









摘" " 要:【目的】探究不同果袋對瑞雪蘋果(Malus × domestica ‘Ruixue’)果皮褐變及抗氧化物質的影響,為減緩瑞雪蘋果果皮褐變并提高瑞雪蘋果在隴東地區的經濟效益和市場競爭力提供參考。【方法】以6年生瑞雪蘋果為試材,于盛花后84 d采用綠色波點單層袋(G1)、袋口露白綠色波點單層袋(G2)和白色單層袋(G3)進行套袋處理,以普通雙層袋為對照,研究不同果袋對瑞雪果皮褐變及抗氧化物質的影響。【結果】相較于對照,G1、G2和G3處理降低了瑞雪果皮褐變率,其褐變率從78.6%分別降至7.0%、6.0%和1.4%。其中對照一至四級褐變指數均為最高,與對照相比,G1和G2出現果皮一級褐變和二級褐變,G3僅出現果皮一級褐變,褐變指數為1.4%,與對照果皮發生褐變現象時間相比,G1和G2推遲了11 d,G3推遲了13 d。對抗氧化物質含量的測定結果表明,與對照相比,G1、G2和G3抗氧化物質含量顯著增加,其中G3的含量又顯著高于G1和G2。而對照、G1、G2和G3的SOD和POD活性整體依次升高,PPO活性依次降低。【結論】白色單層果袋(G3)顯著提高了果皮抗氧化物質含量和抗氧化酶活性,降低了瑞雪果皮褐變率及褐變指數。因此,在瑞雪套袋栽培生產時,推薦使用白色單層果袋(G3)。
關鍵詞:瑞雪蘋果;果袋;透光率;果皮褐變;抗氧化物質
中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2023)09-1848-12
收稿日期:2023-04-07 接受日期:2023-05-19
基金項目:財政部和農業農村部:國家現代農業產業技術體系(CARS-27)
作者簡介:賀穎,女,在讀碩士研究生,研究方向為果樹栽培生理。Tel:13891460377,E-mail:heying01128@163.com
*通信作者Author for correspondence. Tel:13891819690,E-mail:zhaozy@nwsuaf.edu.cn
Effects of different fruit bags on the peel browning of Ruixue apple
HE Ying1, WANG Hui1, HU Yu1, FENG Yuchen1, WANG Zidun1, LIU Zhenzhong1, SHI Tao2, ZHAO Zhengyang1, 2*
(1College of Horticulture, Northwest A amp; F University, Yangling 712100, Shaanxi, China; 2Qingcheng Station of Apple Experiment and Demonstration, Qingcheng 745199, Gansu, China)
Abstract: 【Objective】 The study aimed to reveal the effects of different fruit bags on the browning and antioxidant substances of the peel of Ruixue apple (Malus × domestica Ruixue), in order to mitigate the browning of the peel and enhance the economic benefits and market competitiveness of Ruixue apple in the Longdong region. 【Methods】 Six-year-old Ruixue apple trees were used as experimental materials. The single-layer bags with green dot (G1), the single-layer bag with green polka dot and exposed white rim (G2), the white single-layer bags (G3) were used 84 days after blooming for bagging treatment. The ordinary double-layer bags (control) were used as control. The fruit peel browning rate and browning index were counted 189 days after blooming. Meanwhile, a temperature and humidity probe was used to measure the temperature inside the different fruit bags from 84 d to 189 d after flowering, and the antioxidant substances and antioxidant enzyme activities of the Ruixue fruit peel were measured. 【Results】 Based on the statistics of peel browning rate and browning index of the fruits with different bags during the harvest period, it was observed that G1, G2, and G3 treatments resulted in a significant reduction of peel browning rate in Ruixue fruit in comparison with the control, the peel browning rate of Ruixue decreased from 78.6% to 7.0%, 6.0%, and 1.4%, respectively. The browning indices of the 1 to 4 degree browning of the control peel was the highest. Compared with control, G1 and G2 exhibited 1 and 2 degree peel browning, while G3 only exhibited 1 degree peel browning with a browning index of 1.4%. Compared with the control, G1 and G2 delayed the occurrence of browning by 11 days and G3 delayed by 13 days. The daily average temperature of the fruits inside the different fruit bags showed a downward trend, and the downward trend was consistent in all the fruits with different treatments. Among them, the differences in daily average low temperature and daily average temperature among the fruits with different fruit bags were not significant, while the effective accumulated temperature of the control was the lowest. Compared with the control, the effective accumulated temperature of G3 increased by 36.9 ℃. An illuminometer was used to measure the transmittance of different fruit bags. The Transmittance of the control was zero, and the transmittance of G1 and G3 were 36.6% and 51.2%, respectively, while the transmittance of G2 in the exposed area of the bags was 51.2%, and the transmittance of G2 in the other area of the bags was 32%. The Vitamin C content of G3 was significantly higher than those of the other treatments. Compared with the control, the total phenolic content of G1, G2, and G3 significantly increased by 38.9%, 42.4%, and 57.7%, respectively; The flavonoids of G3 was significantly higher than those of the other treatments, while the flavonoids of G2 was 34.0% higher that of the control; the flavonoids of G1 was 21.0% higher that of the control, while there was no significant difference in the total flavonoid content between G2 and G3. Compared with the control, G3 treatment significantly reduced the content of MDA in the peel, while G2 and G3 treatments significantly reduced the content of [O2] in the peel. There were significant differences in antioxidant enzyme activity among the fruits with different fruit bags. The SOD activity of G3 was significantly higher than those of the other treatments. The POD activity of G3 was the highest, followed by G2, G1. The CAT activity of G1 and G3 was significantly higher than that of G1. The PPO activity of the control and G1 was significantly higher than those of the other treatments. The comprehensive evaluation indexes of the four fruit bags on the browning and antioxidant quality indicators of Ruixue apple peel were ranked as follows: G3>G2>G1>control, according to the above indicators and the comprehensive evaluation of the membership function. 【Conclusion】 The antioxidant content and antioxidant enzyme activity of Ruixue apple peel were strongly influenced by the type of fruit bags used during cultivation. G3 fruit bag was particularly effective in increasing the antioxidant content and antioxidant enzyme activity, and decreasing both the browning rate and the degree of peel browning of Ruixue apples. The use of G3 fruit bag would be a promising strategy to mitigate the peel browning and maintain the nutritional quality of Ruixue apples.
Key words: Ruixue apple; Fruit bags; Light transmittance; Peel browning; Antioxidant
蘋果(Malus × domestica Borkh.)是我國主要的果樹作物,蘋果產業也是現代農業和鄉村振興的支柱產業[1]。瑞雪是由秦富1號和粉紅女士雜交選育而成,是一種黃綠色晚熟新品種,其具有果形端正、果面光潔、口感酸甜適中,極耐貯藏等優點[2-3],深受消費者喜歡。科學的套袋技術是生產優質果實的重要措施之一,具有提高果實外觀品質、減少病蟲果等多方面的優勢[4-6]。栽培者發現種植瑞雪采用不套袋處理時,果點變大、果面較粗糙并會產生著色現象,影響了瑞雪蘋果的外觀品質,因此果實套袋已成為提升瑞雪果實商品價值的重要技術措施。甘肅隴東地區自然生態條件優越,有極大的區域優勢,是我國蘋果生產的核心區域[7]。隨著隴東地區現代蘋果栽培技術的快速發展[8],近幾年隴東地區瑞雪栽培面積迅速增長,但在瑞雪蘋果套袋栽培過程中發現,若果袋選擇不當,果皮便會發生褐變現象[9]。果皮褐變屬于生理性病害,嚴重影響果實的外觀和商品價值,給果農造成一定的經濟損失[10]。因此,針對以上生產栽培中亟待解決的實際問題,探究不同果袋與瑞雪果皮褐變及抗氧化物質的關系具有十分重要的意義。
果實套袋技術的應用改變了袋內溫度、光照等條件[11],進而影響果實的抗逆性[6]。樊淼淼[12]的研究發現套袋會顯著提高瑞雪果實的外觀品質。王爽[9]探究了果袋溫濕度對瑞雪褐變的影響,結果表明套袋瑞雪蘋果果皮褐變與果實發育后期的溫度因子有關,其中果袋內的有效積溫是導致褐變的主要因素。前人研究均未涉及不同果袋與瑞雪果皮褐變及抗氧化物質之間的關系[9,10,13]。因此,筆者在本研究中擬采用3種瑞雪專用果袋和普通雙層袋,通過監測不同果袋內的溫度及測定果皮抗氧化物質含量,結合果皮褐變率,探討不同果袋與瑞雪果皮褐變的關系,旨在降低瑞雪果皮褐變率及緩解其褐變程度,為制定優質瑞雪蘋果的生產栽培管理技術方案提供新思路。
1 材料和方法
1.1 試驗材料
試驗于2022年7—11月在甘肅省慶陽市西北農林科技大學慶城蘋果試驗站進行(35°42′~36°17′ N,107°16′~108°05′ E)。試驗站海拔為1300 m,年平均降雨量為538 mm,年平均氣溫為9.5 ℃。試驗材料為6年生瑞雪蘋果樹,基砧為新疆野蘋果,中間砧為M26。定植株行距為1 m×4 m,按細長紡錘形樹體結構整形,周年進行正常肥水管理與病蟲害防治。
1.2 試驗設計
選取長勢一致的瑞雪植株。根據物候期確定套袋時期,于盛花期(4月13日)后84 d進行套袋。所用果袋為綠色波點單層袋(G1)、袋口露白綠色波點單層袋(G2)和白色單層袋(G3),以普通雙層袋為對照(表1)。每個處理選5株樹,每株樹隨機選取60個果實進行套袋處理。采用溫濕度探頭儀測定自然環境及不同果袋內花后84~189 d的溫度,在花后189 d進行連袋采收,并統計褐變率及褐變指數,采收后每個處理隨機選取6個蘋果作為樣品。將待測樣品及時置于液氮中冷凍,隨后置于-80 ℃冰箱保存,用于后期的生化指標測定。果袋信息見表1。
1.3 試驗方法
1.3.1" " 果袋內溫度的測定及溫度參數的計算" " 果袋內溫度的測定。在樹體中部(距離地面1.5 m左右)同一方向用路格溫濕度記錄儀(L92-1)設定好起止時間,連續監測果袋內和自然環境的溫度(±0.5 ℃),每1 h記錄1次果袋內的數據。將溫濕度探頭放入果袋內,要避免探頭與果面接觸,并用細繩扎緊果袋口,另外將一個溫濕度探頭放在果袋的附近,監測自然環境的溫度[9]。記錄時間從瑞雪果實套袋(花后84 d)至果實采收為止(花后189 d)。
溫度參數的計算。日平均溫度為24 h記錄點的平均值;日最高溫度為24 h記錄點的最大值;日最低溫為24 h記錄點的最小值;日最高平均溫度為花后84~189 d日最高溫的平均值;日最低平均溫度為花后84~189 d日最低溫的平均值;有效積溫的計算參照王爽[9]的方法:以10 ℃作為瑞雪蘋果的生物學零度,日平均溫度高于10 ℃作為有效溫度,花后84~189 d中有效溫度的積累量為有效積溫。
1.3.2" " 果袋透光率的測定和計算" " 用TES-1399照度計測定不同果袋的透光率。首先將探頭置于光照培養箱中測量其環境光照度,其次將裁剪后的果袋緊密覆蓋在照度計探頭上方,待光照度值穩定后讀數,同一環境中3次重復,取平均數。
果袋透光率/%=不同果袋內光照度/環境光照度×100。
1.3.3" " 果皮褐變率及褐變指數的測定" " 每組處理調查285個果實以統計褐變率和褐變指數,統計參照王爽[9]的方法。
褐變率/%=(褐變果數/抽取樣品果數)×100。
褐變分級:
0級:無褐變;1級:褐變面積S,0lt;S≤1/4;2級:褐變面積S,1/4lt;S≤1/2;3級:褐變面積S,1/2lt;S≤3/4;4級:褐變面積S,3/4lt;S≤1。
褐變指數/%=Σ(褐變級別×該級果實數)/(總果數量×最高褐變級別)×100。
1.3.4" " 抗氧化物質及抗氧化酶活性的測定" " 維生素C含量的測定通過鉬藍比色法,利用紫外分光光度計測定760 nm處吸光度值,用于后續計算維生素C含量。稱取1.0 g果皮,液氮研磨,加入1.5 mL乙醇-丙酮混合液(體積比7∶3)在37 ℃溫育1 h。勻漿在20 ℃、8000×g高速離心20 min,取上清液立即存放在-20 ℃用于總酚、類黃酮、總黃酮含量的測定。總酚含量的測定參照Folin-Ciocalteu法,用紫外分光光度計測定765 nm波長處的吸光度,每一試樣重復測定3次,用于后續計算總酚的含量;類黃酮含量的測定參照趙靜[14]的方法,取0.15 mL提取液于10 mL玻璃試管中,加入3.4 mL 30%乙醇,0.15 mL 0.5 mol·L-1 NaNO2溶液,0.15 mL 0.3 mol·L-1 Al(NO3)3溶液充分混合,反應5 min后,加入1.0 mL 1 mol·L-1 NaOH溶液,用紫外分光光度計測定510 nm處的吸光度,每一試樣重復測定3次,用于后續計算類黃酮的含量;總黃酮含量的測定參照DMACA法,640 nm波長下測定吸光值,每個試樣重復測定3次,用于后續計算總黃酮含量。
MDA和[O2] 含量的測定。MDA含量參照趙靜[14]的方法測定,取0.3 g果皮粉,用50 mmol·L-1 PBS(pH 7.8)研磨成勻漿,定容到6 mL,離心取上清液。取1.5 mL樣品和2.5 mL 0.5%的2-硫代巴比妥酸(TBA)溶液于10 mL的離心管中,在100 ℃的水浴鍋中放置20 min后,溫度下降至室溫離心,取上清液進行測定。[O2] 含量采用羥胺氧化法測定,反應后在530 nm處測量溶液的吸光度值。
抗氧化酶活性的測定。SOD活性采用試劑盒WST-8法測定;POD活性參照李心草[15]的方法測定,磷酸緩沖液(pH 7.0)、0.125 mL愈創木酚,250 μL 30%的H2O2組成POD反應液。20 μL酶提取液加入4 mL POD反應液,迅速混合均勻,測定OD值,波長為470 nm;PPO活性參照鄰苯二酚法測定,1 mL酶液,加入1.5 mL 0.1 mol·L-1 pH 6.8的磷酸緩沖液,0.5 mL 0.1 mol·L-1的鄰苯二酚,立即于420 nm處測定OD值;CAT活性參照趙靜[14]的方法測定,1 mL反應體系中含有50 mmol·L-1磷酸緩沖液(pH 7.0),粗酶提液20 μL,25 ℃預熱,加入H2O2(0.1 mol·L-1)0.1 mL,啟動反應。以磷酸緩沖液作為空白對照,記錄240 nm波長下吸收值的降低速度。
1.4 數據分析
數據測定取3次生物學重復,用Microsoft Office Excel 2010軟件進行數據整理和作圖,采用SPSS 20.0軟件進行數據分析,數據以平均值±標準差表示。
2 結果與分析
2.1 不同果袋內微域環境的比較
2.1.1" " 不同果袋內的溫度比較" " 不同果袋內的日平均溫度變化如圖1所示,不同果袋內日平均溫呈下降趨勢,且所有處理下降趨勢一致。在瑞雪果實生長發育過程中,日平均溫度出現兩次較大波動的下降,分別是花后120~140 d與花后170~180 d。第一次溫度出現短暫回溫后繼續下降,第二次溫度驟減15 ℃左右。
圖2-A可見,G1的日平均最高溫度高于其他處理,為27.6 ℃,而后依次為G3、G2、對照,分別為27.0 ℃、26.7 ℃、26.4 ℃;圖2-B可見,日平均溫度遵循G1>G3>G2>對照的規律;圖2-C可見,日平均低溫遵循G1>對照>G3>G2的規律;圖2-D可見,對照的有效積溫最低,為986.3 ℃,與對照相比,G3的有效積溫增加了36.9 ℃,為1 023.2 ℃;其中G1和G2的有效積溫無顯著差異,分別為1 019.4 ℃和1 010.6 ℃。綜上所述,不同果袋內日平均低溫和日平均溫無顯著差異,但G3果袋顯著提高了袋內的有效積溫。
2.1.2" " 不同果袋透光率的比較" " 對照透光率為0%,G1和G3透光率分別為36.6%和51.2%,G2露白處透光率為51.2%,綠色單層透光率為32%。綜上,果袋透光率由高到低依次是G3、G2、G1。
2.2 不同果袋內果皮褐變率及增長情況
2.2.1" " 不同果袋內果皮褐變率及褐變指數的比較 如圖3所示,不同套袋處理的果實呈現不同色澤,尤其是對照的果實和其他處理的果實色澤相差較大。如圖4-A所示,不同果袋瑞雪果皮褐變率統計結果中,對照果皮褐變率顯著高于其他處理,為78.6%;G1和G2果皮褐變率無顯著差異,分別為7.0%和6.0%;G3果皮褐變率最低,為1.4%。不同果袋瑞雪果皮褐變指數統計結果如圖4-B所示,對照中一至四級褐變指數高于其他處理,分別為11.6%、8.9%、6.8%和5.3%。與對照相比,G1和G2出現果皮一級褐變和二級褐變,G3僅出現果皮一級褐變,褐變指數為1.4%。綜合分析表明,對照瑞雪果皮褐變率與褐變指數均高于其他套袋處理。其中,與G3相比,G1和G2的褐變率分別是G3的5倍和4.29倍。
2.2.2" " 不同果袋內果皮褐變率增長情況" " 不同果袋褐變率增長情況如圖5所示,在花后174 d 對照開始出現褐變現象,并在花后180~184 d期間瑞雪果皮褐變率迅速增長,褐變率由8.0%增長至24.0%。與對照相比,G1和G2果皮發生褐變現象推遲了11 d,且褐變增長較慢,直至花后189 d,G1和G2的褐變率僅為7.0%和6.0%,而G3果皮發生褐變現象較對照推遲了13 d,褐變率為1.4%。綜上所述,不同果袋處理的瑞雪果皮褐變呈顯著差異。
2.3 不同果袋內果皮抗氧化物質含量的比較
2.3.1" " 不同果袋內果皮抗氧化物質含量的比較" " 維生素C含量(w,后同)的測定表明,G3的含量顯著高于其他處理,為5.19 mg·100 g-1,其次為G2>G1>對照,分別為4.74、4.41、4.32 mg·100 g-1;與對照相比,G1、G2、G3總酚含量均有顯著增加,分別增加了38.9%、42.4%、57.7%;與對照果皮中的類黃酮含量相比,G1、G2和G3處理的果皮類黃酮含量顯著增加,其中,G3處理的類黃酮含量最高(3.97 mg·100 g-1),G1和G2的類黃酮含量分別為3.84 mg·100 g-1和3.44 mg·100 g-1;與對照果皮總黃酮的含量相比,G1顯著提高了21.0%,G2和G3總黃酮含量增加量并無顯著差異,分別提高了43.9%和49.1%。綜合分析表明,與對照相比,G1、G2和G3抗氧化物質含量顯著增加,其中,G3處理提升果皮抗氧化物質含量的效果更好(表2)。
2.3.2" " 不同果袋內果皮MDA和[O2] 含量的比較" " 由圖6-A可見,與對照相比,G1、G2和G3果皮的MDA含量分別降低了8.6%、19.7%和21.1%,其中G3果皮的MDA含量下降幅度最大且達到差異顯著水平;由圖6-B可見,與對照相比,G1果皮的 [O2] 含量無顯著變化,分別為248.32 μg·g-1和252.30 μg·g-1,但G2和G3處理中果皮的 [O2] 含量與對照差異顯著,分別下降了4.1%和2.1%。綜上,與對照相比,G3處理顯著降低了果皮MDA含量,而G2和G3處理顯著降低了果皮 [O2] 含量。
2.3.3" " 不同果袋內果皮抗氧化酶活性的比較" " 由圖7-A可知,與對照相比,G2和G3處理的SOD活性顯著升高,其中G3處理的SOD活性最高,為21.22 U·g-1·min-1;由圖7-B可知,G3果皮中的POD活性最高,其次為G2和對照,而G1果皮中的POD活性最低,為7.86 U·g-1·min-1。與G1相比,G2、G3的POD活性顯著提高11.8%和28.6%;由圖7-C可知,與對照相比,G1、G2和G3果皮CAT活性均顯著提高,其中G1和G3果皮CAT活性提高效果最為顯著,分別提高了59.7%和54.0%,而G2果皮提高了25.2%;由圖7-D可知,對照和G1果皮的PPO活性顯著高于其他處理,分別為174.45 U·g-1·min-1和172.75 U·g-1·min-1,而G2和G3果皮中的PPO活性無顯著差異,分別為141.12 U·g-1·min-1和140.00 U·g-1·min-1。綜上,從對照至G1、G2和G3處理,SOD和POD活性整體呈上升趨勢,PPO活性呈下降趨勢。
2.4 應用隸屬函數法對4種果袋的綜合評價
通過選取具有顯著差異的抗氧化物質指標,以褐變率、維生素C含量、總酚含量、類黃酮含量、總黃酮含量、丙二醛含量、超氧陰離子含量、SOD活性、POD活性、CAT活性、PPO活性作為評價指標。各指標的隸屬函數值如表3所示,通過隸屬函數綜合評價得出,4種果袋對瑞雪蘋果果皮褐變及抗氧化品質指標影響效果的綜合評價指數排序為:G3>G2>G1>對照,這表明G3果袋在降低瑞雪果皮褐變率和提升瑞雪果皮抗氧化品質方面的綜合效果最優,其次是G2果袋和G1果袋。
3 討 論
3.1 不同果袋對溫度和光照的影響
蘋果生長發育離不開自然環境。不套袋果主要受自然環境的影響,而套袋果主要受袋內微域環境的影響[4,11]。不同材質的果袋營造的微域環境不同,進而影響果袋內光照和溫度環境。張建光等[5]的研究發現,光照是通過影響袋內的溫度進而制約果面的溫度,此溫度差異必然會造成果實的生理狀態差異,從而間接對套袋果產生影響。本研究中雖然不同果袋內日平均低溫和日平均溫無顯著差異,但是不同果袋內日平均最高溫和有效積溫存在一定的差異,例如對照和G3的有效積溫累積量相差36.9 ℃,這必定會對果實的生理指標產生影響。厲恩茂等[11]的研究指出完全遮光袋會導致袋內溫度升高,光照度顯著降低,也會減小溫度的變化幅度。程智慧等[16]對黃瓜進行套袋栽培,發現套袋后溫度均有不同程度的提高,而光照度減弱,并得出套袋營造的微環境可以調節黃瓜發育、品質及其商品價值。這與本研究的結果一致,通過對瑞雪蘋果采用不同果袋的套袋栽培管理,改變了袋內的微域環境,進而緩解瑞雪果皮的褐變現象并提高瑞雪的品質。
3.2 不同果袋溫度對果皮褐變及MDA和 [O2] 含量的影響
Tong等[17]的研究指出當蜜脆蘋果處于易感成熟期時,日平均溫的下降可能會提升果肉褐變的發生率。日平均溫下降之所以可能是誘發果皮褐變的重要因素,是因為低溫會破壞果樹體內正常的氧化還原關系,從而導致果實抗氧化能力的變化,進而影響果樹體內其他生理代謝過程[18]。與此同時,低溫脅迫也會促進胞內活性氧產生,過多的活性氧容易誘發果皮的膜脂過氧化,從而導致膜脂過氧化產物MDA大量積累[19]。Sun等[20]的研究也證明了在低溫逆境下,南果梨果皮中PuMYB21和PuMYB54結合下游結構基因PuPLDβ1促進了膜脂代謝,進而引起果皮褐變。王爽[9]的研究得出渭北地區套袋瑞雪在果實發育后期,袋內較低的日平均溫和日最高溫造成較低的有效積溫,使果實處于低溫脅迫環境中,從而導致瑞雪果皮褐變的產生。本研究中通過測定果袋內溫度,發現在花后170~180 d溫度驟降15 ℃,對照開始發生褐變并且褐變率上升較快;此外,對照果袋的有效積溫遠低于G1、G2和G3,而對照果皮褐變率和褐變程度遠高于G1、G2和G3,這與王爽[9]的研究結果一致。因此推測在隴東地區,當瑞雪果實發育后期日平均溫大幅度下降時,果皮容易發生褐變現象。當蘋果[21]、葡萄[22]在低溫脅迫下,活性氧含量和MDA含量都顯著升高,這與筆者的研究結果一致。G1果袋內有效積溫較低,而 [O2] 和MDA含量顯著高于其他處理,進而果皮褐變現象較為嚴重。與此相反,G3果袋內有效積溫較高, [O2] 和MDA含量顯著低于對照和其他處理組,同時其果皮褐變率最低。
3.3 不同果袋光照對果皮褐變、抗氧化物質及抗氧化酶活性的影響
光照是影響植物抗氧化能力的重要因子之一[23-24]。Wang等[25]的研究發現,在黑暗條件下,MdWRKY31與MdLAC7的啟動子結合,可調節其活性,進而加速套袋果實的果皮褐變;而在光照環境下,光響應轉錄因子MdHY5與MdWRKY31的啟動子結合并抑制該基因的表達,從而間接抑制MdLAC7的功能,因此抑制了采前果皮的褐變。這與筆者的研究結果一致,透光率為0%的對照果袋會加速袋內瑞雪果皮褐變,而透光率為51.2%的G3果袋果皮褐變延遲13 d,這表明透光率高的果袋降低了袋內果皮的褐變程度。在梨的研究中發現光照度會影響梨果實內的抗氧化性能[20]。在枇杷套袋后也發現枇杷果實的抗氧化能力有不同程度的下降,這主要歸因于酚類物質和類黃酮含量下降[26]。本研究中,瑞雪套袋后果皮抗氧化能力均有所下降,但以高透光率的G3(白色單層袋)內果實抗氧化能力降幅小,而以低透光率的對照(普通雙層袋)抗氧化能力降幅大。在套袋薄皮甜瓜果實研究中同樣發現果袋的透光性和類黃酮含量呈正相關[27],不套袋黃桃中較高的總酚和總黃酮含量有利于抑制黃桃果肉的褐變[28]。本研究中,雙層袋的透光性低于單層袋,且雙層袋的總酚和類黃酮的含量顯著低于單層袋的含量,其中,隨著不同單層袋透光率降低,瑞雪果皮總酚和類黃酮的含量呈下降趨勢。因此光照可能影響了瑞雪果皮中總酚和類黃酮等抗氧化物質的代謝,進而影響了瑞雪果皮褐變率和褐變指數。
蘋果梨酵素總酚含量上升抑制了PPO活性,從而控制酶促褐變的發生[29]。受光程度較強的不套袋黃桃會延遲PPO活性的降低,減輕果實的氧化脅迫[28],而總酚含量與抗氧化酶活性升高和PPO活性降低緊密相關[30]。本研究中隨著果袋透光率的升高,瑞雪果皮中的酚類物質含量上升,而PPO活性下降。Lin等[31]研究發現龍眼果皮發生褐變歸因于SOD活性的降低和 [O2] 的累積量增加,進而導致膜脂質過氧化嚴重,細胞膜結構的完整性受損,最終使PPO與酚類物質接觸發生褐變。PPO同樣也是影響石榴果皮褐變的主導酶類[32],在本研究中同樣發現在褐變率較高的瑞雪果皮中,PPO活性較高。Zhao等[33]得出采收前的陽光照射顯著提升了收獲時梨果皮中抗氧化酶的活性。這是因為光照度的增加會調控SOD基因的表達,使抗氧化酶活性提高[18]。在本研究中,隨著果袋透光率的升高,瑞雪果皮中SOD活性提高。SOD、POD及CAT等抗氧化酶系統的存在可以有效地清除ROS[34],保持體內活性氧的平衡,因而SOD、POD及CAT的活性可以作為判定果實抗氧化的指標[35]。本研究中,隨果袋透光率的升高,瑞雪果皮SOD、POD整體的活性提升,即果皮抗氧化能力增強,進而降低了瑞雪果皮褐變率及褐變指數。
4 結 論
不同果袋顯著影響瑞雪蘋果果皮抗氧化物質含量和抗氧化酶活性。白色單層果袋(G3)顯著提高了果皮抗氧化物質含量和抗氧化酶活性,降低了瑞雪果皮褐變率及褐變指數。因此,在瑞雪套袋栽培生產中,推薦使用白色單層果袋(G3)。
參考文獻 References:
[1] 王金政,毛志泉,叢佩華,呂德國,馬鋒旺,任小林,束懷瑞,李保華,郭玉蓉,郝玉金,姜遠茂,張新忠,楊欣,曹克強,趙政陽,韓振海,霍學喜,魏欽平. 新中國果樹科學研究70年:蘋果[J]. 果樹學報,2019,36(10):1255-1263.
WANG Jinzheng,MAO Zhiquan,CONG Peihua,Lü Deguo,MA Fengwang,REN Xiaolin,SHU Huairui,LI Baohua,GUO Yurong,HAO Yujin,JIANG Yuanmao,ZHANG Xinzhong,YANG Xin,CAO Keqiang,ZHAO Zhengyang,HAN Zhenhai,HUO Xuexi,WEI Qinping. Fruit scientific research in New China in the past 70 years:Apple[J]. Journal of Fruit Science,2019,36(10):1255-1263.
[2] 魏靜,王輝,王樂幸,裴琳娜,孫魯龍,陳旭強,高華. 套袋‘瑞雪’蘋果果皮不同部位褐變的研究[J]. 北方果樹,2023(2):5-9.
WEI Jing,WANG Hui,WANG Lexing,PEI linna,SUN Lulong,CHEN Xuqiang. Study on browning of different parts of bagged ‘Ruixue’ apple peel during harvesting period[J]. Northern Fruits,2023(2):5-9.
[3] 高華,趙政陽,王雷存,劉振中,武月妮,楊亞州,張伯虎. 蘋果新品種‘瑞雪’的選育[J]. 果樹學報,2016,33(3):374-377.
GAO Hua,ZHAO Zhengyang,WANG Leicun,LIU Zhenzhong,WU Yueni,YANG Yazhou,ZHANG Bohu. Breeding report of a new apple cultivar‘Ruixue’[J]. Journal of Fruit Science,2016,33(3):374-377.
[4] 卜萬鎖,牛自勉,趙紅鈺. 套袋處理對蘋果芳香物質含量及果實品質的影響[J]. 中國農業科學,1998,31(6):1-5.
BU Wansuo,NIU Zimian,ZHAO Hongyu. Effect of fruit bagging treatment on the content of volatile aroma compounds and flesh quality of apple[J]. Scientia Agricultura Sinica,1998,31(6):1-5
[5] 張建光,王惠英,王梅,孫建設,劉玉芳,SCHRADER L. 套袋對蘋果果實微域生態環境的影響[J]. 生態學報,2005,25(5):1082-1087.
ZHANG Jianguang,WANG Huiying,WANG Mei,SUN Jianshe,LIU Yufang,SCHRADER L. Effect of bagging on microenvironments of apple fruits[J]. Acta Ecologica Sinica,2005,25(5):1082-1087.
[6] 王保明,丁改秀,王小原,秦國杰,倉國營,溫鵬飛. 套袋對‘壺瓶棗’果實微域環境及品質的影響[J]. 果樹學報,2013,30(5):787-792.
WANG Baoming,DING Gaixiu,WANG Xiaoyuan,QIN Guojie,CANG Guoying,WEN Pengfei. Effects of bagging on the microenvironment and fruit quality of ‘Huping’ jujube[J]. Journal of Fruit Science,2013,30(5):787-792.
[7] 董鐵,劉興祿,牛軍強,魏玉萍,于良祖,馬明. 4個蘋果新品種在隴東地區的引種表現[J]. 甘肅農業科技,2018(10):58-61.
DONG Tie,LIU Xinglu,NIU Junqiang,WEI Yuping,YU Liangzu,MA Ming. Introduction performance of 4 new apple cultivars in Longdong area[J]. Gansu Agricultural Science and Technology,2018(10):58-61.
[8] 邵礫群. 中國蘋果矮化密植集約栽培模式技術經濟評價研究[D]. 楊凌:西北農林科技大學,2015.
SHAO Liqun. Techno-economic evaluation on high-density dwarfing cultivation pattern of apple in China[D]. Yangling:Northwest A amp; F University,2015.
[9] 王爽. 套袋誘發‘瑞雪’蘋果果皮褐變的生理生態機制研究[D]. 楊凌:西北農林科技大學,2021.
WANG Shuang. Research on physiological and ecological mechanism of peel browning of ‘Ruixue’ apple induced by bagging[D]. Yangling:Northwest A amp; F University,2021.
[10] 蘇艷麗,田永真,楊健,王龍,王蘇珂,薛華柏,李秀根. 梨果實褐變的研究進展[J]. 西北林學院學報,2018,33(3):144-152.
SU Yanli,TIAN Yongzhen,YANG Jian,WANG Long,WANG Suke,XUE Huabai,LI Xiugen. Research progress of pear fruit browning[J]. Journal of Northwest Forestry University,2018,33(3):144-152.
[11] 厲恩茂,史大川,徐月華,陳鋒,翟衡. 套袋蘋果不同類型果袋內溫、濕度變化特征及其對果實外觀品質的影響[J]. 應用生態學報,2008,19(1):208-212.
LI Enmao,SHI Dachuan,XU Yuehua,CHEN Feng,ZHAI Heng. Changing characteristics of temperature and humidity in different type bags for bagging apple and their effects on fruit appearance quality[J]. Chinese Journal of Applied Ecology,2008,19(1):208-212.
[12] 樊淼淼. ‘瑞雪’蘋果套袋栽培關鍵技術優化[D]. 楊凌:西北農林科技大學,2021.
FAN Miaomiao. Optimization of key technology of ‘Ruixue’ apple bagging cultivation[D]. Yangling:Northwest A amp; F University,2021.
[13] 李靜. 蘋果新品種‘瑞雪’專用育果袋的篩選[D]. 楊凌:西北農林科技大學,2019.
LI Jing. Screening of special fruit-growing bags for new apple variety ‘Ruixue’[D]. Yangling:Northwest A amp; F University,2019.
[14] 趙靜. 采前光照誘導抗氧化物積累抑制‘Anjou’梨果實虎皮病發生的生化及分子機制[D]. 泰安:山東農業大學,2016.
ZHAO Jing. The biochemical and molecular mechanism of pre-harvest light expose inhibited ‘Anjou’pear superficial scald via promote accumulation of antioxidant compounds[D]. Tai’an:Shandong Agricultural University,2016.
[15] 李心草. UV-B處理對蘋果虎皮病的防效和機制研究[D]. 泰安:山東農業大學,2022.
LI Xincao. Effect and mechanism of UV-B treatment on the control of superficial scald in apples[D]. Tai’an:Shandong Agricultural University,2022.
[16] 程智慧,趙英,孟煥文,關志華. 不同材質果袋春夏季節套袋對黃瓜果實發育和品質的影響[J]. 生態學報,2007,27(2):732-739.
CHENG Zhihui,ZHAO Ying,MENG Huanwen,GUAN Zhihua. Effects of fruit bagging with different types of bags on growth and quality of cucumber fruit[J]. Acta Ecologica Sinica,2007,27(2):732-739.
[17] TONG C B S,CHANG H Y,BOLDT J K,MA Y Z B,DEELL J R,MORAN R E,BOURGEOIS G,PLOUFFE D. Diffuse flesh browning in ‘Honeycrisp’ apple fruit is associated with low temperatures during fruit growth[J]. HortScience,2016,51(10):1256-1264.
[18] 李英麗. 溫度與光照強度對鴨梨果實抗氧化能力的影響及其機理研究[D]. 保定:河北農業大學,2013.
LI Yingli. Effect of temperature and light intensity on fruit antioxidant capacity and its acting mechanism in Yali pears[D]. Baoding:Agricultural University of Hebei,2013.
[19] 孫巧峰,于賢昌,高俊杰,常尚連. 羧甲基殼聚糖對黃瓜幼苗抗冷性的影響[J]. 中國農業科學,2004,37(11):1660-1665.
SUN Qiaofeng,YU Xianchang,GAO Junjie,CHANG Shanglian. Effect of carboxymethyl chitosan on chilling tolerance in cucumber seedlings[J]. Scientia Agricultura Sinica,2004,37(11):1660-1665.
[20] SUN H J,LUO M L,ZHOU X,ZHOU Q,SUN Y Y,GE W Y,YAO M M,JI S J. PuMYB21/PuMYB54 coordinate to activate PuPLDβ1 transcription during peel browning of cold-stored “Nanguo” pears[J]. Horticulture Research,2020,7:136.
[21] 馬玉華,王永紅,王荔,萬明長,鄒養軍. 高溫脅迫對蘋果葉片膜脂過氧化及抗壞血酸的影響[J]. 貴州農業科學,2010,38(8):176-178.
MA Yuhua,WANG Yonghong,WANG Li,WAN Mingchang,ZOU Yangjun. Effects of high temperature stress on lipid peroxidation and ascorbic acid content in apple leaves[J]. Guizhou Agricultural Sciences,2010,38(8):176-178.
[22] 張俊環,黃衛東. 葡萄幼苗在溫度逆境交叉適應過程中活性氧及抗氧化酶的變化[J]. 園藝學報,2007,34(5):1073-1080.
ZHANG Junhuan,HUANG Weidong. Changes of active oxygen and antioxidant enzymes in leaves of young grape plants during cross adaptation to temperature stress[J]. Acta Horticulturae Sinica,2007,34(5):1073-1080.
[23] HAO C Y,FAN R,WU H S,ZHANG X P,WANG L,CHEN W L,CHEN Z L. Physiological response of Monimopetalum chinense to light stress under habitat fragmentation[J]. Plant,Soil and Environment,2010,56(12):551-556.
[24] DEMMIG-ADAMS B,ADAMS W W. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626.
[25] WANG H,ZHANG S H,FU Q Q,WANG Z D,LIU X J,SUN L L,ZHAO Z Y. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning[J]. Plant Physiology,2023,192(3):2102-2122.
[26] 馮健君,陳俊偉,徐紅霞,張豫超,謝鳴,胡余楚. 果袋透光性對寧海白枇杷果實品質及抗氧化能力的影響[J]. 果樹學報,2009,26(1):66-70.
FENG Jianjun,CHEN Junwei,XU Hongxia,ZHANG Yuchao,XIE Ming,HU Yuchu. Effect of different light transmittance paper bags on fruit quality and antioxidant capacity in Ninghaibai loquat cultivar[J]. Journal of Fruit Science,2009,26(1):66-70.
[27] 宋廷宇,李彬,程艷,趙茹,吳春燕,陳赫楠,徐偉,張曉明. 套袋對薄皮甜瓜袋內微域環境和果實品質的影響[J]. 西北農林科技大學學報(自然科學版),2016,44(12):150-156.
SONG Tingyu,LI Bin,CHENG Yan,ZHAO Ru,WU Chunyan,CHEN Henan,XU Wei,ZHANG Xiaoming. Effects of bagging on microenvironment and quality of oriental melon[J]. Journal of Northwest A amp; F University (Natural Science Edition),2016,44(12):150-156.
[28] 黃余年,張維,張群,李高陽,單楊,蘇東林,朱向榮. 采前套袋與未套袋處理對黃桃采后貯藏品質的影響[J]. 中國食品學報,2021,21(6):231-242.
HUANG Yunian,ZHANG Wei,ZHANG Qun,LI Gaoyang,SHAN Yang,SU Donglin,ZHU Xiangrong. Effects of pre-harvest bagging and non-bagging treatment on postharvest storage quality of yellow-flesh peach[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):231-242.
[29] 范昊安,沙如意,方晟,薛淑龍,陳雨,黃俊,崔艷麗,毛建衛. 蘋果梨酵素發酵過程中的褐變與抗氧化活性[J]. 食品科學,2020,41(14):116-123.
FAN Haoan,SHA Ruyi,FANG Sheng,XUE Shulong,CHEN Yu,HUANG Jun,CUI Yanli,MAO Jianwei. Browning and antioxidant activity of apple-pear jiaosu during fermentation[J]. Food Science,2020,41(14):116-123.
[30] 王馨雨,楊綠竹,王婷,王蓉蓉,劉潔,單楊,張群,丁勝華. 植物多酚氧化酶的生理功能、分離純化及酶促褐變控制的研究進展[J]. 食品科學,2020,41(9):222-237.
WANG Xinyu,YANG Lüzhu,WANG Ting,WANG Rongrong,LIU Jie,SHAN Yang,ZHANG Qun,DING Shenghua. Recent progress toward understanding the physiological function,purification,and enzymatic browning control of plant polyphenol oxidases[J]. Food Science,2020,41(9):222-237.
[31] LIN Y F,LIN H T,ZHANG S,CHEN Y H,CHEN M Y,LIN Y X. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested Longan fruit[J]. Postharvest Biology and Technology,2014,96:42-48.
[32] 馮立娟,尹燕雷,楊雪梅,付瑩,李英朋. 不同石榴品種果皮褐變及其相關酶活性分析[J]. 果樹學報,2017,34(3):354-362.
FENG Lijuan,YIN Yanlei,YANG Xuemei,FU Ying,LI Yingpeng. Analysis on the pericarp browning and related enzyme activities in different pomegranate cultivars[J]. Journal of Fruit Science,2017,34(3):354-362.
[33] ZHAO J,XIE X B,SHEN X,WANG Y. Effect of sunlight-exposure on antioxidants and antioxidant enzyme activities in ‘d’Anjou’ pear in relation to superficial scald development[J]. Food Chemistry,2016,210:18-25.
[34] GINé-BORDONABA J,BUSATTO N,LARRIGAUDIèRE C,LINDO-GARCíA V,ECHEVERRIA G,VRHOVSEK U,FARNETI B,BIASIOLI F,DE QUATTRO C,ROSSATO M,DELLEDONNE M,COSTA F. Investigation of the transcriptomic and metabolic changes associated with superficial scald physiology impaired by lovastatin and 1-methylcyclopropene in pear fruit (cv. Blanquilla)[J]. Horticulture Research,2020,7:49.
[35] 左雪冬,胡玉林,鄧峰. 不同果袋對‘蜜絲棗’果實品質及抗氧化酶活性的影響[J]. 熱帶作物學報,2014,35(10):2008-2012.
ZUO Xuedong,HU Yulin,DENG Feng. Effect of different fruit nursery bag on the fruit quality and antioxidant enzyme activity of Zizyphus mauritiana Lam. ‘Misi’[J]. Chinese Journal of Tropical Crops,2014,35(10):2008-2012.