999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一般隨機變量的完全收斂及大數定律

2023-06-29 13:36:54苗雨常萌萌

苗雨 常萌萌

摘 要:通過包含并完善一些已有結論,建立了一般隨機變量的完全收斂和大數定律.特別對于兩兩負象限相關的隨機變量,得到了其完全收斂和Marcinkiewicz-Zygmund型強大數定律之間的等價結論.

關鍵詞:完全收斂;強大數定律;隨機變量

中圖分類號:O175.2文獻標志碼:A

參 考 文 獻

[1] ?HSU P L,ROBBINS H.Complete convergence and the law of large numbers[J].Proc Nat Acad Sci,1947,33:25-31.

[2]ERDS P.On a theorem of Hsu and Robbins[J].Ann Math Statist,1949,20:286-291.

[3]KATZ M.The probability in the tail of a distribution[J].Ann Math Statist,1963,34:312-318.

[4]BAUM L E,KATZ M.Convergence rates in the law of large numbers[J].Trans Amer Math Soc,1965,120:108-123.

[5]LEHMANN E L.Some concepts of dependence[J].Ann Math Statist,1966,37:1137-1153.

[6]EBRAHIMI N,GHOSH M.Multivariate negative dependence[J].Comm Statist A-Theory Methods.1981,10(4):307-337.

[7]LIU L.Precise large deviations for dependent random variables with heavy tails[J].Statist Probab Lett,2009,79(9):1290-1298.

[8]NEWMAN C M.Asymptotic independence and limit theorems for positively and negatively dependent random variables[J].Inequalities in statistics and probability,1984(2):127-140.

[9]THNH L V.On the Baum-Katz theorem for sequences of pairwise independent random variables with regularly varying normalizing constants[J].C R Math Acad Sci Paris,2020,358(11/12):1231-1238.

[10]RIO E.Vitesses de convergence dans la loi forte pour des suites dépendantes[J].C R Acad Sci Paris Sér I Math,1995,320(4):469-474.

[11]SENETA E. Regularly varying functions.Lecture Notes in Mathematics[M].New York:Springer-Verlag,1976.

[12]BINGHAM N H,GOLDIE C M,TEUGELS J L.Regular variation[M].Cambridge:Cambridge University Press,1989.

[13]SENETA E.An interpretation of some aspects of Karamata's theory of regular variation[J].Publ Inst Math,1973,15(29):111-119.

[14]GALAMBOS J,SENETA E.Regularly varying sequences[J].Proc Amer Math Soc,1973,41:110-116.

[15]ANH V T N,HIEN N T T,THNH L V,et al.The Marcinkiewicz-Zygmund-type strong law of large numbers with general normalizing sequences[J].J Theoret Probab,2021,34(1):331-348.

[16]BOJANIC R,SENETA E.Slowly varying functions and asymptotic relations[J].J Math Anal Appl,1971,34(2):302-315.

[17]DZUNG N C,THNH L V.On the complete convergence for sequences of dependent random variables via stochastic domination conditions and regularly varying functions theory:10.48550/arXiv:2107.12690[P].2021-07-27.

[18]ROSALSKY A,THNH L V,A note on the stochastic domination condition and uniform integrability with applications to the strong law of large numbers[J].Statist Probab Lett,2021,178:109181.

[19]GUT A.Complete convergence for arrays[J].Period Math Hungar,1992,25(1):51-75.

[20]THNH L V.On a new concept of stochastic domination and the laws of large numbers[J/OL].[2022-09-16].https://doi.org/10.1007/s11749-022-00827-w.

[21]WU Q Y.Convergence properties of pairwise NQD random sequences[J].Acta Math Sinica(Chin Ser),2002,45(3):617-624.

[22]SHAO Q M.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J Theoret Probab,2000,13(2):343-356.

[23]UTEV S,PELIGRAD M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J Theoret Probab,2003,16(1):101-115.

[24]ASADIAN N,FAKOOR V,BOZORGNIA A.Rosenthal's type inequalities for negatively orthant dependent random variables[J].J Iran Stat Soc,2006,5(1/2):66-75.

[25]SHEN A T.Probability inequalities for END sequence and their applications[J].J Inequal Appl,2011,2011:12.

[26]MIAO Y,YANG G Y,STOICA G.On the rate of convergence in the strong law of large numbers for martingales[J].Stochastics,2015,87(2):185-198.

[27]MATULA P.A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett,1992,15(3):209-213.

On the complete convergence and the strong law of large numbers for general random variables

Miao Yu1, Chang Mengmeng1,2

(1. College of Mathematics and Information Science; Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,

Henan Normal University, Xinxiang 453007, China; 2. College of Mathematics and Information Science, Anyang Institute of Technology, Anyang 455000, China)

Abstract: In the paper, the complete convergence and the strong law of large numbers for general dependent random sequence are established, which include and improve some known results. In particular, the equivalence between complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the pairwise negatively quadrant dependent random variables is obtained.

Keywords: complete convergence; strong law of large numbers; random variables

[責任編校 陳留院 趙曉華]

主站蜘蛛池模板: 亚洲成人精品| 久久婷婷综合色一区二区| 天天操天天噜| 四虎永久在线精品影院| 欧美日韩久久综合| 亚洲综合天堂网| 国产色网站| 国产精品男人的天堂| 亚洲AⅤ永久无码精品毛片| 中文字幕1区2区| 国产性生大片免费观看性欧美| 2020久久国产综合精品swag| 伊人久久福利中文字幕| 成人av专区精品无码国产| 欧美a在线看| 另类重口100页在线播放| 国产乱人伦AV在线A| 日日噜噜夜夜狠狠视频| 精品人妻无码中字系列| A级全黄试看30分钟小视频| 2021亚洲精品不卡a| 无码福利日韩神码福利片| 亚洲最大综合网| 亚洲第一天堂无码专区| 欧美在线黄| 国内精品自在自线视频香蕉| 国产精品99r8在线观看| 亚洲国产成人在线| 制服丝袜 91视频| 9啪在线视频| 国产女人在线观看| 国产剧情无码视频在线观看| 国产小视频a在线观看| 婷婷色婷婷| 欧日韩在线不卡视频| 欧美激情视频二区| 91亚洲视频下载| 日韩精品成人网页视频在线| 99r在线精品视频在线播放| 国产在线自揄拍揄视频网站| 日本AⅤ精品一区二区三区日| 这里只有精品在线播放| 国产男女免费完整版视频| 夜色爽爽影院18禁妓女影院| 精品国产网站| 色综合手机在线| 日韩资源站| 性欧美久久| 欧美亚洲另类在线观看| 国产簧片免费在线播放| 免费观看成人久久网免费观看| 波多野结衣第一页| 国产精品理论片| 在线观看免费国产| 黄色网址手机国内免费在线观看| 国产中文在线亚洲精品官网| 无码精品福利一区二区三区| 狠狠色成人综合首页| 亚亚洲乱码一二三四区| 无码啪啪精品天堂浪潮av| 精品乱码久久久久久久| 国产欧美成人不卡视频| 欧美中文一区| 亚洲精品无码专区在线观看| 素人激情视频福利| 99热亚洲精品6码| 免费观看无遮挡www的小视频| 色一情一乱一伦一区二区三区小说| 亚洲天堂视频在线播放| 中国毛片网| 毛片在线播放a| 国内丰满少妇猛烈精品播 | 中文字幕无码中文字幕有码在线| 国产日韩精品一区在线不卡 | 欧美在线天堂| 无码综合天天久久综合网| 国内精品久久九九国产精品 | 中文字幕在线观| 日韩精品无码免费专网站| 欧美性猛交一区二区三区| 亚洲欧美日韩色图| 97色伦色在线综合视频|