苗雨 常萌萌



摘 要:通過包含并完善一些已有結論,建立了一般隨機變量的完全收斂和大數定律.特別對于兩兩負象限相關的隨機變量,得到了其完全收斂和Marcinkiewicz-Zygmund型強大數定律之間的等價結論.
關鍵詞:完全收斂;強大數定律;隨機變量
中圖分類號:O175.2文獻標志碼:A
參 考 文 獻
[1] ?HSU P L,ROBBINS H.Complete convergence and the law of large numbers[J].Proc Nat Acad Sci,1947,33:25-31.
[2]ERDS P.On a theorem of Hsu and Robbins[J].Ann Math Statist,1949,20:286-291.
[3]KATZ M.The probability in the tail of a distribution[J].Ann Math Statist,1963,34:312-318.
[4]BAUM L E,KATZ M.Convergence rates in the law of large numbers[J].Trans Amer Math Soc,1965,120:108-123.
[5]LEHMANN E L.Some concepts of dependence[J].Ann Math Statist,1966,37:1137-1153.
[6]EBRAHIMI N,GHOSH M.Multivariate negative dependence[J].Comm Statist A-Theory Methods.1981,10(4):307-337.
[7]LIU L.Precise large deviations for dependent random variables with heavy tails[J].Statist Probab Lett,2009,79(9):1290-1298.
[8]NEWMAN C M.Asymptotic independence and limit theorems for positively and negatively dependent random variables[J].Inequalities in statistics and probability,1984(2):127-140.
[9]THNH L V.On the Baum-Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants[J].C R Math Acad Sci Paris,2020,358(11/12):1231-1238.
[10]RIO E.Vitesses de convergence dans la loi forte pour des suites dépendantes[J].C R Acad Sci Paris Sér I Math,1995,320(4):469-474.
[11]SENETA E. Regularly varying functions.Lecture Notes in Mathematics[M].New York:Springer-Verlag,1976.
[12]BINGHAM N H,GOLDIE C M,TEUGELS J L.Regular variation[M].Cambridge:Cambridge University Press,1989.
[13]SENETA E.An interpretation of some aspects of Karamata's theory of regular variation[J].Publ Inst Math,1973,15(29):111-119.
[14]GALAMBOS J,SENETA E.Regularly varying sequences[J].Proc Amer Math Soc,1973,41:110-116.
[15]ANH V T N,HIEN N T T,THNH L V,et al.The Marcinkiewicz-Zygmund-type strong law of large numbers with general normalizing sequences[J].J Theoret Probab,2021,34(1):331-348.
[16]BOJANIC R,SENETA E.Slowly varying functions and asymptotic relations[J].J Math Anal Appl,1971,34(2):302-315.
[17]DZUNG N C,THNH L V.On the complete convergence for sequences of dependent random variables via stochastic domination conditions and regularly varying functions theory:10.48550/arXiv:2107.12690[P].2021-07-27.
[18]ROSALSKY A,THNH L V,A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers[J].Statist Probab Lett,2021,178:109181.
[19]GUT A.Complete convergence for arrays[J].Period Math Hungar,1992,25(1):51-75.
[20]THNH L V.On a new concept of stochastic domination and the laws of large numbers[J/OL].[2022-09-16].https://doi.org/10.1007/s11749-022-00827-w.
[21]WU Q Y.Convergence properties of pairwise NQD random sequences[J].Acta Math Sinica(Chin Ser),2002,45(3):617-624.
[22]SHAO Q M.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J Theoret Probab,2000,13(2):343-356.
[23]UTEV S,PELIGRAD M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J Theoret Probab,2003,16(1):101-115.
[24]ASADIAN N,FAKOOR V,BOZORGNIA A.Rosenthal's type inequalities for negatively orthant dependent random variables[J].J Iran Stat Soc,2006,5(1/2):66-75.
[25]SHEN A T.Probability inequalities for END sequence and their applications[J].J Inequal Appl,2011,2011:12.
[26]MIAO Y,YANG G Y,STOICA G.On the rate of convergence in the strong law of large numbers for martingales[J].Stochastics,2015,87(2):185-198.
[27]MATULA P.A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett,1992,15(3):209-213.
On the complete convergence and the strong law of large numbers for general random variables
Miao Yu1, Chang Mengmeng1,2
(1. College of Mathematics and Information Science; Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,
Henan Normal University, Xinxiang 453007, China; 2. College of Mathematics and Information Science, Anyang Institute of Technology, Anyang 455000, China)
Abstract: In the paper, the complete convergence and the strong law of large numbers for general dependent random sequence are established, which include and improve some known results. In particular, the equivalence between complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the pairwise negatively quadrant dependent random variables is obtained.
Keywords: complete convergence; strong law of large numbers; random variables
[責任編校 陳留院 趙曉華]