





摘要:外延生長理論中部分?jǐn)?shù)學(xué)模型的宏觀描述是可以由一類具有Hession項(xiàng)和熱源函數(shù)項(xiàng)的四階拋物型方程給出.重點(diǎn)研究在Dirichlet邊界條件下,關(guān)于具有和不具有Hession項(xiàng)這兩種情形解的存在性問題.在一定初始數(shù)據(jù)以及有關(guān)參數(shù)適當(dāng)?shù)那闆r下,先后利用Galerkin方法和不動點(diǎn)方法證明該問題解的存在性,并且給出解的存在空間.
關(guān)鍵詞:四階拋物方程;解的存在性;不動點(diǎn)定理;Galerkin方法
中圖分類號:O175.26 文獻(xiàn)標(biāo)志碼:A
Existence of Solutions for a Class of
Fourth-Order Parabolic Problems with Hession Term
YU Zi-xuan, LIANG Bo, JIN Gui-qin
(School of Science, Dalian Jiaotong University, Dalian 116028, Liaoning, China)
Abstract: The macroscopic description of some mathematical models in epitaxial growth theory can be given by a class of fourth-order parabolic equations with Hession term and heat source function term. This paper focuses on the existence of solutions with and without Hession under Dirichlet boundary conditions. Under certain initial data and appropriate parameters, Galerkin method and fixed-point method are used successively to prove the existence of the solution for the problem, and the existence space of the solution is given.
Key words:fourth-order parabolic equation; existence of solution; fixed-point theory; Galerkin method
0 引言
材料在高度真空條件下可以發(fā)生外延生長,即新材料沉積在相同材料的現(xiàn)有層上.這項(xiàng)技術(shù)可以用于半導(dǎo)體工業(yè)中薄膜的生長,其晶體結(jié)構(gòu)可能由純化學(xué)元素如硅或鍺組成,也可能由砷化鎵或磷化銦等合金組成.原子在分子束外延的情況下,原子沉積的速度非常緩慢.隨著科學(xué)技術(shù)的發(fā)展,大家對外延生長問題產(chǎn)生了極大興趣.外延技術(shù)在大規(guī)模集成電路中對于改善材料質(zhì)量等方面起著重要作用,因而研究外延生長問題解的存在性具有重要意義.
3 結(jié)語
本文主要研究的是在Dirichlet邊界條件下,具有或不具有Hession項(xiàng)時解的存在性問題,通過Galerkin方法證明了不具有Hession項(xiàng)的拋物問題解的存在性,并為證明問題(5)解的存在性做了準(zhǔn)備工作.在第三節(jié)證明了在具有擴(kuò)散作用且合適的初邊值條件下,給出具有Hession項(xiàng)的問題(5)解的存在空間,且利用不動點(diǎn)方法證明了解的存在性.
今后擬進(jìn)一步研究的問題:問題(5)解的存在性以及該問題解的爆破問題.可以考慮在解決一般擴(kuò)散項(xiàng)問題時,是否可以沿用目前的方案進(jìn)行研究.
參考文獻(xiàn):
[1] ABDELLAOUIB,DALL’AGLIO A,PERAL I.Some remarks on elliptic problems with critical growth in the gradient[J].Journal of Differential Equations,2006,222(1):21-62.
[2] ESCUDERO C,HAKL R,PERAL I,et al.On radial stationary solutions to a model of non-equilibrium growth[J].Journal of Applied Mathematics,2013,24:437-453.
[3] ESCUDERO C,GAZZOLA F,PERAL I.Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian[J].J Math Pures Appl,2015,103.:924-957.
[4] ESCUDERO C,KORUTCHEVA E.Origins of scaling relations in nonequilibrium growth[J].ICMAT (CSIC-UAM-UC3M-UCM),2012,45(12):1-20.
[5] ESCUDERO C,HAKL R,PERAL I,et al.Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth[J].Mathematical Methods in the Applied Sciences,2020,37(6):793-807.
[6] ESCUDERO C,PERAL I.Some fourth order nonlinear elliptic problems related to epitaxial growth[J].Journal of Differential Equations,2013,254(6):2515-2531.
[7] ESCUDERO C,GAZZOLA F,PERAL I.Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian[J].Journal de Mathématiques Pures et Appliquées,2015,103(4):924-957.
[8] 趙立靜.一類四階拋物方程解的爆破性研究[D].曲阜:曲阜師范大學(xué),2021.
[9] XU G,ZHOU J.Global existence and blow-up for a fourth order parabolic equation involving the Hessian[J].Nonlinear Differ Equ Appl,2017,24:41.
[10] XU R,CHEN T,LIU C,et al.Global well-posedness and global attractor of fourth order semilinear parabolic equation[J].Mathematical Methods in the Applied Sciences,2015,38(8):1515-1529.
[11] LIU C,MA Y,TANG H.Lower bound of blow-up time to a fourth order parabolic equation modeling epitaxial thin film growth[J].Applied Mathematics Letters Volume,2020,111:1-7.
[12] DING H,ZHOU J.Infinite time blow-up of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity modeling epitaxial growth[J].Mediterr J Math,2021,18:240.
[13] ZHOU J.Blow-up of solutions to a fourth-order parabolic equation with/without p-Laplician and general nonlinearity modeling epitaxial growth[J].Analysis and Mathematical Physics,2021(11):1-23.
[責(zé)任編輯:趙慧霞]
蘭州文理學(xué)院學(xué)報(自然科學(xué)版)2023年3期