工業源,農業源和自然源,其有大量有色金屬采礦和冶煉廢水對湖泊重金屬貢獻最高,其次為農藥化肥的使用,自然源也對其有一定影響[16].當前鄱陽湖存在較大的重金屬污染風險,應減少采礦冶煉等工業活動產生的污染物,提高開采冶煉水平,保護鄱陽湖生態環境.
4.1 3個湖泊沉積物均存在不同程度的Cu、Zn、Pb、Ni、Cr和Cd污染,總體污染程度上,鄱陽湖>洞庭湖>巢湖.三個湖泊Cd Igeo最高;除Cd外,巢湖和洞庭湖沉積物Zn Igeo最高,鄱陽湖沉積物Ni Igeo最高.
4.2 巢湖、洞庭湖和鄱陽湖RI值中Cd元素為主要貢獻者,占比分別為80.26%、91.04%和90.03%.巢湖RI整體處于中低風險,洞庭湖、鄱陽湖RI值高風險概率分別為60.74%、68.59%,生態風險較高.
4.3 三個湖泊沉積物毒性較高的是Pb和Cr,巢湖沉積物中的重金屬毒性處于低毒性水平,洞庭湖沉積物重金屬毒性低度、中度毒性水平的累積概分別為30.97%、69.03%,整體處于中度毒性水平,鄱陽湖沉積物中的重金屬毒性低度、中度毒性水平的累積概率為92.82%、7.18%,整體處于低度毒性水平.
4.4 巢湖、洞庭湖、鄱陽湖重金屬污染情況各不相同,重金屬大體上存在3~4個不同來源工業源、交通源、農業源和自然源,巢湖交通源為主要影響,整體污染輕,應開展預防工作;洞庭湖和鄱陽湖主要污染源為工業活動,包括有色金屬采礦和冶煉,化工企業生產等,污染較重,應綜合考慮流域情況,提高有色金屬開采和冶煉技術,逐步恢復流域生態環境.
[1] Zan F, Huo S, Xi B, et al. A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China [J]. Journal of Environmental Monitoring, 2011,13(10):2788-2797.
[2] Yuan G, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China [J]. Journal of Hazardous Materials, 2011,185(1):336-345.
[3] 范成新.湖泊沉積物—水界面研究進展與展望[J]. 湖泊科學, 2019, 31(5):1191-1218.
Fan C X. Advances and prospect in sediment-water interface of lakes: A review [J]. Journal of Lake Science, 2019,31(5):1191-1218.
[4] Liu Q, Wang F, Meng F, et al. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index [J]. Marine Pollution Bulleti, 2018,126: 293-303.
[5] Fang T, Xu X. Establishment of sediment quality crality criteria for mrtals in water of the yangtze river using equilibrium-partitioning approach [J]. Resources and Environment in the Yangtze Basin [J]. Resources and Environment in the Yangtze Basin, 2007,16(4):525- 531.
[6] Tang W, Shan B, Zhang H, et al. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China [J]. Journal of Hazardous Materials, 2010,176(1-3):945-951.
[7] 余秀娟,霍守亮,昝逢宇,等.巢湖表層沉積物中重金屬的分布特征及其污染評價[J]. 環境工程學報, 2013,7(2):439-450.
Yu X J, Huo S L, Zan F Y, et al. Distribution characteristics and contamination assessment of arsenic in surface sediments of lake Chaohu, China [J]. Journal of Environmental Engineering Technology, 2013,7(2):12.
[8] 俞 慎,歷紅波.沉積物再懸浮-重金屬釋放機制研究進展[J]. 生態環境學報, 2010,19(7):1724-1731.
Yu S, Li H B. Perspectives on the release of heavy metals via sediment resuspension. Ecology and Environmental Science, 2010,19(7):1724- 1731.
[9] 姜 宇,郭慶軍,鄧義楠.長江流域沉積物和土壤重金屬分布規律研究進展[J]. 生態學雜志, 2022,41(4):804-812.
Jiang Y, Guo Q J, Deng Y N. Research progress in the distribution of heavy metals in sediments and soils in the Yangtze River Basin [J].Chinese Journal of Ecology,2022,41(4):804-812.
[10] 楊 陽,李小龍,楊碧瑩,等.巢湖表層沉積物重金屬污染特征研究[J]. 安徽理工大學學報(自然科學版), 2020,40(4):46-54.
Yang Y, LiX L, Yang B Y, et al. Study on heavy metal pollution characteristics of surface sediments in Chaohu Lake [J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(4):46-54.
[11] 夏建東,龍錦云,高亞萍,等.巢湖沉積物重金屬污染生態風險評價及來源解析[J]. 地球與環境, 2020,48(2):220-227.
Xia J D, Long J Y, Gao Y P, et al. Ecological risk assessment and source analysis of heavy metal Pollutions in sediments of the Chaohu Lake [J]. Earth and environment, 2020,48(2):220-227.
[12] 劉 剛,蔣晨韻,李小龍,等.巢湖沉積物重金屬濃度分布及風險指數[J]. 環境科學與技術, 2018,41(S1):376-380.
Liu G, Jiang C Y, Li X L, et al. The concentration distribution and risk index of sediment heavy metals in Lake Chaohu [J]. Environmental Science & Technology, 2018,41(S1):376-380.
[13] 郭 晶,李利強,黃代中,等.洞庭湖表層水和底泥中重金屬污染狀況及其變化趨勢[J]. 環境科學研究, 2016,29(1):44-51.
Guo J, Li L Q, Huang D Z, et al. Assessment of heavy metal pollution in surface water and sediment of Dongting Lake [J]. Research of Environmental Sciences, 2016,29(1):44-51.
[14] 劉 俊.洞庭湖沉積物營養鹽和重金屬污染特征及評價研究[D]. 湘潭:湘潭大學, 2019.
Liu J.Characteristics and evaluation of nutrient and heavy metal pollution in sediments from Dongting Lake [D]. Xiangtan: Xiangtan University, 2019.
[15] 高吉權,朱姍姍,劉鵬飛.洞庭湖底泥沉積物重金屬分布與生態風險評價[J]. 云南大學學報(自然科學版), 2019,41(4):851-859.
Gao J Q, Zhu S S, Liu P F. Spatial distribution characteristics and ecological risk assessment of heavy metals insurface sediments of Dongting Lake [J]. Journal of Yunnan University: Natural Sciences Edition, 2019,41(4):851-859.
[16] Niu Y, Niu Y, Yu H, et al. Concentration distribution and toxicity of heavy metals in surface sediment of Poyang Lake, China [J]. Wetlands, 2019,39:S55-S62.
[17] 龔 嫻,王親媛,潘雪梅,等.鄱陽湖沉積物重金屬生態風險及其毒性效應[J]. 南昌大學學報(工科版), 2019,41(4):312-317.
Gong X, Wang Q Y, Pan X M, et al. Ecological risk of heavy metals in the sediments of Poyang Lake and its toxic effects [J]. Journal of Nanchang University (Engineering & Technology), 2019,41(4):312- 317.
[18] Niu Y, Jiang X, Wang K, et al. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China [J]. Science of the Total Environment, 2020,700.
[19] Zhang X, Zhong T, Chen D, et al. Assessment of arsenic (As) occurrence in arable soil and its related health risk in China [J]. Environmental Geochemistry and Health., 2016,38(3):691-702.
[20] Shao D, Zhan Y, Zhou W, et al. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis [J]. Environmental Pollution, 2016, 219:329-336.
[21] Duan Q, Lee J, Liu Y, et al. Distribution of heavy metal pollution in surface soil samples in China: A Graphical Review [J]. Bulletin of Environmental Contamination and Toxicology, 2016,97(3):303-309.
[22] Fishman G S. Monte-carlo, control varlates, and stochastic ordering [J]. Siam Journal On Scientific and Statistical Computing, 1989, 10(1):187-204.
[23] Gurevitch J, Koricheva J, Nakagawa S, et al. Meta-analysis and the science of research synthesis [J]. Nature, 2018,555(7695):175-182.
[24] Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement [J]. Revista Espanola De Nutricion Humana Y Dietetica, 2016,20(2):148-160.
[25] 陳 潔,李升峰.巢湖表層沉積物中重金屬總量及形態分析[J]. 河南科學, 2007,5(2),303-307.
Chen J, Li S F. Chemical speciation and total concentration of heavy metals for sediments from Lake Chaohu [J]. Henan Science, 2007,5(2): 303-307.
[26] 程 杰.巢湖水體重金屬污染評價及水中重金屬污染的植物修復研究[D]. 合肥:安徽農業大學, 2008.
Chen J. Pollution Evaluation of heavy metals in Chaohu Lake and phytoremediation of heavy metals pollution in water [D]. Hefei:Anhui Agricultural University, 2008.
[27] Fang T, Lu W, Li J, et al. Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China [J]. Environmental Science and Pollution Research, 2017,24(18):15390- 15400.
[28] 李國蓮.巢湖污染物賦存、來源及風險評價研究[D]. 合肥:中國科學技術大學, 2012.
Li G L. Study on enrichment, source and risk assessment of pollutants in Chaohu Lake [D]. Anhui: University of Science and Technology of China, 2012.
[29] Li G, Liu G, Zhou C, et al. Mobility, binding behavior and potential risks of trace metals in the sediments of the fifth largest freshwater lake, China [J]. Water Science and Technology, 2013,67(11):2503- 2510.
[30] 劉 飛,鄧道貴,楊 威,等.巢湖表層沉積物重金屬的分布特征及生物有效性[J]. 水土保持學報, 2012,26(5):149-153.
Liu F, Deng D G, Yang W, et al. Distribution characteristics and bioavailability of heavy metals in surface sediments of Chaohu Lake. J Soil Water Conserv, 2012,26(5):149-153.
[31] 肖 灑.巢湖沉積物孔隙結構研究與重金屬污染評價[D]. 武漢:華中農業大學, 2015.
Xiao S. The Research of the sediment proe structrue and heavy metal pollution assessment in Chaohu Lake [D]. Wuhan: Huazhong Agricultural University, 2015.
[32] 石志芳,姜 霞,楊蘇文,等.巢湖表層沉積物中重金屬污染的時空變化特征及潛在生態風險評價[J]. 農業環境科學學報, 2010,29(5): 948-954.
Shi Z F, Jiang X, Yang S W, et al. The spatial and temporal variation characteristics and potential ecological risk assessment of heavy metal pollution in surface sediments of Chaohu [J]. Journal of Agro- Environment Science, 2010,29(5):948-954.
[33] Wu L, Liu G, Zhou C, et al. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China [J]. Environmental Science and Pollution Research, 2018,25(1): 588-600.
[34] 徐圣友,葉琳琳,朱 燕,等.巢湖沉積物中重金屬的BCR形態分析[J]. 環境科學與技術, 2008,31(9):20-23.
Xu S Y, Yu L L, Yan Z, et al. Chemical speciation of heavy metals from Chaohu Lake sediments using BCR procedure [J]. Environmental Science & Technology (in Chinese), 2008,31(9):20-23.
[35] Yin H, Deng J, Shao S, et al. Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China [J]. Environmental Monitoring and Assessment, 2011,179(1-4):431- 442.
[36] 張 蕾.巢湖沉積物重金屬污染特征研究[D]. 北京:北京交通大學, 2009.
Zhang L. Characteristics on heavy metal pollution in the Sediments from Lake Chaohu [D]. Beijing: Beijing Jiaotong University, 2009.
[37] 鄭志俠,潘成榮,丁 凡.巢湖表層沉積物中重金屬的分布及污染評價[J]. 農業環境科學學報, 2011,30(1):161-165.
Zheng Z X, Pan C R, Ding F. Distribution and environmental pollution assessment of heavy metals in surface sediments of Chaohu Lake, China [J]. Journal of Agro-Environment Science, 2011,30(1):161-165.
[38] 王聰慧.巢湖沉積物不同粒徑顆粒物中重金屬賦存、吸附行為及生態風險評價[D]. 淮南:安徽理工大學, 2020.
Wang C H. Occurrence, adsorption and ecological risk assessment of heavy metals in size-grouped particles of sediments in Chaohu Lake [D]. Huainan: Anhui University of Technology, 2018.
[39] 吳宏滿.巢湖沉積物重金屬和磷的賦存形態及相互關系初探[D]. 馬鞍山:安徽工業大學, 2019.
Wu H M. Study on the fractions of heavy metals and phosphorus and their correlations in sediment from Chaohu Lake [D]. Maanshan: Anhui University of Technology, 2019.
[40] Fang T, Lu W, Cui K, et al. Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Anhui, China [J]. Chemosphere, 2019,218:1122-1130.
[41] 白 兵.基于GIS和多元變量模型的洞庭湖沉積物中重金屬的空間風險評價和來源解析[D]. 長沙:湖南大學, 2013.
Bai B. Spatial risk assessment and integrated source apportionment of heavy metals in sediment from the Dongting Lake based on GIS and multivariate models [D]. Changsha: Hunan University, 2011.
[42] Bi B, Liu X, Guo X, et al. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China [J]. Environmental Science and Pollution Research, 2018,25(34):34076- 34090.
[43] 李芬芳,符 哲,李利強,等.洞庭湖表層沉積物重金屬污染狀況評估[J]. 環境化學, 2017,36(11):2462-2471.
Li F F, Fu Z, Li L Q. Assessment on heavy metal pollution in the surface sediments of Dongting Lake [J]. Environmental Chemistry, 2017,36(11):2462-2471.
[44] 李 飛,黃瑾輝,曾光明,等.基于梯形模糊數的沉積物重金屬污染風險評價模型與實例研究[J]. 環境科學, 2012,33(7):2352-2358.
Li F, Huang J H, Zeng G M, et al. Assessment model for heavy metal pollution in sediment based on trapezoidal fuzzy Numbers and case study [J]. Environment Science, 2012,33(7):2352-2358.
[45] Li F, Huang J, Zeng G, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China [J]. Journal of Geochemical Exploration, 2013, 132:75-83.
[46] 李利強,王丑明,張 屹,等.洞庭湖大型底棲動物與表層沉積物重金屬研究[J]. 生態環境學報, 2016,25(2):286-291.
Li L Q, Wang C M, Zhang Y, et al. Study of macrozoobenthos and heavy metals of surface sediment in Dongting Lake [J]. Ecology and Environmental Sciences, 2016,25(2):286-291.
[47] 連 花,郭 晶,黃代中,等.洞庭湖表層沉積物中重金屬變化趨勢及風險評估[J]. 環境科學研究, 2019,32(1):126-134.
Lian H, Guo J, Huang D Z, et al. Variation trend and risk assessment of heavy metals in surface sediments of Dongting lake. Research of Environmental Sciences, 32(1):126-134.
[48] Wang L, Dai L, Li L, et al. Multivariable cokriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China [J]. Ecological Indicators, 2018,94:312-319.
[49] 謝意南,歐陽美鳳,黃代中,等.洞庭湖及其入湖口沉積物中重金屬的污染特征、來源與生態風險[J]. 環境化學, 2017,36(10):2253-2264.
Xie Y N, Ouyang M F, Huang D Z, et al. Pollution characteristics, sources and ecological risk of heavy metals in sediments from dongting lake and its lake inlets [J]. Environmental Chemistry, 2017, 36(10):2253-2264.
[50] Yao Z, Bao Z, Gao P. Environmental assessments of trace metals in sediments from dongting lake, central China [J]. Journal of China University of Geosciences, 2006,17(4):310-319.
[51] 張光貴.洞庭湖表層沉積物營養物質污染特征與生態風險評價[J]. 生態科學, 2016,35(1):161-166.
Zhang G G. Pollution characteristics and ecological risk assessment of surface sediment nutrients in Dongting Lake [J]. Ecological Science, 2016,35(1):161-166.
[52] 尹宇瑩,彭高卓,謝意南,等.洞庭湖表層沉積物中營養元素、重金屬的污染特征與評價分析[J]. 環境化學, 2021,40(8):2399-2409.
Yin Y Y, Peng G Z, Xie Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake [J]. Environmental Chemistry, 2021,40(8):2399-2409.
[53] 趙艷民,秦延文,曹 偉,等.洞庭湖表層沉積物重金屬賦存形態及生態風險評價[J]. 環境科學研究, 2020,33(3):572-580.
Zhao Y M, Qin Y W, Cao W, et al. Speciation and ecological risk of heavy metals in surface sediments of Dongting Lake [J]. Research of Environmental Sciences, 2020,33(3):572-580.
[54] 孟 婉,劉 揚,朱士江,等.洞庭湖流域沉積物重金屬分布特征及其生態風險[J]. 南水北調與水利科技(中英文), 2021,19(4):739-749.
Meng W, Liu Y. Zhu S J, et al. Distribution and ecological risk of heavy metals in sediment across the Dongting Lake basin [J]. South to-North Water Transfers and Water Science & Technology, 2021, 19(4):739-749,767.
[55] Li D, Wang J, Pi J, et al. Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China [J]. Environmental Science and Pollution Research, 2019,26(15):14951-14961.
[56] Dai L, Wang L, Li L, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China [J]. Science of the Total Environment, 2018,621:1433-1444.
[57] 弓曉峰,陳春麗,周文斌,等.鄱陽湖底泥中重金屬污染現狀評價[J]. 環境科學, 2006,(4):732-736.
Gong X F, Chen C L, Zhou W B, et al. Assessment on heavy metal pollution in the sediment of Poyang Lake [J]. Environmental Sciences, 2006,(4):732-736.
[58] 簡敏菲,弓曉峰,游 海,等.鄱陽湖水土環境及其水生維管束植物重金屬污染[J]. 長江流域資源與環境, 2004,(6):589-593.
Jian M F, Gong X F, You H, et al. Assessment of pollution of heavy metals in water sedimints and aquatic plants in Poyang lake basins [J]. Resources and Environment in the Yangtze Valley, 2004,(6):589-593.
[59] 任 瓊,張金池,周莉蔭,等.鄱陽湖濕地重金屬空間分布特征及分析評價[J]. 江蘇農業科學, 2018,46(8):275-278.
Ren Q, Zhang J C, Zhou L Y, et al. Spatial distribution characteristics and assessment of heavy metals in Poyang Lake Wetland [J]. Jiangsu Agricultural Sciences, 2018,46(8):275-278.
[60] Wang M, Liu J, Lai J. Metals pollution and ecological risk assessment of sediments in the Poyang Lake, China [J]. Bulletin of Environmental Contamination and Toxicology, 2019,102(4):511-518.
[61] 伍恒赟,羅 勇,張起明,等.鄱陽湖沉積物重金屬空間分布及潛在生態風險評價[J]. 中國環境監測, 2014,30(6):114-119.
Wu H B, Luo Y, Zhang Q M, et al. Spatial distribu tion and potential ecological risk assessment of heavy metals in sedi ments of Poyang Lake [J]. Environmental Monitoring in China, 2014,30(6):114-119.
[62] 李 鳴,劉琪璟.鄱陽湖水體和底泥重金屬污染特征與評價[J]. 南昌大學學報(理科版), 2010,34(5):486-489.
Li M, Liu Q J. Characterjstics and assesment of heavy metals Pollution in Poyang Lake. Journal of Nanchang University (Natural Science). 2010,34(5):486-489,494.
[63] 彭小明,吳 鑫,汪志軍.鄱陽湖表層沉積物重金屬污染特征及風險評價[J]. 江西化工, 2019,(5):3-4.
Peng X M, Wu X, Wang Z J. Characterjstics and assesment of heavy metals Pollution in surface sediments of Poyang Lake. Jiangxi Chemical Industry 2019,(5):3-4.
[64] 張小龍.鄱陽湖沉積物—植物體系中重金屬的分布特征及生態風險研究[D]. 南昌:南昌大學, 2021.
Zhang X L. Study on the distribution characteristics and ecological risks of heavy metals in the sediment-plant system of Poyang Lake [D]. Nanchang: Nanchang Univeristy, 2021.
[65] 袁少芬,弓曉峰,江 良,等.鄱陽湖沉積物重金屬生態風險評價:SQGs和AVS-SEM模型法[J]. 土壤通報, 2020,51(1):234-240.
Yuan S F, Gong X F, Jiang L, et al. Ecological risk assessment of heavy metals in sediments of Poyang Lake: SQGs and AVS-SEM Models [J]. Chinese Journal of Soil Science, 2020,51(1):234-240. DOI:10.19336/j.cnki.trtb.2020.01.32.
[66] 王琳杰,曾賢剛,段存儒,等.鄱陽湖沉積物重金屬污染影響因素分析——基于STIRPAT模型[J]. 中國環境科學, 2020,40(8):3683-3692.
Wang L J, Zeng X G, Duan C R, et al. Analysis on influencing factors of heavy metal pollution in sediments of Poyang Lake based on STIRPAT Model [J]. China Environmental Science, 2020,40(8):3683- 3692.
[67] 江 良.鄱陽湖沉積物重金屬質量基準研究[D]. 南昌:南昌大學, 2020.
Jiang L. Study on the sediment quality guidelines for heavy metals in Poyang Lake, China. [D]. Nanchang: Nanchang Univeristy, 2020.
[68] Yin J, Liu Q, Wang L, et al. The distribution and risk assessment of heavy metals in water, sediments, and fish of Chaohu Lake, China [J]. Environmental Earth Sciences, 2018,77(3):97.
[69] Muller G. Index of geoaccumulation in sediments of the Rhine River [J]. Geojournal, 1969,(2):108-118.
[70] Hakanson L. An ecological risk index for aquatic-pollution control-a sedimentological approach [J]. Water Research, 1980,14(8):975-1001.
[71] 徐爭啟,倪師軍,庹先國,等.潛在生態危害指數法評價中重金屬毒性系數計算[J]. 環境科學與技術, 2008,(2):112-115.
Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’toxicity coefficient in the evaluation of potential ecological risk inde [J]. Environmental Science & Technology, 2008,(2):112-115.
[72] Ginebreda A, Kuzmanovic M, Guasch H, et al. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors [J]. Science of the Total Environment, 2014,468:715-723.
[73] Pedersen F, Bjornestad E, Andersen H V, et al. Characterization of sediments from Copenhagen Harbour by use of biotests [J]. Water Science and Technology, 1998,37(6/7):233-240.
[74] Macdonald D D, Ingersoll C G, Berger T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems [J]. Archives of Environmental Contamination and Toxicology, 2000,39(1):20-31.
[75] 王龍鳳.南四湖表層沉積物中典型重金屬污染研究[D]. 濟南:濟南大學, 2014.
Wang L F. Study on typical heavy metals pollution in the surfacesediments of Nansi Lake [D]. Jinan: University of Jinan, 2014.
[76] 張兆永,吉力力·阿不都外力,姜逢清.艾比湖表層沉積物重金屬的來源、污染和潛在生態風險研究[J]. 環境科學, 2015,36(2):490-496.
Zhang Z Y,Jilli Abuduwaili, Jiang F Q. Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China [J].Environmental Sciences, 2015,36(2): 490-496.
[77] 丁之勇,蒲 佳,吉力力·阿不都外力.中國主要湖泊表層沉積物重金屬污染特征與評價分析[J]. 環境工程, 2017,35(6):136-141.
Ding Z Y, Pu J,Jilli Abuduwaili.Heavy metal contamination characyistics and its Jassessment in Surface sediment of major lakes in China [J].Environmental Engineering, 2017,35(6):136-141.
[78] 李瑩杰,張列宇,吳易雯,等.江蘇省淺水湖泊表層沉積物重金屬GIS空間分布及生態風險評價[J]. 環境科學, 2016,37(4):1321-1329.
Li Y J, Zhang L Y, Wu Y W, et al. GIS spatial ditribution and ecological risk assessment of heavy metals in surface sediments of shallow lakes in Jiangsu Province [J]. Environmental Sciences, 2016, 37(4):1321-1329.
[79] 陳興仁,陳富榮,賈十軍,等.安徽省江淮流域土壤地球化學基準值與背景值研究[J]. 中國地質, 2012,39(2):302-310.
Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River-Huaihe River basin of Anhui Province [J]. Geology in China, 2012,39(2):302-310.
[80] 張建新.洞庭湖區土壤地球化學基準值與污染等級劃分[J]. 物探與化探, 2014,38(4):793-799.
Zhang J X. Soil geochemical baseline and pollution level division in Dongting lake area [J]. Geophysical and Geochemical Exploration, 2014,38(4):793-799.
[81] 中國環境監測總站.中國土壤元素背景值[M]. 北京:中國環境科學出版社, 1990.
China National Environmental Monitoring Centre. Background values of soil elements in China [M]. Beijing: China Environmental Press, 1990.
[82] Niu Y, Jiao W, Yu H, et al. Spatial evaluation of heavy metals concentrations in the surface sediment of Taihu Lake [J]. International Journal of Environmental Research and Public Health, 2015,12(12): 15028-15039.
[83] Peris M, Recatala L, Mico C, et al. Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region [J]. Water Air and Soil Pollution, 2008,192(1- 4):25-37.
[84] 閆 湘,王 旭,李秀英,等.我國水溶肥料中重金屬含量、來源及安全現狀[J]. 植物營養與肥料學報, 2016,22(1):8-18.
Yan X, Wang X, Li X Y, et al. Contents,source and safety status of major heavy metals in water-soluble fertilizers in China [J]. Journal of Plant Nutrition and Fertilizer, 2016,22(1):8-18.
[85] Kemp K. Trends and sources for heavy metals in urban atmosphere [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2002,189:227-232.
[86] Ewen C, Anagnostopoulou M A, Ward N I. Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow [J]. Environmental Monitoring and Assessment, 2009,157(1-4):483-498.
[87] 邵 莉,肖化云,吳代赦,等.交通源重金屬污染研究進展[J]. 地球與環境, 2012,40(3):445-459.
Shao L, Xiao H Y, Wu D S, et al. Review on research on Traffic- Related heavy metals pollution [J]. Earth and Environment, 2012,40(3): 445-459.
[88] 曾祥英,王 晨,于志強,等.湘江岳陽段沉積物重金屬污染特征及其初步生態風險評估[J]. 地球化學, 2012,41(1):63-69.
Zeng X Y, Wang C, Yu Z Q, et al. The occurrence, distribution and preliminary risk assessment of heavy metals in sediments from Xiangjiang River (Yueyang Section) [J]. Geochimica, 2012,41(1):63- 69.
[89] 劉耀馳,高 栗,李志光,等.湘江重金屬污染現狀、污染原因分析與對策探討[J]. 環境保護科學, 2010,36(4):26-29.
Liu Y C, Gao S, Li Z G, et al. Analysis on heavy metals pollution status and reasons in Xiangjiang river and discussion on its countermeasures [J]. Environmental Protection Science, 2010,36(4): 26-29.
[90] 羅 慧,劉秀明,王世杰,等.中國南方喀斯特集中分布區土壤Cd污染特征及來源[J]. 生態學雜志, 2018,37(5):1538-1544.
Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the karst area in South China [J]. Chinese Journal of Ecology, 2018,37(5):1538-1544.
[91] 顏川云.湘江株洲段河岸沉積物重金屬污染來源與評價[J]. 內江師范學院學報, 2018,33(12):73-78.
Yan C Y. Origin and evaluation of heavy metal contamination in riparian sediments from zhuzhou section of Xiangjiang River [J]. Journal of Neijiang normal University, 2018,33(12):73-78.
[92] Allen H E, Fu G M, Deng B L. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environmental Toxicology and Chemistry, 1993,12(8):1441-1453.
[93] Wang H, Zhao Y, Liang D, et al. 30+year evolution of Cu in the surface sediment of Lake Poyang, China [J]. Chemosphere, 2017,168: 1604-1612.
[94] Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China [J]. Journal of Geochemical Exploration, 2010,104(3):118-127.
Mate analysis of heavy metal pollution in sediments of Chaohu Lake, Dongting Lake and Poyang Lake.
LI He, WANG Shu- hang, CHE Fei-fei, JIANG Xia, NIU Yong*
(National Engineering Laboratory for Lake Pollution Control and Eeological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)., 2023,43(2):831~842
The study analyzed the heavy metal concentrations of Chaohu Lake,Dongting Lake and Poyang Lake sediment from 2004 to 2021, and conduct the Monte Carlo uncertainty analysis of geoaccumulation, potential ecological risk and toxicity heavy metal of the three lakes to objectively and comprehensively describe the contamination degree. The results showed that,the three lakes were polluted by Cu, Zn, Pb, Ni, Cr and Cd in different degrees and followed with the order: Poyang Lake > Dongting Lake > Chaohu Lake. The geoaccumulation indices showed that Cd is the dominant pollutant in all three lakes, and the probabilities were 84.76% for moderatesediment contamination, in Chaohu Lake, 32.64% for heavy sediment contamination in Dongting Lake and 46.64% for heavy sediment contamination in Poyang Lake respectively. Cd contribute most to the potential ecological risks index (RI), and its proportion in the Chaohu lake, Dongting lake and Poyang lake were 80.26%、91.04% and 90.03%, respectively. Chaohu lake were at low-moderate risk, Dongting lake take the 60.74% possibility of high risk and Poyang lake take 68.95% possibility of high risk. Toxicity unit evaluation results indicated that Pb and Cr were the main contributor of toxicity in three Lakes sediment. The toxicity of heavy metals was observed the low level in the Chaohu lake and Dongting lake, but the moderate leve in Poyang lake with a 69.03% cumulative probability. The heavy metals of surface sediments in Chaohu lake, Dongting lake and Poyang Lake mainly derived from industry, transportation, agriculture and natural sources. The heavy metal contaminatio of Chaohu Lake mainly came from transportation, while Dongting lake and Poyang Lake mainly came from industry.
Chaohu lake;Dongting lake;Poyang lake;heavy metal;pollution assessment
X524
A
1000-6923(2023)02-0831-12
李 賀(1998-),男,山東聊城人,中國環境科學研究院碩士研究生,主要研究方向為湖泊沉積物重金屬.
2022-06-27
國家自然科學基金資助項目(41807494)
* 責任作者, 副研究員, niu.yong@craes.org.cn