999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

復合材料中的偏微分方程理論研究

2023-06-29 13:36:54李海剛徐龍娟
關鍵詞:復合材料

李海剛 徐龍娟

摘 要:在過去的50年,復合材料的發展無疑是現代技術中的一個重要且成功的領域.復合材料通常由基體材料和夾雜材料復合而成. 高對比度復合材料在使用過程中,當夾雜彼此靠得很近時,往往會產生電場、磁場或應力場等物理場的集中現象,這是數學物理領域中的一個重要課題. 將著重介紹在過去的二十多年彈性復合材料應力集中問題在偏微分方程理論方面取得的一些重要進展和一些待解決的關鍵問題.

關鍵詞:復合材料;拉梅方程組;梯度估計;爆破速度;漸近展示

中圖分類號:O175.23;O175.25文獻標志碼:A

現代科技的飛速發展離不開材料科學的發展,如新型納米結構材料以及器件的設計與研制、周期納米結構與等效模量等材料聲學參數的構效關系等復合材料問題的研究,這些在航空航天、深海探測等高端科技領域有著極為迫切的需求.先進復合材料的研制與應用已成為21世紀科技發展的主要方向之一,其核心技術的突破遇到了大量的數學挑戰,涉及偏微分方程、變分法、幾何測度論、隨機分析、非線性分析等領域,因此材料科學的持續長遠發展需要大量基礎數學研究人才的加入.

復合材料通常是由兩種或兩種以上的金屬、陶瓷或高分子等材料經過復合工藝而制備成的一種多相材料, 其中基體材料與夾雜材料在某一特性方面的對比度往往比較高.在高對比度復合材料中,當夾雜靠得很近時會產生物理場的集中現象,如電場、電磁場、應力場等.隨著新型復合材料數目的不斷增加和新的材料不斷被開發,美國科學院院士FRIEDMAN A在《對數學未來的思考》中認為:人類迄今在材料科學的數學研究方面所取得的成就,可以說僅僅是一個開始,還遠遠不能滿足實際應用的需求,甚至對已經研究了很多年的標準材料也仍然面臨著大量的數學挑戰.例如,當一個均勻的彈性體在承受高壓時會破裂.那么,破裂從何時開始,怎么開始? 它們又將如何擴展,何時會分裂成許多裂片,以至于材料最終徹底失效.

自20世紀60年代以來,工業上的巨大發展促進了復合材料背后數學理論的發展,新的數學工具出現也帶動其他領域的發展.如均勻化、變分法、有限元方法、夾雜形狀優化、補償緊方法、擬共形映照等.這些理論的發展與完善既需要數學家、物理學家、力學家以及工程師們之間的相互交流與互動,也需要理論數學家與計算數學家之間更深層次的通力合作.由于玻璃纖維和輕質碳纖維復合材料在航空航天工業和體育器材等領域都有廣泛的應用,1999 年,自適應有限元創始人BABUKA IVO(美國工程院院士) 與瑞典航空研究所的兩名工程師合作研究纖維增強復合材料中裂紋與破壞的計算分析[1].在復合材料中往往會有大量的纖維相互接觸或幾乎接觸,而纖維之間的相互位置會嚴重影響復合材料能承受的最大應力.由于在碳纖維增強復合材料中,小形變就會產生大應力,甚至產生裂紋,所以研究線性彈力方程組——拉梅(Lamé)方程組μΔu+(λ+μ)(·u)=0(1)

能夠精確地達到目的,其中(λ,μ)在基體材料與纖維材料中取不同的值.為了理解這個問題,研究對應的標量方程

·(au)=0(2)

也頗有價值,其中a在基體與纖維中也取不同常數.關于相互接觸纖維之間應力的有界性,以及如何刻畫纖維靠近時應力的集中行為,都是數值仿真過程中需要解決的關鍵問題[1].該問題也被稱為Babuka問題.

在過去的二十多年間,Babuka問題得到了眾多數學家與應用數學家的關注,如 阿貝爾獎得主NIRENBERG L(美國科學院院士) ,國際數學家大會報告人LI Y(李巖巖),KANG H,MILTON G,以及AMMARI H(歐洲科學院院士),VOGELIUS M等,取得了一系列重要進展.由應力-應變關系,應力的集中問題對應著偏微分方程解的梯度估計問題,本文將從以下3個方面介紹這方面的進展:(1)對比度有限情形梯度的一致有界估計;(2)高對比度的極限情形梯度的最佳爆破估計與漸近展示;(3)雙參數情形梯度的統一估計,并介紹在此過程中發展的多種偏微分方程方法,如層位勢方法、Neumann-Poincaré算子的譜方法、能量方法和Green函數方法等.

參 考 文 獻

[1] ?BABUKA I,ANDERSSON B,SMITH P,et al.Damage analysis of fiber composites. I. Statistical analysis on fiber scale[J].Comput Methods Appl Mech Engrg,1999,172(1/2/3/4):27-77.

[2]KELLER J.Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders[J].J Appl Phys,1963,34: 991-993.

[3]BONNETIER E,VOGELIUS M.An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section[J].SIAM J Math Anal,2000,31:651-677.

[4]LI Y,VOGELIUS M.Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients[J].Arch Rational Mech Anal,2000,153:91-151.

[5]LI Y,NIRENBERG L.Estimates for elliptic systems from composite material[J].Comm Pure Appl Math,2003,56:892-925.

[6]AMMARI H,KANG H,LIM M.Gradient estimates for solutions to the conductivity problem[J].Math Ann,2005,332(2):277-286.

[7]AMMARI H,KANG H,LEE H,et al.Optimal estimates for the electric field in two dimensions[J].J Math Pures Appl,2007,88(4):307-324.

[8]YUN K.Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape[J].SIAM J Appl Math,2007,67:714-730.

[9]YUN K.Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections[J].J Math Anal Appl,2009,350:306-312.

[10]BAO S,LI Y,YIN B.Gradient estimates for the perfect conductivity problem[J].Arch Ration Mech Anal,2009,193:195-226.

[11]BAO S,LI Y,YIN B.Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions[J].Comm Partial Differential Equations,2010,35:1982-2006.

[12]LI H,XU L.Optimal estimates for the perfect conductivity problem with inclusions close to the boundary[J].SIAM J Math Anal,2017,49(4):3125-3142.

[13]CHEN Y,LI H,XU L.Optimal gradient estimates for the perfect conductivity problem with C1,α inclusions[J].Ann Inst H Poincar Anal Non Linaire,2021,38(4):953-979.

[14]DONG H,LI Y,YANG Z.Optimal gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2110.11313.

[15]DONG H,LI Y,YANG Z.Gradient estimates for the insulated conductivity problem:the non-umbilical case[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2203.10081.

[16]LI Y,YANG Z.Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-15].https://doi.org/10.48550/arXiv.2012.14056.

[17]WEINKOVE B.The insulated conductivity problem,effective gradient estimates and the maximum principle:10.48550/arxiv.2013.14143[P].2021-03-25.

[18]AMMARI H,BONNETIER E,TRIKI F,et al.Elliptic estimates in composite media with smooth inclusions:an integral equation approach[J].Ann Sci éc Norm Supér,2015,48(2):453-495.

[19]BUDIANSKY B,CARRIER G.High shear stresses in stiff fiber composites[J].J App Mech,1984,51:733-735.

[20]BONNETIER E,TRIKI F.On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D[J].Arch Ration Mech Anal,2013,209(2):541-567.

[21]DONG H.Gradient estimates for parabolic and elliptic systems from linear laminates[J].Arch Ration Mech Anal,2012,205(1):119-149.

[22]DONG H,ZHANG H.On an elliptic equation arising from composite materials[J].Arch Rational Mech Anal,2016,222(1):47-89.

[23]GORB Y.Singular behavior of electric field of high-contrast concentrated composites[J].Multiscale Model Simul,2015,13(4):1312-1326.

[24]GORB Y,BERLYAND L.Asymptotics of the effective conductivity of composites with closely spaced inclusions of optimal shape[J].Quart J Mech Appl Math,2005,58:83-106.

[25]KANG H,KIM E.Estimation of stress in the presence of closely located elastic inclusions:A numerical study[J].Contemporary Math,2016,660:45-57.

[26]LI H,LI Y,BAO S,et al.Derivative estimates of solutions of elliptic systems in narrow regions[J].Quart Appl Math,2014,72(3):589-596.

[27]LIM M,YU S.Asymptotics of the solution to the conductivity equation in the presence of adjacent circular inclusions with finite conductivities[J].J Math Anal Appl,2015,421:131-156.

[28]LIM M,YUN K.Blow-up of electric fields between closely spaced spherical perfect conductors[J].Comm Partial Differential Equations,2009,34:1287-1315.

[29]CIRAOLO G,SCIAMMETTA A.Gradient estimates for the perfect conductivity problem in anisotropic media[J].J Math Pures Appl,2019,127:268-298.

[30]CIRAOLO G,SCIAMMETTA A.Stress concentration for closely located inclusions in nonlinear perfect conductivity problems[J].J Differential Equations,2019,266(9):6149-6178.

[31]GORB Y,NOVIKOV A.Blow-up of solutions to a p-Laplace equation[J].Multiscale Model Simul,2012,10:727-743.

[32]KANG H,LIM M,YUN K.Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities[J].J Math Pures Appl,2013,99:234-249.

[33]AMMARI H,CIRAOLO G,KANG H,et al.Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity[J].Arch Ration Mech Anal,2013,208(1):275-304.

[34]KANG H,LEE H,YUN K.Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions[J].Math Ann,2015,363:1281-1306.

[35]KANG H,LIM M,YUN K.Characterization of the electric field concentration between two adjacent spherical perfect conductors[J].SIAM J Appl Math,2014,74:125-146.

[36]LI H,WANG F,XU L.Characterization of Electric Fields between two Spherical Perfect Conductors with general radii in 3D[J].J Differential Equations,2019,267(11):6644-6690.

[37]LI H.Asymptotics for the electric field concentration in the perfect conductivity problem[J].SIAM J Math Anal,2020,52:3350-3375.

[38]LI H,LI Y,YANG Z.Asymptotics of the gradient of solutions to the perfect conductivity problem[J].Multiscale Model Simul,2019,17:899-925.

[39]CHEN Y,HAO X,XU L.Upper and lower bounds for stress concentration in linear elasticity when C1,α inclusions are close to boundary[J].Quart Appl Math,2022.DOI:10.1090/qam/1621.

[40]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients[J].Arch Ration Mech Anal,2015,215(1):307-351.

[41]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients in dimensions greater than two[J].Adv Math,2017,305:298-338.

[42]LI H.Lower bounds of gradient's blow-up for the Lamé system with partially infinite coefficients[J].J Math Pures Appl,2021,149:98-134.

[43]CHEN Y,LI H.Estimates and asymptotics for the stress concentration between closely spaced stiff C1,γ inclusions in linear elasticity[J].J Funct Anal,2021, 281:1-63.

[44]BAO J,JU H,LI H.Optimal boundary gradient estimates for Lamé systems with partially infinite coefficients[J].Adv Math,2017, 314:583-629.

[45]LI H,ZHAO Z.Boundary blow-up analysis of gradient estimates for Lamé systems in the presence of M-convex hard inclusions[J].SIAM J Math Anal,2020,52(4):3777-3817.

[46]KANG H,YU S.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticity[J].Arch Rational Mech Anal,2019,232:121-196.

[47]LI H,XU L.Asymptotics of the stress concentration in high-contrast elastic composites:1048550/arXiv:2004.06310[P].2020-04-14.

[48]FLAHERTY J,KELLER J.Elastic behavior of composite media[J].Comm Pure Appl Math,1973,26:565-580.

[49]KANG H,YU S.A proof of the Flaherty-Keller formula on the effective property of densely packed elastic composites[J].Calc Var Partial Differential Equations,2020,59(1):13.

[50]LI H,LI Y.An extension of Flaherty-Keller formula for density packed m-convex inclusion[J/OL].[2022-10-20].https://doi.org/10.48550/arxiv.192.13261.

[51]DONG H,LI H.Optimal estimates for the conductivity problem by Green's function Method[J].Arch Ration Mech Anal,2019,231:1427-1453.

[52]JI Y,KANG H.Spectrum of the Neumann-Poincaré operator and optimal estimates for transmission problems in presence of two circular inclusions[J/OL].[2022-10-21].https://doi.org/10.1093/imrn/rnac057,2022.

[53]DONG H,YANG Z.Optimal estimates for transmission problems including relative conductivities with different signs[J/OL].[2022-10-23].https://doi.org/10.48550/arXiv.2208.12237.

On study for the theory of partial differential equations in composite materials

Li Haigang1, Xu Longjuan2

(1. School of Mathematical Sciences; Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University,

Beijing 100875, China; 2. Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China)

Abstract: In the past 50 years, the improvement of composite materials is undoubtedly an important and successful field in modern technology. It is composed of the matrix and inclusions. In high contrast composite materials, a high concentration of physical fields such as electric field, magnetic field or stress field will occur when the inclusions are close to each other, which is an important subject in the field of mathematical physics. In this paper, we will focus on the important advances in the theory of partial differential equations and some key open problems for the stress concentration of elastic composite materials in the past 20 years.

Keywords: composite materials; Lamé systems; gradient estimates; blow-up rates; asymptotics

[責任編校 陳留院 趙曉華]

收稿日期:2022-10-28;修回日期:2022-12-22.

基金項目:國家自然科學基金 (11971061).

作者簡介(通信作者):

李海剛(1981-),男,河南安陽人,北京師范大學教授,博士生導師,教育部青年長江學者,主要從事材料科學中的偏微分方程理論研究,E-mail:hgli@bnu.edu.cn.

猜你喜歡
復合材料
淺談現代建筑中新型復合材料的應用
金屬復合材料在機械制造中的應用研究
敢為人先 持續創新:先進復合材料支撐我國國防裝備升級換代
民機復合材料的適航鑒定
復合材料無損檢測探討
電子測試(2017年11期)2017-12-15 08:57:13
復合材料性能與應用分析
PET/nano-MgO復合材料的性能研究
中國塑料(2015年6期)2015-11-13 03:02:54
ABS/改性高嶺土復合材料的制備與表征
中國塑料(2015年11期)2015-10-14 01:14:14
聚乳酸/植物纖維全生物降解復合材料的研究進展
中國塑料(2015年8期)2015-10-14 01:10:41
TiO2/ACF復合材料的制備及表征
應用化工(2014年10期)2014-08-16 13:11:29
主站蜘蛛池模板: 毛片免费观看视频| 亚洲综合精品香蕉久久网| 九色免费视频| 毛片久久网站小视频| 色综合久久久久8天国| 亚洲AV无码久久精品色欲| 中文字幕天无码久久精品视频免费 | 77777亚洲午夜久久多人| 国产欧美日韩视频一区二区三区| 97se亚洲| 色精品视频| 蜜臀av性久久久久蜜臀aⅴ麻豆| 特黄日韩免费一区二区三区| 国产精品毛片在线直播完整版| 青青操视频在线| 国产精品自拍合集| 亚洲av无码成人专区| 不卡无码网| 国产精品成人观看视频国产 | 亚洲国产综合精品一区| av一区二区无码在线| 午夜老司机永久免费看片| 91美女在线| 国产剧情国内精品原创| 成人国产小视频| 国产日韩久久久久无码精品| 国产成人免费视频精品一区二区| 久久综合一个色综合网| 亚洲AV无码乱码在线观看裸奔| 国产永久无码观看在线| 伊人丁香五月天久久综合| 成人亚洲国产| 国产自无码视频在线观看| www.精品视频| 无码专区在线观看| 国产乱子伦一区二区=| 人人艹人人爽| 精品三级网站| 中文字幕在线看| 国产精品成人久久| 中文字幕伦视频| 中国一级毛片免费观看| 亚洲香蕉久久| 国产成人无码AV在线播放动漫 | 国产麻豆福利av在线播放| 午夜欧美在线| 午夜精品国产自在| 色综合久久88色综合天天提莫| 国产精品成人观看视频国产| 久久国产精品77777| 精品人妻一区二区三区蜜桃AⅤ| 制服丝袜无码每日更新| 日本黄网在线观看| 免费看美女自慰的网站| 国产免费久久精品44| 日韩中文精品亚洲第三区| 在线欧美日韩国产| 亚洲一道AV无码午夜福利| 香蕉综合在线视频91| 亚洲精品国产成人7777| 美女免费精品高清毛片在线视| 中美日韩在线网免费毛片视频| 2020最新国产精品视频| 欧美成人手机在线观看网址| 国产亚洲精品自在线| 一本大道香蕉久中文在线播放| 日韩123欧美字幕| 日韩精品无码不卡无码| 国产成人高清亚洲一区久久| 青青草一区二区免费精品| 免费99精品国产自在现线| 国产精品不卡永久免费| 国产男女免费视频| 欧美区一区二区三| 国产资源免费观看| 99re66精品视频在线观看| 欧美第二区| 国产午夜福利在线小视频| 波多野结衣视频网站| 国产成人精品综合| 国产精品久久自在自线观看| 国产丰满大乳无码免费播放 |