




摘要:研究了具有時滯和一般接觸率的擴散病毒模型,研究了無病平衡點和感染平衡點的穩定性,結論表明:當基本再生數R0≤1 時,無病平衡點是全局漸近穩定的,此時病毒趨于滅絕.當基本再生數 R0gt;1時,感染平衡點是全局漸近穩定的,病毒蔓延.最后,利用數值模擬驗證所得結論.
關鍵詞:時滯;一般接觸率;擴散;穩定性
中圖分類號:O175.13 文獻標志碼:A
Stability of Diffusive Virus Model with Time Delay
and General Contact Rate
CHEN Qing-wan, LIU Wen-qing
(School of General Education, Minnan Science and Technology College, Quanzhou 362300, Fujian, China)
Abstract:The diffusion virus model with time delay and general contact rate is studied, and the stability the disease-free equilibrium point and infection equilibrium point are studied. The results show that the disease-free equilibrium point is globally asymptotically stable and the virus tends to be extinct when the basic reproductive number R0lt;1, the infection equilibrium is globally asymptotically stable and the virus spreads when the basic reproductive number R0gt;1. Finally, the results are verified by numerical simulation.
Key words:time delay; general contact rate; diffusion; stability
0 引言
當今世界,越來越多的人受到艾滋病、禽流感、霍亂、埃博拉等疾病的困擾.為了探索這些疾病的機制,科學家提出了許多描述疾病傳播的數學模型,如傳染病模型(SI、SIR、SEI)[1-4]和宿主病毒模型(HBV、HCV、HIV)[5-9].考慮到病毒進入宿主傳播或者染病細胞分解成游離病毒時都有一定的延遲,從而得到具有時滯的病毒傳播模型[10-13].另一方面,考慮到細胞和病毒在宿主體內或空氣中的自由擴散運動,可得到具有時空效應的反應擴散病毒模型[14-17].基于以上考慮,本文建立具有擴散和時滯的病毒模型
4 結語
本文研究了具有時滯和一般接觸率的擴散病毒模型.研究了無病平衡點和感染平衡點的穩定性,閾值對于病毒的蔓延和滅絕起決定性的作用.
結論表明:當感染細胞和游離病毒死亡率較高和感染細胞轉化游離病毒轉化較低且時滯比較大時會使病毒趨于滅絕.反之,病毒蔓延,這與實際情況是吻合的.
參考文獻:
[1] RAJASEKAR S P,PITCHAIMANI M.Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence[J].Applied Mathematics and Computation,2017,469(1):510-517.
[2] CHEN Qingmei.A new idea on density function and covariance matrix analysis of a stochastic SEIS epidemic model with degenerate diffusion[J].Applied Mathematics Letters,2020,103:106200.
[3] LIU Qun,JIANG Daqing.Threshold behavior in a stochastic SIR epidemic model with Logistic birth[J].Physica A-Statistical Mechanics and Its Applications,2020,540:123488.
[4] 陳清婉,柳文清.具有交叉擴散和B-D反應函數的病毒模型的穩定性分析[J].北華大學學報(自然科學版),2018,19(1):13-17.
[5] NOWAK M A,BANGHAM C R M.Population dynamics of immune responses to persistent viruses[J].Science,1996(272):74-79.
[6] EBERT D,ZSCHOKKE-ROHRINGER C D,CARIUS H J.Dose effects and density-dependent regulation of two microparasites of Daphnia magna[J].Oecologia,2000,122(2):200-209.
[7] MCLEAN A R,BOSTOCK C J.Scrapie infections initiated at varying doses;an analysis of 117 titration experiments[J].Philosophical Transactions of the Royal Society B Biological Sciences,2000,355(1400):1043-1050.
[8] 柳文清,陳清婉.具有治療和時滯的擴散病毒模型的穩定性[J].生物數學學報,2020,35(2):253-258.
[9] SONG X,NEUMANN A.Global stability and periodic of Viral dynamics[J].Mathematical Analysis and Application,2007,329(1):281-297.
[10] HAN Y,YANG Z C.Stability and persistence for an HIV-1infection model with time delay and nonlinear infection rate[J].Journal of Southwest University,2013,35(3):84-90.
[11] MICHAEL Y L,SHU H Y.Global dynamics of an in-host viral model with intracellular delay[J].Bull Math Biol,2010,72(6):1492-1505.
[12] MONICA C,PITCHAIMANI M.Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays[J].Nonlinear Analysis Real World Applications,2016(27):55-69.
[13] ZHU H Y.Inpact of delays in cell infection and virus production on HIV-1dynamics[J].Mathematical Medicine and Biology,2008,25(2):99-112.
[14] 柳文清,陳清婉.具斑塊遷移的病毒模型的穩定性分析[J].純粹數學與應用數學,2019,35(1):109-114.
[15] ZHANG Yiyi,XU Zhiting.Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response[J].Nonlinear Analysis Real World Applications,2014(15):118-139.
[16] HATTAF K,YOUSFI N.Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response[J].Computational and Applied Mathematics,2015,34:807-818.
[17] WANG Xinchang,TANG Xiaosong,WANG Zhiwei,et al.Global dynamics of a diffusive viral infection model with general incidence function and distributed delays[J].Ricerche di Matematica,2020,69(2):683-702.
[18] DIEKMANN O,HEESTERBEEK J A,METZ J A.On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J].Journal of Mathematical Biology,1990,28(4):365-382.
[責任編輯:趙慧霞]