999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非齊次核最佳半離散Hilbert型逆向不等式的等價條件及算子表示

2023-04-29 00:00:00洪勇張麗娟孔蔭瑩李真
吉林大學學報(理學版) 2023年4期

摘要: 首先, 利用權函數方法討論非齊次核的半離散Hilbert型逆向不等式, 給出最佳半離散Hilbert型逆向不等式的等價條件及各參數間的關系; 其次, 作為應用給出等價的算子表示及若干特例.

關鍵詞: 非齊次核; 半離散Hilbert型逆向不等式; 最佳常數因子; 算子表示; Beta函數

中圖分類號: O178 文獻標志碼: A 文章編號: 1671-5489(2023)04-0823-08

Equivalent Conditions and Operator Expressions forthe Best Half-Discrete Hilbert-Type InverseInequality with Non-homogeneous Kernel

HONG Yong1, ZHANG Lijuan1, KONG Yinying2, LI Zhen2

(1. Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300, China;2. College of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China)

Abstract: Firstly, by using the power function method, we discussed the half-discrete Hilbert-type inverse inequality with non-homogeneous kernelgave equivalent conditions for the best half-discrete Hilbert-type inverse inequality and the relationship" between the parameters. Secondly," as an application, we gave" the equivalent operator expressions and some special cases.

Keywords: non-homogeneous kernel; half-discrete Hilbert-type inverse inequality; the best constant factor; operator expression; Beta function

參考文獻

[1]HARDY G H, LETTLEWOOD J E, PLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1952: 255-284.

[2]洪勇. 關于零階齊次核的Hardy-Hilbert型不等式 [J]. 浙江大學學報(理學版), 2013, 40(1): 15-18. (HONG Y. On Hardy-Hilbert Type Integral Inequality with Homogeneous Kernel of 0-Degree [J]. Journal of Zhejiang University (Science Edition), 2013, 40(1): 15-18.)

[3]洪勇, 孔蔭瑩. 含變量可轉移函數核的Hilbert型級數不等式 [J]. 數學物理學報, 2014, 34A(3): 708-715. (HONG Y, KONG Y Y. A Hilbert Type Series Inequality with Transferable Variable Kernel [J]. Acta Mathematica Scientia, 2014, 34A(3): 708-715.)

[4]楊必成. 一個推廣的具有最佳常數的Hardy-Hilbert積分不等式 [J]. 數學年刊A輯(中文版), 2000, 21A(4): 401-408. (YANG B C. A Generalized Hardy-Hilbert-Type Integral Inequality with the Best Constant Factor [J]. Chinese Annals of Mathematics, 2000, 21A(4): 401-408.)

[5]RASSIAS M T, YANG B C. On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function [J]. Complex Analysis and Operator Theory, 2019, 13(4): 1765-1782.

[6]匡繼昌. 常用不等式 [M]. 5版. 濟南: 山東科學技術出版社, 2021: 744-772. (KUANG J C. Applied Inequalities [M]. 5th ed. Jinan: Shandong Science and Technology Press, 2021: 744-772.)

[7]洪勇. 一類具有準齊次核的涉及多個函數的Hilbert型積分不等式 [J]. 數學學報(中文版), 2014, 57(5): 833-840. (HONG Y. A Hilbert-Type Integral Inequality with Quasi-homogeneous Kernel and Several Functions [J]. Acta Mathematica Sinica (Chinese Series), 2014, 57(5): 833-840.)

[8]YANG B C. On an Extension of Hilbert’s Integral Inequality with Some Parameters [J]. The Australian Journal of Mathematical Analysis and Applications, 2004, 1(1): 11-1-11-8.

[9]高明哲. Hardy-Riesz拓廣了的Hilbert不等式的一個改進 [J]. 數學研究與評論, 1994, 14(2): 255-259. (GAO M Z. An Improvement of Hardy-Riesz’s Extension of the Hilbert Inequality [J]. Journal of Mathematical Research and Exposition, 1994, 14(2): 255-259.)

[10]KUANG J C. On New Extensions of Hilbert’s Integral Inequality [J]. Journal of Mathematical Analysis and Applications, 1999, 235(2): 608-614.

[11]LI Y J, HE B. On Inequalities of Hilbert’s Type [J]. Bulletin of the Australian Mathematical Society, 2007, 76(1): 1-13.

[12]KRNIC' M, PEARIC' J E. Hilbert’s Inequalities and Their Reverses [J]. Publicationes Mathematicae Debrecen, 2005, 67(3/4): 315-331.

[13]RASSIAS M TH, YANG B C, RAIGORODSKII A. On a More Accurate Reverse Hilbert-Type Inequality in the Whole Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1359-1374.

[14]洪勇, 溫雅敏. 齊次核的Hilbert型級數不等式取最佳常數因子的充要條件 [J]. 數學年刊A輯(中文版), 2016, 37A(3): 329-336. (HONG Y, WEN Y M. A Necessary and Sufficient Conditions of that Hilbert Type Series Inequality with Homogeneous Kernel "Has the Best Constant Factor [J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.)

[15]洪勇, 吳春陽, 陳強. 一類非齊次核的最佳Hilbert型積分不等式的搭配參數條件 [J]. 吉林大學學報(理學版), 2021, 59(2): 207-212. (HONG Y, WU C Y, CHEN Q. Matching Parameter Conditions for the Best Hilbert-Type Integral Inequality with "a Class of Non-homogeneous Kernels [J]. Journal of Jilin University (Science Edition), 2021, 59(2): 207-212.)

[16]楊必成, 陳強. 一類非齊次核逆向的Hardy型積分不等式成立的條件 [J]. 吉林大學學報(理學版), 2017, 55(4): 804-808. (YANG B C, CHEN Q. Equialent Conditions of Existence of a Class of Reverse Hardy-Type Integral Inequalities with Non-homogeneous "Kernel [J]. Journal of Jilin University (Science Edition), 2017, 55(4): 804-808.)

[17]HE B, HONG Y, LI Z. Conditions for the Validity of a Class of Optimal Hilbert Type Multiple Integral Inequalities with Nonhomogeneous Kernels [J/OL]. Journal of Inequalities and Applications, (2021-04-02)[2022-07-10]. https://doi.org/10.1186/s13660-021-02593-z.

[18]LIAO J Q, HONG Y, YANG B C. Equivalent Conditions of a Hilbert-Type Multiple Integral Inequality Holding [J/OL]. Journal of Function Spaces, (2020-04-15)[2022-07-10]. https://doi.org/10.1155/2020/3050952.

[19]HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple Integral Inequality with the Non-homogeneous Kernel and Its Applications [J/OL]. Journal of Inequalities and Applications, (2017-12-28)[2022-07-12]. https://doi.org/10.1186/s13660-017-1592-8.

[20]HONG Y, HUANG Q L, CHEN Q. The Parameter Conditions for the Existence of the Hilbert-Type Multiple Integral Inequality and Its Best Constant Factor [J/OL]. Annals of Functional Analysis, (2020-10-15)[2022-07-12]. https://doi.org/10.1007/s43034-020-00087-5.

[21]CHEN Q, YANG B C. A Reverse Hardy-Hilbert-Type Integral Inequality Involving One Derivative Function [J/OL]. Journal of Inequalities and Applications, (2020-12-11)[2022-08-15]. https://doi.org/10.1186/s13660-020-02528-0.

[22]WANG A Z, YANG B C, CHEN Q. Equivalent Properties of a Reverse Half-Discrete Hilbert’s Inequality [J/OL]. Journal of Inequalities and Applications, (2019-11-04)[2022-08-15]. https://doi.org/10.1186/s13660-019-2236-y.

[23]HUANG Z X, SHI Y P, YANG B C. On a Reverse Extended Hardy-Hilbert’s Inequality [J/OL]. Journal of Inequalities and Applications, (2020-03-12)[2022-08-15]. https://doi.org/10.1186/s13660-020-02333-9.

(責任編輯: 趙立芹)

收稿日期: 2022-09-26.

第一作者簡介: 洪 勇(1959—), 男, 漢族, 碩士, 教授, 從事調和分析及解析不等式的研究, E-mail: hongyonggdcc@yeah.net.

基金項目: 廣東省基礎與應用基礎研究基金(批準號: 2022A1515012429)、 廣州華商學院科研團隊項目(批準號: 2021HSKT03)和廣東省教育科學規劃項目(批準號: 2021GXJK201).

主站蜘蛛池模板: 波多野结衣久久精品| 国产欧美中文字幕| 国产精品播放| 国产无码精品在线播放| 午夜福利亚洲精品| 天堂av综合网| 无码有码中文字幕| 99ri精品视频在线观看播放| 日本妇乱子伦视频| 99re热精品视频国产免费| 成人亚洲国产| 白浆视频在线观看| 亚洲欧美日韩天堂| 国产H片无码不卡在线视频| 亚洲资源站av无码网址| 午夜丁香婷婷| 激情综合网址| 伊大人香蕉久久网欧美| 亚洲国产精品日韩专区AV| 精品国产成人国产在线| 欧美翘臀一区二区三区| www.国产福利| 制服丝袜亚洲| 狠狠做深爱婷婷综合一区| 国产噜噜噜视频在线观看| 青青热久免费精品视频6| 一本大道东京热无码av| 在线观看91香蕉国产免费| 国产美女在线观看| 精品少妇人妻无码久久| 国产原创演绎剧情有字幕的| 日韩中文无码av超清| 91色在线视频| 国产人妖视频一区在线观看| 99视频全部免费| 最新亚洲人成无码网站欣赏网 | 免费国产高清精品一区在线| 1769国产精品免费视频| 2024av在线无码中文最新| 日韩在线播放中文字幕| 少妇极品熟妇人妻专区视频| 国产91丝袜在线播放动漫 | 小13箩利洗澡无码视频免费网站| 久热中文字幕在线| 福利在线一区| 欧美日韩综合网| 久久99精品久久久久久不卡| 极品av一区二区| 精品伊人久久久久7777人| 国产精品久久自在自2021| 亚洲免费福利视频| 凹凸国产分类在线观看| 久久美女精品| 国产真实乱了在线播放| 国产一级裸网站| 97se亚洲综合| 五月婷婷丁香色| 国产综合欧美| 亚洲无码视频图片| 国产一区二区三区免费观看| 狼友视频一区二区三区| 欧美日韩另类国产| 99re在线视频观看| 999精品在线视频| 日韩AV手机在线观看蜜芽| 亚洲香蕉在线| 国产一区二区色淫影院| 91在线播放免费不卡无毒| 国产产在线精品亚洲aavv| 欧美一道本| 91色综合综合热五月激情| 久久精品无码国产一区二区三区| 亚洲国产成熟视频在线多多| 呦女亚洲一区精品| 国产欧美日韩在线在线不卡视频| 999国内精品久久免费视频| 最新亚洲人成网站在线观看| 国产91透明丝袜美腿在线| 久久人体视频| 中国黄色一级视频| 亚洲va欧美va国产综合下载| 免费女人18毛片a级毛片视频|