





摘要:用Davenport-Heilbronn方法證明了混合冪次為2,3,3的素變量非線性型的整數部分表示無窮多素數的問題:假設λ1,λ2,λ3是非零實數,至少有一個λi/λj(1≤ilt;j≤3)為無理數,x1,x2,x3是正整數,那么λ1x21+λ2x32+λ3x33的整數部分可表示無窮多素數.
關鍵詞:素數變量;丟番圖逼近;Davenport-Heilbronn方法
中圖分類號:O156.4 文獻標志碼:A
Integral Part of a Nonlinear Form with Square and Cube
KOU Chen-yang
(School of Mathematics and Statistics,
North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
Abstract:In this paper, the Davenport-Heilbronn method is used to prove that the integer part of the nonlinear type of prime variable with mixed powers of 2,3,3 represents infinitely many primes. We show that if λ1,λ2,λ3 are non-zero real numbers , and at least one of the numbers λ/λj(1≤ilt;j≤3) is irrational, then the integer parts of λ1x21+λ2x32+λ3x33are prime infinitely often for integers x1,x2,x3.
Key words:primes; Diophantine approximation; Davenport-Heilbronn method
0 引言
在研究解析數論領域的各類問題時,Hardy-Littlewood圓法是最常被使用的方法之一,它是以英國數學家Godfrey Harold Hardy和John Edensor Littlewood來命名的. 他們將這個方法運用到華林問題和Goldbach猜想中,使此類問題得到發展,該方法也被后來的數論研究者們廣泛使用. Davenport和Heilbronn將Hardy-Littlewood圓法加以改進并運用到Diophantine不等式的相關問題中,取得了一系列重要成果,故將Davenport和Heilbronn所用的方法稱為Davenport-Heilbronn方法. 素數變量線性型和非線性型的整數部分表示素數是數論領域一個十分重要的問題,解決這類問題經常用到Davenport-Heilbronn方法.
1946年,Davenport和Heilbronn[1]證明了:假設λ1,…,λs是非零實數,且不全為正或不全為負,至少有一個λi/λj(1≤ilt;j≤s)為無理數,假設s≥2k+1,那么對任意的εgt;0,不等式λ1xk1+…+λsxkslt;ε有無窮多個自然數解xj.
1954年,Bambah[2]利用和文獻[1]類似的方法證明了:F(x1,x2,x3,x4,x5)=λ1x21+λ2x22+λ3x23+λ4x24+μxk5可取得任意小的值.
1979年,Cook[3]證明了不等式|λ1x21+λ2x22+λ3x33+λ4x34+λ5x35+λ6x36+μ|lt;ε有無窮多正整數解x1,…,x6.
2012年,李偉平等[4]利用Dirichlet-L函數滿足黎曼猜想,證明了λ1x21+λ2x22+λ3x33+λ4x34+λ5x35+λ6x36的整數部分可表示無窮多素數.戈文旭等[5-8]繼續改進了上述結果,證明了混合冪次素變量非線性型的整數部分表示無窮多素數等問題.
本文利用Davenport-Heilbronn方法,將積分區間劃分為中心區間、余區間和平凡區間,并通過一系列的相關結論證明得出中心區間上的積分為主項,余區間和平凡區間上的積分為余項,改進了文獻[8]的結果,得到以下定理.
定理1 假設λ1,λ2,λ3是非零實數,并且λ1,λ2,λ3中至少有一個為無理數,x1,x2,x3是正整數,那么λ1x21+λ2x32+λ3x33的整數部分可表示無窮多素數.
1 符號和方法概要
本文中的p,有或沒有下標,總表示素數,xj表示自然數,η表示足夠小的固定正數,ε表示任意充分小的正實數,O是Vinogradov符號,和是Landau符號,其中Vinogradov和Landau符號中的常數僅僅依賴于λ1,λ2,λ3.記e(x)=exp(2πix),x表示x的整數部分.X為主要參數,表示無限大的正整數.
首先,遵循Davenport和Heilbronn對Hardy-Littlewood圓法修改,可以先假定在必要時λ1,λ2,λ3不全為負,x32可替換為-x23.定義
定理1中λ3為無理數的情形可重復第4部分得到.
6 結語
本文將積分區間劃分為中心區間、余區間和平凡區間三部分,借助Hlder不等式、均值估計和Lebesgue測度,利用Davenport-Heilbronn方法,證明了
即中心區間上的積分為主項,余區間和平凡區間上的積分為余項,從而得到了更加精確的結果.
參考文獻:
[1] DAVENPORT H,HELBRONN H.On indefine quadratic forms in five variables[J].Journal of the London Mathematics Society,1946,21:185-193.
[2] BAMBAH R P.Four squares and a kth power[J].Quarterly Journal of Mathematics,1954,5:191-202.
[3] COOK R J.Diophantine inequalities with mixed powers,II[J].Journal of Number Theory,1979,11(1):49-68.
[4] LI W P,GE W X,WANG T Z.The integer parts of nonlinear form with integer variables and mixed powers 2 and 4[J].Acta Math Sinica (Chin Ser),2012,55(4):727-736.
[5] YANG Y Q,LI W P.One Diophantine inequality with integer and prime variables[J].Journal of Inequalities and Applications,2015,2015:293-302.
[6] LI W P,GE W X,WANG T Z.The integer part of a nonlinear form consisting of prime variables with mixed exponents 2,3,4,5[J].Acta Math Sinica (Chin Ser),2016,59(5):585-594.
[7] GE W X,LIU H K.Diophantine approximation with mixed powers of primes[J].International Journal of Number Theory,2018,14:1903-1918.
[8] GE W X,LI W P,ZHAO F.The integral part of a nonlinear form with a square,a cube and a biqua-drate[J].Open Mathematics,2020,18:1272-1280.
[9] VAUGHAN R C.Diophantine approximation by prime numbers,I[J].Proc London Math Soc,1974,28:373-384.
[10] VAUGHAN R C.The Hardy-Littlewood Method,2nd edition[M].Cambridge:Cambridge University Press,1997.
[11] GE W X,LI W P.One Diophantine inequality with unlike powers of prime variables[J].J Inequal Appl,2016,33:58-65.
[12] WOOLEY T D.Sums of three cubes II[J].Acta Arith,2015,170(1):73-100.
[13] BRüDERN J,COOK R J,PERELLI A.The values of binary linear forms at prime arguments,sieve methods,exponential sums,and their applications in number theory[J].Cardiff,1995,237:87-100.
[14] BAKER R C.Diophantine Inequalities[M].New York:Oxford University Press,1986.
[15] BRüDERN J,WOOLEY T D.On Waring′s pro-blem for cubes and smooth Weyl sums[J].Proc London Math Soc,2001,82(1):89-109.
[16] HARMAN G.The values of ternary quadratic forms at prime arguments[J].Mathematika,2004,51:83-96.
[17] PANDEY M K,TIWARI P.On the first sign change of Fourier coefficients of cusfforms at sun of two squares[J].Naber Theory,2021,63(7):1-12.
[18] KUMARI M,SENQUPTA J.The first simultaneous sign change for Fourier coefficients of Hecke-Maass forms[J].Ramanujan J,2021,55(1):205-218.
[19] HUAG D.On the first simultaneous sign change for Fourier coefficients associated with Hecke-Maass forms[J].Lith Math J,2022,59(2):559-570.
[責任編輯:趙慧霞]