趙維宏,韓文雄,楊波,孟維康,柴海亮,馬懿敏,張占勝,王利峰,王艷,王明圓,張姍,丁玉林,王金玲,吉林臺,王鳳龍,趙麗,劉永宏
內蒙古地區羊源副結核分枝桿菌的分離與基因分型

1內蒙古農業大學獸醫學院/農業農村部動物疾病臨床診療技術重點實驗室,呼和浩特 010000;2內蒙古賽科星繁育生物技術(集團)股份有限公司,呼和浩特 011517;3鄂爾多斯市動物疫病預防控制中心,內蒙古鄂爾多斯 017000
【目的】副結核病被世界動物衛生組織(OIE)列入必須報告的《OIE疫病、感染及侵染名錄》,我國將其列為二類動物疫病,引起多種反芻動物慢性、增生性腸炎,感染動物通過腸道間歇性排菌而成為養殖場的持續傳染源,給養殖業帶來了巨大經濟損失。其病原體副結核分枝桿菌(MAP)屬于胞內寄生的革蘭氏陽性菌,為三類動物病原微生物,包括S型(羊型,細分為Ⅰ型、Ⅲ型和駱駝型)和C型(牛型、Ⅱ型,包括B型(野牛型))。有研究表明,各亞型MAP無宿主特異性,但具有地域性,內蒙古作為國內該病的首發地區,獲得并準確鑒定內蒙古地區MAP菌株亞型及基因特征,對副結核病的預防控制意義重大。【方法】對內蒙古地區來源的28份MAP陽性的羊源病料進行MAP分離培養,菌落Ziehl-Neelsen染色,染色陽性菌擴繁,提取擴繁菌液基因組DNA,進行IS900基因、IS1311基因和DMC基因擴增、測序和序列分析,同時IS1311基因PCR產物進行f I和I雙酶切鑒定。【結果】28份樣品經過7—12周培養,共有9支培養基長出菌落,菌落半透明乳白色、表面光滑。挑取單菌落進行抗酸染色,在顯微鏡下觀察到呈不規則(單個或分枝狀)、紅染的細短桿菌,符合分枝桿菌的形態學特征及抗酸染色特性。9株分離菌IS900、IS1311和DMC基因PCR擴增產物均與目的基因片段預期大小一致。確定了本研究9株分離株均為MAP菌株,分別命名為MAP-NM1至MAP-NM9。DMC基因擴增產物大小為310bp,符合Ⅱ型MAP特征;IS1311基因擴增產物經f Ⅰ和Ⅰ雙酶切,本研究9株MAP均得到4條目的條帶,與Ⅱ型MAP一致;IS1311基因測序結果與S型、C型、印度野牛型和美國野牛型MAP代表株對照分析顯示,9株MAP IS1311基因片段的64、65、68、223、236、422、527、628位堿基位點符合C型和B型MAP特征;IS900基因測序結果序列分析顯示,9株MAP IS900基因片段第169位及第216位堿基分別為C(胞嘧啶)和A(腺嘌呤),符合Ⅱ型和Ⅲ型MAP特征;17株來自GenBank數據庫的MAP IS900基因參考序列與本研究9株分離株IS900基因系統進化樹顯示,本研究9株MAP均劃分于Ⅱ型MAP分支;3個基因測序結果進行Blast在線分析,與本研究所得分離株同源性最高的參考序列均為Ⅱ型MAP,且同源性均高于98%。綜上所述,本研究9株MAP分離株均為Ⅱ型MAP。【結論】首次分離得到內蒙古地區羊源Ⅱ型MAP菌株。
副結核分枝桿菌;分離培養;亞型鑒定;羊;內蒙古
【研究意義】副結核病()被世界動物衛生組織(OIE)列入必須報告的《OIE疫病、感染及侵染名錄》,我國將其列為二類動物疫病,其病原體副結核分枝桿菌(subsp.MAP)歸類為三類動物病原微生物。該病特征性病理變化主要為慢性增生性腸炎和腸系膜淋巴結增生性炎[1],患病動物最終因進行性消瘦、衰弱而死[2]。與牛相比,羊更易感染副結核分枝桿菌,且大都呈慢性或隱性感染[3],極易被忽視或誤診,部分感染動物通過腸道間歇性排菌而成為養殖場的持續傳染源[4],給羊養殖業帶來了較大經濟損失[5]。【前人研究進展】MAP屬于胞內寄生的革蘭氏陽性菌,包括S型(羊型,細分為Ⅰ型、Ⅲ型和駱駝型)和C型(牛型、Ⅱ型,包括B型),B型(野牛型)又包括印度野牛型和美國野牛型[6-8]。各亞型MAP無宿主特異性,培養特征也有很大差異[8-9]。MAP初代分離培養非常困難,在體外培養時必須添加草分枝桿菌素提取物[10],然而該菌生長緩慢,Ⅱ型MAP一般接種后6周開始出現菌落,而Ⅰ型甚至需半年以上才能開始觀測到菌落,且菌落較小不易觀察。【本研究切入點】1953年在我國內蒙古地區首次發現了1例副結核病[11],隨后該病迅速蔓延至全國大部分地區,感染譜涉及眾多家畜和野生動物。截至目前,國內MAP分離株多為牛源MAP,包括山東、新疆、甘肅、黑龍江等地[12]。另外,僅有新疆地區馬鹿源、綿羊源[13-14]和遼寧絨山羊源[15]MAP分離株,未見內蒙古地區MAP分離株分型的報道。有研究表明MAP基因型具有地域性[16],對國內該病首發地區的MAP進行分離培養及亞型鑒定,內蒙古地區MAP分離株的獲得尤為重要。【擬解決的關鍵問題】本研究擬對實驗室保存的內蒙古地區PCR鑒定陽性的山羊和綿羊樣品進行MAP的分離培養,通過對疑似菌落進行形態學和分子生物學鑒定以確定MAP及其亞型,分離培養得到的菌株為后續MAP的病原學研究和流行病學調查奠定基礎,為內蒙古地區羊源MAP遺傳變異的監測及國內羊副結核病的防控提供理論依據。
試驗于2021年3—10月在內蒙古農業大學獸醫學院家畜病理學實驗室完成,實驗室生物安全等級為ABSL-2。
1.1.1 組織病料及糞便 12份檢測為MAP陽性的組織病料,包括羊小腸及腸系膜淋巴結,分別編號1—12;以及16份MAP陽性山羊糞便,編號為A1至A16(表1)。以上材料均在內蒙古農業大學獸醫學院家畜病理學實驗室-20℃保存。
1.1.2 引物和參考序列 副結核分枝桿菌IS900基因、IS1311基因和DMC基因分子鑒定及分型引物(IS900-F、IS900-R、IS1311-F、IS1311-R、DMC529、DMC531和DMC533),由生工生物工程(上海)有限公司合成(表2)。基因序列分析參考菌株均來源于NCBI數據庫(表3)。
1.1.3 主要試劑及儀器 卵黃瓊脂培養基(Code No. 222233)和Middlebrook 7H9培養基(Code No. 271310)購自美國BD公司。Ferric Mycobactin J(Code No. MYCO)購自ID-VET公司。TaKaRa MiniBEST Bacteria Genomic DNA Extraction Kit Ver. 3.0(Code No. 9763)、Premix TaqTM(TakaRa TaqTMVersion 2.0 plus dye)(Code No. RR901A)、f I限制性內切酶(Code No. 1238A)和I限制性內切酶(Code No. 1247A),購自寶日醫生物工程(北京)有限公司。使用儀器設備高速冷凍離心機(Cat No.75004250, ThermoFisher)、PCR儀(Part No.4359659, Gene Company Limited)、電泳儀(Model No. PowerPacTMUniversal Power Supply, BIO RAD)、凝膠成像儀(BDA Box 2, Biometra GmbH)等。

表1 病料采集信息

表2 特異性引物

表3 參考菌株
1.2.1 MAP的分離培養及抗酸染色 組織病料研磨和陽性糞便采用改良的NADC法[20]處理后,分別接種卵黃瓊脂培養基。37℃恒溫培養7—12周,每周觀察并記錄培養基中菌落生長情況。
采用Ziehl-Neelsen熱染法對疑似菌落進行抗酸染色鏡檢。陽性單菌落接種7H9液體培養基,37℃恒溫培養擴繁。
1.2.2 分離菌DNA提取、PCR擴增及分型鑒定 使用TaKaRa MiniBEST Bacteria Genomic DNA Extraction Kit Ver. 3.0試劑盒提取細菌基因組DNA,-20℃保存備用。對IS900基因、IS1311基因和DMC基因進行PCR擴增,退火溫度分別為58℃、62℃和60℃,PCR產物經1.5%凝膠電泳鑒定。IS1311基因PCR擴增產物進行I和I雙酶切鑒定。
1.2.3 序列分析 IS900、IS1311和DMC基因各20 μL陽性PCR產物送至生工生物工程(上海)有限公司進行測序。測序結果應用BLAST在線平臺(https://blast.ncbi.nlm.nih.gov/Blast.cgi)和DNAstar、MEGA5.0等軟件,進行MAP鑒定、亞型分析和IS900基因系統進化樹構建。
2.1.1 MAP分離培養及Ziehl-Neelsen染色結果 28份樣品接種卵黃瓊脂培養基,經過7—12周培養后,共有9支培養基長出半透明乳白色、表面光滑的菌落(圖1左),樣品編號對應為4、9、10、11、A10、A11、A12、A14和A16;挑取單菌落進行抗酸染色,在顯微鏡下觀察到呈不規則(單個或分枝狀)、紅染的細短桿菌(圖1右)。
2.1.2 PCR結果 分別使用IS900基因和IS1311基因特異性引物對細菌基因組DNA進行PCR擴增,結果顯示9株分離菌PCR均為陽性,分別得到約為400 bp和608 bp的條帶,與目的基因片段大小一致。9株分離菌命名為MAP-NM1至MAP-NM9。
2.1.3 亞型鑒定 用亞型鑒定特異性引物DMC529、DMC531和DMC533對已鑒定為MAP的9株分離菌進行PCR擴增分型,結果顯示9株MAP的DNA均擴增得到約310 bp的條帶(圖2左)。使用f I和I限制性內切酶對IS1311基因的PCR產物進行雙酶切,9株MAP均得到約為67、218、285和323 bp 4條帶(圖2右)。
2.2.1 IS900基因序列分析 9株MAP IS900基因片段第169位及第216位堿基分別為C(胞嘧啶)和A(腺嘌呤),符合Ⅱ型和Ⅲ型MAP特征。
2.2.2 IS1311基因序列分析 與來自GenBank數據庫的各亞型MAP代表菌株分析結果顯示,9株MAP IS1311基因的8個特殊位點符合C型和B型MAP特征(表4)。

圖1 菌落形態(左)和分離株抗酸染色結果(右)

M:Marker;1:陰性對照;2-10:分離株MAP-NM1至MAP-NM9 M: Marker; 1: Negative control; 2-10: MAP-NM1 isolate to MAP-NM9 isolate

表4 參考菌株
Y代表C/T,N代表A/T/C/G Y stands for C / T, N stands for A / T / C / G
17株來自GenBank數據庫的MAP IS900基因參比序列與本研究9株MAP IS900基因,使用MEGA5軟件構建基因進化樹顯示,本研究9株MAP均處于Ⅱ型MAP分支(圖3)。
對測序所得9株MAP的IS900基因、IS1311基因和DMC基因序列進行Blast分析結果顯示,與9株MAP的3個基因同源性最高的序列全部為Ⅱ型MAP菌株,同源性為98.58%至100%(表5)。

◆標注序列為本研究序列 The black rhombus tagging sequence is the sequence of this research
副結核病是1895年由JOHNE和HOTHINGHOW首次發現,主要引起牛腸道感染,當時命名為“假結核性腸炎”,1923年MAP被正式認為是引起副結核病的病原體。副結核病是畜禽的主要限產性疾病,因其潛伏期漫長、發病呈慢性經過,不易被察覺。我國該病在散戶以及農村呈散發,在規模化養殖場主要呈區域流行,在全國范圍呈地方性流行。在美國、澳大利亞、南非、西班牙、希臘、法國[21]等國也有報道該病的發生,給羊養殖業帶來了極大的經濟損失。據統計,僅美國每年由此病帶來的損失在2億美元以上[13]。
國內關于副結核病的研究多集中于血清學調查,病原分離鑒定較少,因MAP的初代分離是非常困難的,可能與MAP對分枝桿菌素的依賴性、病料的去污方法、MAP的生長速度和培養基的適宜度等方面有關。截至目前,國內多個省市報道了副結核病,而僅有從4種動物獲得MAP分離株的報道[14],其中只有2018年4株山東奶牛分離株為Ⅰ型MAP,其余均為Ⅱ型MAP。這對于眾多的可感染動物種類稍顯不足,嚴重制約了對副結核病進一步的研究。內蒙古為國內首次發現副結核病的地區,分離培養得到內蒙古地區MAP及其亞型確定,對掌握內蒙古地區MAP菌株基因特征,和對國內副結核病的防控具有重大意義。

表5 27個MAP基因片段Blast比對分析
本研究對28份采集自內蒙古各地區的MAP陽性組織樣品和糞便進行MAP分菌培養,自接種后第7—12周,共有9份樣品在含分枝桿菌素的卵黃瓊脂培養基上長出菌落,隨著培養時間延長,菌落由開始的光滑半透明變為粗糙不透明的乳頭狀,與蔡珠明等[22]得到的菌落形態相似;單菌落Ziehl-Neelsen染色,在油鏡下可觀察到單個或分枝狀排列的紅染桿狀菌,符合分枝桿菌的形態學特征及抗酸染色特性[23],表明9株分離菌均為抗酸染色陽性菌。對MAP特異性基因IS900、IS1311和DMC進行PCR擴增,擴增產物大小與文獻[24]報道一致,證明9株分離菌均為MAP。
9株MAP DMC基因擴增產物約為310bp,符合COLLINS[19]報道的Ⅱ型MAP特征。由于不同亞型IS1311基因的第223位堿基不同,導致限制性內切酶的選擇不同,通過f Ⅰ和Ⅰ兩種限制性內切酶對該基因酶切鑒定MAP亞型[23, 25],本研究9株MAP IS1311基因擴增產物酶切結果與報道的Ⅱ型MAP一致。IS1311基因序列分析結果可區分S型、C型和B型MAP菌株,參照各亞型代表菌株IS1311基因第64、65、68、223、236、422和527位堿基特征[26-27],本研究9株MAP可能為B型或C型MAP。IS900基因的第169和216位堿基在區分Ⅰ型、Ⅱ型和Ⅲ型MAP時起重要作用,Ⅰ型分別為CG,Ⅱ型分別為CA,Ⅲ型分別為TG或C/TG/A[28],根據上述信息分析,本研究9株MAP可能為Ⅱ型或Ⅲ型MAP。同時IS900基因進化樹顯示9株分離株均處于Ⅱ型MAP分支。另外,將本研究獲得的3個基因測序結果Blast在線分析顯示,與本研究MAP同源性最高的參考序列均為Ⅱ型MAP。綜上所述,本研究成功分離獲得的9株MAP為Ⅱ型MAP(表6),是國內首次分離得到內蒙古地區MAP菌株,為后續MAP遺傳穩定性研究和動物回歸試驗提供了基礎。

表6 亞型分析結果
OIE《陸生動物診斷試驗與疫苗手冊》推薦兩種分離培養MAP的方法,其一為使用草酸及NaOH去污搭配LJ培養基,另一種是使用十六烷基氯化吡啶(HPC)去污結合固體培養基進行培養,如卵黃瓊脂培養基和Middlebrook 7H10培養基。本試驗采用HPC去污,繼而接種卵黃瓊脂培養基,獲得單菌落后使用7H9液體培養基擴繁。此次分離培養使用的28份樣品中,綿羊源樣品和已鑒定為Ⅲ型MAP的樣品[28]未成功分離獲得MAP,可能是樣品保存時間較久,導致MAP失活,或者所選卵黃瓊脂培養基不適宜綿羊源和Ⅲ型MAP生長,亦可能因為去污過程導致MAP活菌損失過多。
本次研究結果與COLLINS[29]報道的羊以Ⅰ型MAP感染為主不同,與LIAPI等[30]提到羊可能因適應性而感染Ⅱ型MAP的報道相一致。已有研究報道,MAP各亞型之間無宿主特異性,各亞型MAP菌株不僅可以感染羊,對周邊反芻家畜和其他野生動物也有較大危害。甚至有研究表明,MAP與某些人類疾病,如克羅恩病[31]、Blau綜合征或Ⅰ型糖尿病有關[32]。因此,對副結核病的調查、監測和防制極為重要,避免給養殖業造成更大的損失,也為人類公共衛生安全進行預警。由于MAP的特殊性,在保證試驗材料不被污染的同時,也要保證試驗人員及試驗環境的安全,本試驗活菌操作均在生物安全柜內進行,試驗器材高溫高壓滅菌處理。
STABEL[1]等用新鮮分離自奶牛的S型MAP臨床菌株感染兩周齡山羊、綿羊和犢牛在感染后90d開始出現抗原特異性IFN-γ反應,且高于犢牛;綿羊在感染后90d檢測到MAP特異性抗體反應,而山羊和犢牛幾乎沒有反應;感染后7d,山羊糞便中MAP脫落量最大,只有1頭犢牛脫落MAP。彭永[33]將分離自奶牛的S型MAP菌株感染C57B/L小鼠,小鼠MAP抗體水平在第4周開始大幅上升,表示MAP已攻克機體細胞免疫防線,免疫應答主體由細胞免疫轉為體液免疫;IL-6、IL-10以及IFN-γ三種不同細胞因子轉錄水平均有不同程度增高。高建鵬[34]將實驗室分離的馬鹿源C型MAP菌株感染BALB/c小鼠,在飼養的8周內未見小鼠體重下降,糞便抗酸染色未見陽性桿菌;在腸道、肝臟、脾臟和腎臟組織切片均可見抗酸染色陽性菌,且肝臟與脾臟中的載菌量要多于腸道和腎臟。上述報道表明MAP具有較強的致病力,能快速定植于動物體內,針對不同宿主可引起不同程度的細胞免疫和體液免疫。此外,有報道稱實驗室分離菌株的連續傳代會改變RpoA、RpoB、GroEL1和ClpP等蛋白的翻譯表達,從而影響其毒力水平[35]。
目前世界上對副結核病尚無有效的藥物治療措施,而有多種藥物能夠抑制MAP的體外生長。馬呼和等[36]試驗結果表明MAP菌株對環丙沙星(Ciprofloxacin)和卡那霉素(Kanamycin)敏感,對頭孢呋肟(Cefuroxime)中度敏感,而對其他16種藥物有不同程度的耐藥性;ALCEDO等[37]驗證了克拉霉素(Clarithromycin)、氯苯吩嗪(Clofazimine)和利福布汀(Rifabutin)對MAP具有明顯的抑制作用;SHIN[38]亦證明硫唑嘌呤(Azathioprine)和6-巰基嘌呤(6-Mercaptopurine)抑制MAP體外生長,阿奇霉素(Azithromycin)對MAP具有殺菌作用。本試驗分離的羊源Ⅱ型MAP及其傳代菌的致病性和耐藥性有待進一步研究。
首次成功分離培養得到9株內蒙古地區羊源Ⅱ型副結核分枝桿菌(MAP)菌株,確認內蒙古地區羊存在Ⅱ型MAP感染。該研究可為進一步研究內蒙古地區MAP菌株基因特征,以及副結核病的防控研究提供依據。
[1] STABEL J R, BANNANTINE J P, HOSTETTER J M. Comparison of sheep, goats, and calves as infection models foravium subsp.. Veterinary Immunology and Immunopathology, 2020, 225: 110060. doi:10.1016/j.vetimm.2020.110060.
[2] WINDSOR P A. Managing control programs for ovine caseousandin Australia, and the need for persistent vaccination. Veterinary Medicine (Auckland, N Z), 2014, 5: 11-22. doi:10.2147/VMRR.S44814.
[3] STEVENSON K, HUGHES V M, DE JUAN L, INGLIS N F, WRIGHT F, SHARP J M. Molecular characterization of pigmented and nonpigmented isolates ofsubsp.. Journal of Clinical Microbiology, 2002, 40(5): 1798-1804. doi:10.1128/jcm.40.5.1798-1804.2002.
[4] PURDIE A C, PLAIN K M, BEGG D J, DE SILVA K, WHITTINGTON R J. Gene expression profiles during subclinicalsub speciesinfection in sheep can predict disease outcome. Scientific Reports, 2019, 9: 8245. doi:10.1038/s41598-019-44670-w.
[5] RASMUSSEN P, BARKEMA H W, MASON S, BEAULIEU E, HALL D C. Economic losses due to Johne's disease () in dairy cattle. Journal of Dairy Science, 2021, 104(3): 3123-3143. doi:10.3168/jds.2020-19381.
[6] CASTELLANOS E, ARANAZ A, ROMERO B, DE JUAN L, ALVAREZ J, BEZOS J, RODRI?GUEZ S, STEVENSON K, MATEOS A, DOMI?NGUEZ L. Polymorphisms inandgenes amongsubsp.type I, II, and III isolates. Journal of Clinical Microbiology, 2007, 45(10): 3439-3442. doi:10.1128/jcm.01411-07.
[7] BRYANT J M, THIBAULT V C, SMITH D G E, MCLUCKIE J, HERON I, SEVILLA I A, BIET F, HARRIS S R, MASKELL D J, BENTLEY S D, PARKHILL J, STEVENSON K. Phylogenomic exploration of the relationships between strains ofsub species. BMC Genomics, 2016, 17: 79. doi:10.1186/s12864-015-2234-5.
[8] WIBBERG D, PRICE-CARTER M, RüCKERT C, BLOM J, M?BIUS P. Complete Genome Sequence of Ovinesubsp.Strain JIII-386 (MAP-S/type III) and Its Comparison to MAP-S/type I, MAP-C, andComplex Genomes. Microorganisms, 2020, 9(1): 70. doi:10.3390/ microorganisms9010070.
[9] HODGEMAN R, MANN R, SAVIN K, DJITRO N, ROCHFORT S, RODONI B. Molecular characterisation ofsubsp.in Australia. BMC Microbiology, 2021, 21(1): 101. doi:10.1186/s12866-021-02140-2.
[10] BHAT A M, MALIK H U, CHAUBEY K K, HUSSAIN T, MIR A Q, NABI S U, GUPTA S, SINGH S V. Bio-typing ofsub speciesisolates recovered from the Himalayan sheep and goats. Tropical Animal Health and Production, 2021, 53(2): 237. doi:10.1007/s11250-021-02682-7.
[11] 牟巍, 蔣菲, 何宇, 丁家波, 彭小兵, 蔣玉文. 副結核分枝桿菌map0862基因的克隆及其在大腸桿菌中的表達. 中國獸藥雜志, 2010, 44(8): 10-12, 21.
MU W, JIANG F, HE Y, DING J B, PENG X B, JIANG Y W. Cloning and expression ofsubsp.gene map0862 in.. Chinese Journal of Veterinary Drug, 2010, 44(8): 10-12, 21. (in Chinese)
[12] 劉虹秀, 程玉笛, 黨光輝, 李田田, 李鶴, 崔子寅, 宋寧寧, 陳利蘋, 劉思國. 牛副結核分枝桿菌的分離及鑒定. 中國預防獸醫學報, 2018, 40(12): 1177-1180.
LIU H X, CHENG Y D, DANG G H, LI T T, LI H, CUI Z Y, SONG N N, CHEN L P, LIU S G. Isolation and identification ofsubsp.from cattle. Chinese Journal of Preventive Veterinary Medicine, 2018, 40(12): 1177-1180. (in Chinese)
[13] 高建鵬, 趙鑫, 高靜雯, 李慧, 張莉, 齊亞銀. 馬鹿源副結核分枝桿菌的分離鑒定. 動物醫學進展, 2019, 40(9): 128-132. doi:10. 16437/j.cnki.1007-5038.2019.09.025.
GAO J P, ZHAO X, GAO J W, LI H, ZHANG L, QI Y Y. Isolation and identification ofsubsp.from red deer(). Progress in Veterinary Medicine, 2019, 40(9): 128-132. doi:10.16437/j.cnki.1007-5038.2019.09.025. (in Chinese)
[14] 洪都孜·波拉提, 魏玉榮, 孟肖瀟, 楊學云, 古努爾·吐爾遜, 李建軍, 吳建勇. 綿羊副結核分枝桿菌的分離與分子分型. 中國預防獸醫學報, 2021, 43(2): 134-138.
HONGDUZI BOLATI, WEI Y R, MENG X X, YANG X Y, GUNUER TUERXUN, LI J J, WU J Y. Isolation and molecular typing of sheepsub species. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(2): 134-138. (in Chinese)
[15] 宋先忱, 李冰, 朱延旭, 張興會, 王世泉, 郭伶, 徐鵬, 郭維軍, 劉孝剛. 遼寧絨山羊副結核分枝桿菌的分離鑒定及分子生物學檢測. 中國獸醫雜志, 2018, 54(6): 32-34.
SONG X C, LI B, ZHU Y X, ZHANG X H, WANG S Q, GUO L, XU P, GUO W J, LIU X G. Isolation, identification and molecular biological detection offrom Liaoning cashmere goats. Chinese Journal of Veterinary Medicine, 2018, 54(6): 32-34. (in Chinese)
[16] AHLSTROM C, BARKEMA H W, STEVENSON K, ZADOKS R N, BIEK R, KAO R, TREWBY H, HAUPSTEIN D, KELTON D F, FECTEAU G, LABRECQUE O, KEEFE G P, MCKENNA S L B, DE BUCK J. Limitations of variable number of tandem repeat typing identified through whole genome sequencing ofsubsp.on a national and herd level. BMC Genomics, 2015, 16: 161. doi:10.1186/s12864-015-1387-6.
[17] MARCHESI J R, SATO T, WEIGHTMAN A J, MARTIN T A, FRY J C, HIOM S J, DYMOCK D, WADE W G. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 1998, 64(2): 795-799. doi:10.1128/AEM.64.2.795-799.1998.
[18] MARSH I, WHITTINGTON R, COUSINS D. PCR-restriction endonuclease analysis for identification and strain typing of Mycobacterium aviumsubsp.paratuberculosisandsubsp. avium based on polymorphisms in IS1311. Molecular and Cellular Probes, 1999, 13(2): 115-126. doi:10.1006/mcpr.1999.0227.
[19] COLLINS D M, DE ZOETE M, CAVAIGNAC S M.subsp.strains from cattle and sheep can be distinguished by a PCR test based on a novel DNA sequence difference. Journal of Clinical Microbiology, 2002, 40(12): 4760-4762. doi:10.1128/JCM.40.12.4760-4762.2002.
[20] STABEL J R. An improved method for cultivation offrom bovine fecal samples and comparison to three other methods. International Dental Journal, 1997, 9(4): 375-380. doi:10.1177/104063879700900406.
[21] WINDSOR P A.in sheep and goats. Veterinary Microbiology, 2015, 181(1/2): 161-169. doi:10.1016/j.vetmic.2015. 07.019.
[22] 蔡珠明, 黨光輝, 臧鑫鑫, 邵明珠, 唐陽陽, 崔子寅, 宋寧寧, 劉思國. 黑龍江某規模化牛場副結核分枝桿菌的分離與鑒定. 中國預防獸醫學報, 2020, 42(11): 1177-1180.
CAI Z M, DANG G H, ZANG X X, SHAO M Z, TANG Y Y, CUI Z Y, SONG N N, LIU S G. Isolation and identification ofsubsp.from a large-scale cattle farm in Heilongjiang. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(11): 1177-1180. (in Chinese)
[23] 常塔娜, 田莉莉, 許芳, 樊曉旭, 孫淑芳, 范偉興. 甘肅省奶牛副結核分枝桿菌的調查與分離鑒定. 中國獸醫科學, 2020, 50(7): 874-879. doi:10.16656/j.issn.1673-4696.2020.0123.
CHANG T N, TIAN L L, XU F, FAN X X, SUN S F, FAN W X. Investigation and isolation ofsubsp.in a cattle farm in Gansu Province, China. Chinese Veterinary Science, 2020, 50(7): 874-879. doi:10.16656/j.issn.1673- 4696.2020.0123. (in Chinese)
[24] SZTEYN J, LIEDTKE K, WISZNIEWSKA-?ASZCZYCH A, WYSOK B, WOJTACKA J. Isolation and molecular typing ofsubsp.from faeces of dairy cows. Polish Journal of Veterinary Sciences, 2020, 23(3): 415-422. doi:10.24425/pjvs.2020.134686.
[25] PARK H T, PARK H T, PARK W B, KIM S, HUR T Y, JUNG Y H, YOO H S. Genetic diversity of bovinesubspdiscriminated by IS1311 PCR-REA, MIRU-VNTR, and MLSSR genotyping. Journal of Veterinary Science2018, 19(5): 627-624. DOI: https://doi.org/10.4142/jvs.2018.19.5.627.
[26] FAWZY A, ZSCH?CK M, EWERS C, EISENBERG T. Genotyping methods and molecular epidemiology ofsubsp.(MAP). International Journal of Veterinary Science and Medicine, 2018, 6(2): 258-264. doi:10.1016/j.ijvsm.2018.08.001.
[27] WHITTINGTON R, MARSH I, CHOY E, COUSINS D. Polymorphisms in IS1311, an insertion sequence common toandsubsp., can be used to distinguish between and within these species. Molecular and Cellular Probes, 1998, 12(6): 349-358. doi:10.1006/mcpr.1998.0194.
[28] ZHAO L, WANG Y, WANG J L, ZHAO W H, CHENG H X, MA Y M, CHAI H L, ZHANG Z S, WANG L F, MIAO Z Q, DING Y L, SULIJID J, DANG G H, LIU S Y, WANG F L, LIU S G, LIU Y H. Serological investigation and genotyping ofsubsp.in sheep and goats in Inner Mongolia, China. PLoS ONE, 2021, 16(9): e0256628. doi:10.1371/journal.pone.0256628.
[29] COLLINS M T. Diagnosis of paratuberculosis. Veterinary Clinics of North America Food Animal Practice, 1996, 12(2): 357-371. DOI: 10.1016/s0749-0720(15)30411-4.
[30] LIAPI M, LEONTIDES L, KOSTOULAS P, BOTSARIS G, IACOVOU Y, REES C, GEORGIOU K, SMITH G C, NASEBY D C. Bayesian estimation of the true prevalence ofsubsp.infection in Cypriot dairy sheep and goat flocks. Small Ruminant Research, 2011, 95(2/3): 174-178. doi:10. 1016/j.smallrumres.2010.09.010.
[31] HOSSEINIPORGHAM S, CUBEDDU T, ROCCA S, SECHI L A. Identification ofsubsp.(MAP) in sheep milk, a zoonotic problem. Microorganisms, 2020, 8(9): E1264. doi:10.3390/microorganisms8091264.
[32] DZIEDZINSKA R, SLANA I.subsp.-an overview of the publications from 2011 to 2016. Current Clinical Microbiology Reports, 2017, 4(1): 19-28. doi:10. 1007/s40588-017-0054-x.
[33] 彭永. 副結核分枝桿菌分離及小鼠感染模型的建立[D]. 北京: 中國獸醫藥品監察所, 2018.
PENG Y. Isolation ofsubsp.and the establishment of mouse infection model[D]. Beijing: China Institute of Veterinary Drug Control, 2018. (in Chinese)
[34] 高建鵬. 塔河馬鹿源副結核分枝桿菌的分離鑒定及部分生物學特性研究[D]. 石河子: 石河子大學, 2019.
GAO J P. Isolation, identification and some biological characteristics study ofSubsp.from Tarim red deer (yarkandensis) source[D]. Shihezi: Shihezi University, 2019. (in Chinese)
[35] RADOSEVICH T J, REINHARDT T A, LIPPOLIS J D, BANNANTINE J P, STABEL J R. Proteome and differential expression analysis of membrane and cytosolic proteins fromsubsp.strains K-10 and 187. Journal of Bacteriology, 2007, 189(3): 1109-1117. doi:10.1128/JB.01420-06.
[36] 馬呼和, 東風, 楊萬科. 羊傳染性腹瀉病的調查及防治試驗. 畜禽業, 2015(2): 72-74. doi:10.19567/j.cnki.1008-0414.2015.02.048.
MA H H, DONG F, YANG W K. Investigation and control of infectious diarrhea in sheep. Livestock and Poultry Industry, 2015(2): 72-74. doi:10.19567/j.cnki.1008-0414.2015.02.048. (in Chinese)
[37] ALCEDO K P, THANIGACHALAM S, NASER S A. RHB-104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn's disease associated with. Gut Pathogens, 2016, 8: 32. doi:10.1186/s13099- 016-0115-3.
[38] SHIN S J, COLLINS M T. Thiopurine drugs azathioprine and 6-mercaptopurine inhibitgrowth. Antimicrobial Agents and Chemotherapy, 2008, 52(2): 418-426. doi:10.1128/AAC.00678-07.
Isolation and Genotyping ofsubsp.from Sheep in Inner Mongolia

1College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010000;2Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd., Hohhot, 011517;3Animal Disease Control Center of Ordos, Ordos 017000, Inner Mongolia
【Objective】Paratuberculosis is listed in the must-report at the list of “World Organization for Animal Health (OIE) diseases, infections and Invasion” by OIE. It is classified as the second kind of animal disease in China. It causes chronic and proliferative enteritis in many ruminants. The infected animals become a continuous source of infection in farms through intestinal intermittent excretion, which has brought great economic losses to aquaculture. The pathogen ofsubsp.(MAP) belongs to intracellular parasitic Gram-positive bacteria, and is a third group of zoological pathogenic microorganisms, including type C (also designated as type II) and type S. Type C also includes type B. Type S can be further subdivided into sub-group types I and III. And sub-lineages of camelid isolates Studies have shown that each subtype of MAP has no host specificity, but is regional. Inner Mongolia is the first region of the disease in China. It is of great significance to obtain and accurately identify the subtype and genetic characteristics of MAP strains in Inner Mongolia for the prevention and control of paratuberculosis. 【Method】28 MAP-positive sheep disease samples collected in Inner Mongolia were isolated and cultured by MAP, and the colonies were stained with Ziehl-Neelsen. The positive bacteria were propagated and the genomic DNA was extracted. IS900 gene, IS1311 gene and DMC gene were amplified, sequenced, and analyzed. The PCR products of IS1311 gene were identified byI andI double digestion. 【Result】28 samples were cultured for 7- 2 weeks, a total of 9 mediums grew colonies, and the colonies were translucent milky white smooth surface. Single colonies were selected for acid-fast staining, and irregular (single or branched), red-stained Brevibacterium was observed under the microscope, which was consistent with the morphological characteristics and acid-fast staining characteristics of Mycobacterium. The PCR products of IS900, IS1311 and DMC genes of 9 isolates were consistent with the expected size of the target gene fragment. 9 isolates were identified as MAP strains, named MAP-NM1 to MAP-NM9. DMC gene amplification product size of 310bp, which was consistent with type II MAP characteristics. IS1311 gene amplification products were digested byI andI restriction endonucleases, and 4 target bands were obtained in 9 strains of MAP, which were consistent with type II MAP. The sequencing results of IS1311 gene and the analysis of MAP representative strains of type I, type II, type III, Indian Buffalo and American Buffalo showed that the nucleotide sites at positions 64, 65, 68, 223, 236, 422, 527 and 628 of the nine MAP IS1311 gene fragments were conformed to the characteristics of type C and type B MAP. Sequence analysis of IS900 gene sequencing results showed that the 169th and 216th nucleotides of the nine MAP IS900 gene fragments were C (cytosine) and A (adenine), and accorded with Type II and type III MAP. The phylogenetic tree of 17 MAP IS900 gene reference sequences from GenBank database with 9 isolates in this study showed that the 9 isolates in this study were all in the type II MAP branch. Blast online analysis was performed on the sequencing results of the three genes. The reference sequences with the highest homology with the isolates obtained in this study were all type II MAP, and the homology was higher than 98%. In conclusion, all the 9 MAP isolates were type II MAP. 【Conclusion】To the best of our knowledge, this was the first isolate of the MAP type Ⅱ strains in sheep in Inner Mongolia.
subsp.; isolated; typing;sheep; Inner Mongolia

10.3864/j.issn.0578-1752.2023.06.015
2021-11-11;
2022-08-30
國家自然科學基金(31860698)、內蒙古農業大學高層次人才科研啟動金項目(NDYB2019-3,NDYB2018-5)
趙維宏,E-mail:zhaoweihong@foxmail.com。通信作者趙麗,E-mail:zhaolidky@126.com。通信作者劉永宏,E-mail:lyhdky@126.com
(責任編輯 林鑒非)