張入文 吳淑蓮 邵文意
(浙江理工大學建筑工程學院,浙江 杭州 310018)
目前,特色小鎮的相關文獻涉及領域較廣、研究較全面,不僅涉及新型城鎮化、小城鎮發展、鄉村振興、體育產業與經濟等方面,包括特色小鎮的產城融合、不同產業類型的特色小鎮等,還探討了特色小鎮如何促進新型城鎮化建設、如何推進鄉村振興協調發展等主題[1]。特色小鎮發展是以特色產業為驅動力,存在補給同質化嚴重等短板。要有效破解小鎮資源空間調度供給不足的難題,需通過創新發展或轉型升級突破特色小鎮的發展瓶頸。同樣,特色產業的發展以特色小鎮本身為基礎,特色小鎮對產業發展起后盾作用,為特色產業的發展提供更多的可能性。因此,特色小鎮的高質量發展取決于特色小鎮與其特色產業的良好互動性,特色小鎮與特色產業的耦合協調程度越高,兩者相互促進、共同進步的局面越好。由此可見,對特色小鎮與其特色產業的作用關系進行探討具有重要意義。
目前對于特色小鎮與特色產業發展水平的研究大多采用AHP、專家評判法、主成分分析法、因子分析法、熵值法等。單一方法的運用存在一定的缺陷,如主觀賦權法具有較強的主觀隨意性;客觀賦權法則過分依賴于實際的應用域,通用性和決策人的參與性較差,沒有考慮決策人的主觀意向[2]。因此,本研究在借鑒相關研究成果的基礎上,將小鎮特色產業發展與特色小鎮發展聯系起來,采用AHP與熵值法相結合的方法,分析特色小鎮與特色產業的互動關系,通過協調度模型定量分析特色產業與特色小鎮的適應性,從產業發展的視角為特色小鎮的高質量發展提供新思路。
本文把特色小鎮系統(H1)和特色產業系統(H2)定義為耦合關系,運用耦合協調模型驗證H1與H2之間的適應性。
耦合協調度模型用于分析事物的協調發展水平[3-5]。耦合度指兩個或兩個以上系統之間相互作用和影響,實現協調發展的動態關聯關系,可以反映系統之間相互依賴、相互制約的程度。協調度指耦合相互作用關系中良性耦合程度的大小,可反映協調狀況的好壞[3-5]。耦合協調度等級劃分標準見表1。
表1 耦合協調度等級劃分標準
(1)分別計算兩個系統的評價值Ui,公式如下
(1)
式中,wj為權重系數。
(2)計算耦合度P,公式如下
(2)
式中,Un為系統發展水平,即評價值;n為系統的個數。
(3)計算協調度T,公式如下
T=β1U1+β2U2+…+βnUn
(3)
式中,β1、β2為對應權重系數。
(4)計算耦合協調度Q,公式如下
Q=Sqrt(P×T)
(4)
建立H1與H2兩個系統,構建包括目標層、準則層和指標層三個層次的指標體系。在借鑒相關研究以及國家特色小鎮認定標準的基礎上確定特色小鎮系統與特色產業系統的評價指標體系,見表2。
表2 特色小鎮系統與特色產業系統評價指標體系
依據主客觀相結合的原則,首先選用AHP和熵值法分別對構建的評價指標體系進行賦權,然后進行組合權重計算。
2.2.1 層次分析法計算權重
(1)構建判斷矩陣。在專家打分時采用5級量表評價H1、H2指標的重要程度,將6名專家的打分結果進行加權平均,其結果作為該項指標分值,構建指標分差表,各指標的分差值對應該指標的標度值,標度值對應1~9級標度表(表3)。
表3 1~9級標度表
(續)
針對指標層構建兩兩判斷矩陣,A=(Aij)mn,判斷矩陣形式如下
(5)
(2)計算權重系數。
1)判斷矩陣每一行元素的乘積,公式如下
(6)
2)計算Mi的n次方根,公式如下
(7)
(8)
(3)進行一致性檢驗。
1)計算判斷矩陣的λmax,公式如下
(9)
2)計算一致性指標,公式如下
(10)
3)計算一致性比率,公式如下
(11)
2.2.2 熵權法計算權重
熵的概念最早來源于熱力學,可以用來度量系統的無序程度,表示已知數據包含的信息量,并確定其權重[6]。評價指標值相差越大,熵值越小,則該指標攜帶的信息量較大,可以對其賦予較大的權重;反之,該指標攜帶的信息量較少。
(1)對數據進行無量綱化處理,得到矩陣Y。
正向化
負向化
(12)
得到矩陣
Y=(yij)n×m
(13)
(2)計算各評價指標的熵值Hj,公式如下
(14)
(3)計算權重系數W2,公式如下
(15)
2.2.3 AHP-熵權法組合權重計算
AHP-熵權法組合權重計算公式如下
(16)
式中,αi為第i項指標W1所對應的數據;βij為第i項指標第j年W2所對應的數據。
案例選取以制筆為特色產業的分水妙筆小鎮,以旅游、休閑、娛樂為特色產業的安吉天使小鎮,以“人工智能+”“互聯網+”為特色產業的蕭山信息港小鎮,以及以水晶產業為特色產業的浦江水晶小鎮。
(1)按照表3將專家打分數據進行處理得到判斷矩陣,按照式(6)、式(7)、式(8)計算指標權重,并通過一致性檢驗,結果見表4。
表4 一致性檢驗結果匯總
(2)采用熵權法計算指標組合權重。將H1、H2數據按年份整理代入式(12)得到矩陣式(13),代入式(14)、式(15)分別得到H1、H2權重,見表5、表6。
(3)計算組合權重。分別將H1和H2的W1、W2代入式(16)得到綜合權重W,見表5、表6。
表5 特色小鎮系統權重表
表6 特色產業系統權重表
(4)計算耦合協調度。將兩個系統的W分別代入式(1)得到評價值U1、U2,代入式(12)得到耦合度P,代入式(3)得到協調度T,代入式(4)得到耦合協調度Q,具體見表7~表14。
表7 安吉天使小鎮評價值
表8 分水妙筆小鎮評價值
表9 浦江水晶小鎮評價值
表10 蕭山信息港小鎮評價值
表11 安吉天使小鎮耦合協調度計算結果
表12 分水妙筆小鎮耦合協調度計算結果
表13 浦江水晶小鎮耦合協調度計算結果
表14 蕭山信息港小鎮耦合協調度計算結果
3.3.1 特色小鎮與其特色產業耦合協調度分析
(1)基于平均水平的耦合協調分析。
1)耦合度分析。從時間維度看,2015—2016年特色小鎮的H1與H2均處于磨合耦合階段,平均耦合度在0.70左右;2017—2019年特色小鎮的H1與H2均處于高水平耦合階段,平均耦合度在區間[0.9,1.0];2020年平均耦合度下降到0.79,可能受疫情等因素影響,H1與H2之間的相互作用程度降低。從空間維度上看,特色小鎮的平均耦合度分別為0.701、0.960、0.712、0.959,分別處于磨合階段、高水平耦合階段、磨合階段、高水平耦合階段,由此看來各小鎮的耦合度空間差異不大。
2)耦合協調度分析。從時間緯度看,H1與H2的平均耦合協調程度從2015年的嚴重失調到2019年的良好協調,耦合協調度值分別為0.152、0.438、0.643、0.709、0.896、0.766;可能受疫情等因素影響,2020年的耦合協調程度降為中度協調,耦合協調度值為0.766。從空間緯度上看,特色小鎮的平均耦合協調度分別為0.593、0.643、0.493、0.673。除浦江水晶小鎮瀕臨失調,其余小鎮值均落在區間[0.5,0.7],處于協調程度。
(2)基于個體差異的耦合協調分析。
1)安吉天使小鎮。見表11,安吉天使小鎮2015—2017年耦合度波動較大,2015年處于拮抗階段,2016年降為低水平耦合階段(達最低點0.247),2017年為高水平耦合階段;2018—2020年耦合度呈平穩上升階段,從磨合階段到高水平耦合階段。2018年之前波動較大可能是因為小鎮正處于建設探索階段。2015年,小鎮以“HelloKitty”為主題的樂園正式開園,吸引了大量游客,為小鎮初期發展提供了收入來源。2016年,樂園收入對小鎮建設的影響逐漸降低,天使學校開辦,新產業的注入使得小鎮發展與其特色產業協調的難度提升;2017年,進入調整期;2018年以后,小鎮的發展進入成熟模式,小鎮本身與其特色產業的相互作用不斷增強。
2015—2020年,安吉天使小鎮的耦合協調度小有波動但總體呈緩慢上升趨勢,耦合協調程度從開始的中度失調到2020年達到優質協調。原因可能為:安吉縣是“綠水青山就是金山銀山”理念誕生地、中國美麗鄉村發源地和綠色發展先行地,與天使小鎮的休閑、旅游、娛樂定位一致。
2)分水妙筆小鎮。見表12,分水妙筆小鎮的耦合度均在0.9以上,處于高水平耦合階段,小鎮的特色小鎮系統與特色產業系統的相互作用很強。原因可能為:分水鎮一直以來被譽為“中國制筆之鄉”,鎮上的工業經濟以制筆塊狀經濟為主,2015年以前就經歷過三次轉型升級,并于2015年成功入選杭州市首批特色小鎮創建名單,妙筆小鎮與其制筆特色產業的關聯性一直很強。
分水妙筆小鎮的耦合協調度值從2015年的0.100上升到2017年的0.832,2018年耦合協調度值小幅度下降到0.797,2019年上升到0.903,到2020年下降到0.788。分水妙筆小鎮2015—2017年耦合協調度值平穩升高,協調程度從嚴重失調到良好協調;2018—2020年處于波動時期,但總體耦合協調程度處于協調,原因可能為:發展初期受政策支持;2018年以后妙筆小鎮處于轉型升級時期,分水鎮以妙筆小鎮為“產業強鎮”發展主平臺、升級主戰場、創新主引擎。
3)浦江水晶小鎮。見表13,浦江水晶小鎮2015—2019年耦合度值雖稍有波動但總體呈持續上漲態勢,除2015年、2017年協調等級為拮抗、磨合,其余年份協調等級均為高水平耦合,到2020年協調等級下降為低水平耦合。水晶小鎮的耦合協調度值與其耦合度值一樣,2015年嚴重失調,2016年勉強協調,2017年下降到輕度失調,2018—2019上升到良好協調,2020年下降到輕度失調,原因可能為:受疫情、政策等影響,小鎮固定互聯網介入用戶數大幅度增加,造成小鎮發展與其特色產業的關聯度相對降低,協調度降低。
4)蕭山信息港小鎮。見表14,蕭山信息港小鎮的耦合度值除2016年為0.787,2015—2020年協調度值均在0.9以上,最低處于高水平耦合階段。
蕭山信息港小鎮2015—2020年的耦合協調度值逐年上升,2020年與2015年的差值為0.895,耦合協調程度分別為嚴重失調、瀕臨失調、中級協調、中級協調、優質協調、優質協調。小鎮初期處于建設探索階段,雖嚴重失調,但特色小鎮系統與特色產業系統不斷朝著更好的協調方向發展。
3.3.2 特色小鎮發展水平分析
根據表5結果來看,H1準則層中經濟、社會與環境三個層面權重占比大致相同,分別為0.397、0.303、0.300。其中,經濟層面占比最高,由此可見經濟對特色小鎮的高質量發展起到了至關重要的作用,同時社會與環境兩大層次對特色小鎮高質量發展發揮著不可或缺的作用。根據表5中各層次各指標的權重大小來看,經濟層次中固定資產投資和財政總收入占比較高,分別為0.154、0.151;社會層次中固定互聯網寬帶介入用戶數占比最高,達到了0.151;環境層次中建成區綠化覆蓋率、人均公園綠地面積、空氣優良率的占比較高,分別為0.088、0.084、0.072,其中建成區綠化覆蓋率的占比最高。
從表7的U1數據可以看出,安吉天使小鎮2015—2017年數據波動較大,特色小鎮發展處于不穩定狀態;2018—2020年數據平穩上升,特色小鎮處于穩步發展階段。分水妙筆小鎮2015—2017數據穩步提高;2018—2020年數據出現波動,說明小鎮起初發展勢頭較好,2018年以后可能出現了發展瓶頸(表8)。浦江水晶小鎮2015—2020年數據穩步提升,小鎮長期處于穩步發展階段(表9)。蕭山信息港小鎮2015—2020年數據呈現持續提升狀態,同時其起始分相比其他小鎮來說是最高的,可以看出該小鎮基礎較好,小鎮發展可持續(表10)。
3.3.3 特色產業發展水平分析
根據表6可知,在特色產業系統的4個層次中,經濟和社會層次權重較高,分別為0.361、0.358;其次是產業規模比和環境層次,分別為0.082、0.199。這說明經濟和社會兩層次對評價小鎮特色產業發展質量具有重要影響。從整個系統指標權重來看,社會消費品零售總額、主營業務收入、相關企業數、規模以上工業全員勞動生產率、第三產業占比這5項指標占比較為平均,分別為0.177、0.184、0.188、0.170、0.132。
從表7中的U2數據可以看出,2015—2018年安吉天使小鎮的特色產業系統數據持續增長,處于持續發展階段;2019—2020年數據下降,但降幅不大,可見天使小鎮的特色產業發展處在調節階段。從表8、表9中的U2數據可見,2015—2018年分水妙筆小鎮和浦江水晶小鎮的數據穩步提升;2019—2020年數據下降,特色產業發展發展勢頭較好;2019年后可能受疫情等因素影響,評分降低。從表10中的U2數據可以看出,2015—2020年小鎮特色產業呈現穩步上升狀態,信息時代為小鎮產業提供了良好發展的基礎,小鎮產業順應大勢,穩步發展。
對于特色小鎮這一“集聚高端要素和特色產業的創新創業平臺”而言,要保證其健康可持續發展,與其特色產業的耦合協調十分重要。從上述研究得出以下結論:特色小鎮系統和特色產業系統均從低水平向高水平趨勢發展,耦合協調度從失調到協調,到2020年均達到協調程度。這表明特色小鎮的高質量發展受小鎮本身與其特色產業的適宜性影響,耦合協調度越高,影響越大。
本文運用耦合協調度模型定量研究了特色小鎮系統與特色產業系統的關系,但由于小鎮興起時間較短,且處在發展探索階段,難以獲得長期、全面的數據,小鎮選取數量較少,未能全面反映整體發展情況,有待進一步深入探討。