郭琴 謝文治 段正路



摘 要:研究了與級(jí)聯(lián)型三能級(jí)人工原子耦合的聲學(xué)腔中的聲子統(tǒng)計(jì).研究采取的模型是由一個(gè)級(jí)聯(lián)型三能級(jí)人工原子和兩個(gè)聲學(xué)布拉格鏡組成,其中兩個(gè)布拉格鏡組成系統(tǒng)的聲學(xué)腔.研究表明,在弱驅(qū)動(dòng)和強(qiáng)控制場(chǎng)的作用下,模型中將產(chǎn)生常規(guī)聲子阻塞,系統(tǒng)耦合強(qiáng)度和控制場(chǎng)強(qiáng)度對(duì)聲子阻塞具有較大影響.此外,還研究了環(huán)境熱噪聲對(duì)聲子阻塞的破壞作用.這項(xiàng)工作為實(shí)驗(yàn)上實(shí)現(xiàn)聲子阻塞提供了一個(gè)可行的方案,可用于制備單聲子源.
關(guān)鍵詞:聲子阻塞;單聲子源;三能級(jí)人工原子
中圖分類號(hào):O413文獻(xiàn)標(biāo)志碼:A
量子領(lǐng)域的科技發(fā)展已經(jīng)成為國(guó)家戰(zhàn)略計(jì)劃.量子技術(shù)包括量子計(jì)算[1]、量子通信[2]、量子精密測(cè)量[3]、量子模擬[4]和量子密碼學(xué)[5]等.一個(gè)理想的單光子源在量子通信中必不可少,是量子通信的基礎(chǔ)[6].除了光子之外,聲子因其低速、波長(zhǎng)短等優(yōu)點(diǎn)成為自然界中另一個(gè)重要的能量和信息載體[7].聲子作為一種準(zhǔn)粒子在量子存儲(chǔ)、探測(cè)、操控等領(lǐng)域中也扮演著重要的角色.因此,單聲子源的制備對(duì)量子信息技術(shù)至關(guān)重要.一個(gè)高品質(zhì)的單聲子源可以與多種量子系統(tǒng)連接,用于探索不同于光子的物理世界[8-10].在聲子系統(tǒng)當(dāng)中創(chuàng)建量子體系一直是量子聲學(xué)目前研究的重點(diǎn)[11-13].最近,研究表明超導(dǎo)量子比特與聲表面波之間可以進(jìn)行相互作用[7,14-16].聲表面波與超導(dǎo)量子比特之間的相互作用開辟了將量子光學(xué)效應(yīng)的類似物映射到聲學(xué)中的途徑.
2010年加州大學(xué)研究小組在低溫下通過(guò)微波頻率的機(jī)械諧振器與量子比特耦合,實(shí)現(xiàn)了可控地產(chǎn)生單個(gè)聲子,為量子控制在機(jī)械系統(tǒng)中奠定了基礎(chǔ)[17].同年,清華大學(xué)研究小組在研究納米機(jī)械諧振器中的量子振蕩問(wèn)題時(shí)提出,可以通過(guò)聲子阻塞來(lái)間接觀察量子振蕩[18].聲子阻塞是光子阻塞在量子聲學(xué)中的對(duì)應(yīng)物,是一種純量子效應(yīng).這個(gè)效應(yīng)表現(xiàn)為當(dāng)?shù)谝粋€(gè)聲子在非線性諧振器中產(chǎn)生后,第二個(gè)聲子會(huì)被阻塞.只有第一個(gè)聲子輸出后,第二個(gè)聲子才會(huì)在諧振器中產(chǎn)生.諧振器中的聲子數(shù)量永遠(yuǎn)不會(huì)超過(guò)一個(gè).因此,制備單聲子源[9-10]可以借助聲子阻塞效應(yīng).之后,聲子阻塞在大量系統(tǒng)中得到研究,如:光機(jī)械與二能級(jí)缺陷耦合系統(tǒng)[19]、量子比特與非線性納米機(jī)械諧振器耦合系統(tǒng)[9]、平方耦合光機(jī)械系統(tǒng)[10,20]、金剛石NV色心與聲子晶體耦合系統(tǒng)[21]、聲表面波與超導(dǎo)量子比特耦合系統(tǒng)[22]等.目前,上述的聲子阻塞都屬于常規(guī)聲子阻塞.常規(guī)聲子阻塞產(chǎn)生的原因通常是基于系統(tǒng)中的強(qiáng)非線性導(dǎo)致系統(tǒng)能級(jí)分布的不均勻性,即產(chǎn)生非諧的能級(jí).
除了常規(guī)聲子阻塞外,還存在一種由雙聲子能級(jí)躍遷存在多種路徑導(dǎo)致躍遷路徑之間相干相消的非常規(guī)聲子阻塞.非常規(guī)聲子阻塞可以在弱耦合和弱驅(qū)動(dòng)下產(chǎn)生,放寬了產(chǎn)生聲子阻塞的非線性強(qiáng)度限制,在實(shí)驗(yàn)上更易于產(chǎn)生單個(gè)的聲子.非常規(guī)聲子阻塞在線性機(jī)械梁與非線性機(jī)械梁耦合系統(tǒng)[23]、兩個(gè)弱非線性機(jī)械諧振器系統(tǒng)[24]、平方耦合光機(jī)械系統(tǒng)[25]、帶電線性薄膜與非線性薄膜耦合系統(tǒng)[26]、納米機(jī)械諧振器與相位量子比特耦合系統(tǒng)[27]、混合光機(jī)械系統(tǒng)[28]中已經(jīng)實(shí)現(xiàn).
由于三能級(jí)結(jié)構(gòu)在人工原子中容易找到,在實(shí)驗(yàn)上也更容易實(shí)現(xiàn),故本文研究聲場(chǎng)與人工三能級(jí)原子耦合系統(tǒng)中的聲子阻塞效應(yīng).其模型為一個(gè)級(jí)聯(lián)型三能級(jí)人工原子嵌入兩個(gè)聲學(xué)布拉格鏡組成的聲學(xué)腔中.通過(guò)數(shù)值模擬系統(tǒng)中的聲子統(tǒng)計(jì)特性,發(fā)現(xiàn)在弱驅(qū)動(dòng)情況下,模型中可以出現(xiàn)亞泊松分布的聲子統(tǒng)計(jì)分布特征.
3 結(jié)果分析
下面通過(guò)計(jì)算機(jī)數(shù)值模擬分析聲子阻塞效應(yīng).通過(guò)求解主方程,研究二階關(guān)聯(lián)函數(shù)和平均聲子數(shù)隨系統(tǒng)重要參數(shù)的變化情況.為了簡(jiǎn)單但又不失物理,數(shù)值計(jì)算時(shí)令δ′1=δ′2=δ.
下面首先考慮T=0的情況.圖2中繪制了2幅三維圖像,圖2(a)是二階關(guān)聯(lián)函數(shù)隨參數(shù)Δ和δ變化的函數(shù)圖像,圖2(b)是平均聲子數(shù)隨參數(shù)Δ和δ變化的函數(shù)圖像.
如圖2(a)所示,圖像中共出現(xiàn)了4支藍(lán)色結(jié)構(gòu),其二階關(guān)聯(lián)函數(shù)值在10-1.5左右,遠(yuǎn)小于1,說(shuō)明此時(shí)聲場(chǎng)是反聚束的,方案中出現(xiàn)了聲子阻塞效應(yīng).圖2(b)中有4支白色結(jié)構(gòu),其平均聲子數(shù)數(shù)值在10-3.5左右.圖2(a)的藍(lán)色結(jié)構(gòu)與圖2(b)的白色結(jié)構(gòu)高度一致,這意味著當(dāng)系統(tǒng)處于反聚束最強(qiáng)的時(shí)候,平均聲子數(shù)也最大,此時(shí)輸出的聲子純度與亮度均達(dá)到系統(tǒng)最佳值,這是常規(guī)聲子阻塞的一個(gè)典型特征.
在圖3中,研究了系統(tǒng)耦合強(qiáng)度g對(duì)二階關(guān)聯(lián)函數(shù)lg g(2)(0)的影響.當(dāng)g=2κ時(shí),耦合強(qiáng)度太弱,系統(tǒng)中并未出現(xiàn)反聚束結(jié)構(gòu),此時(shí)不存在聲子阻塞效應(yīng).當(dāng)g=5κ時(shí),出現(xiàn)了反聚束結(jié)構(gòu),但反聚束并不強(qiáng),此時(shí)產(chǎn)生的聲子純度不高.當(dāng)g=10κ時(shí),聲子反聚束要比圖3(b)的強(qiáng),提高耦合強(qiáng)度有利于聲子強(qiáng)反聚束.當(dāng)g=15κ時(shí),反聚束結(jié)構(gòu)仍然存在,其二階關(guān)聯(lián)函數(shù)值與圖3(c)基本一致.但是在實(shí)驗(yàn)上,大耦合強(qiáng)度難以實(shí)現(xiàn).因此,耦合強(qiáng)度取在可以出現(xiàn)強(qiáng)反聚束的合適參數(shù)范圍內(nèi)即可.
在圖4中,研究了系統(tǒng)中強(qiáng)控制場(chǎng)對(duì)聲子反聚束的影響.在Ω=2κ時(shí),模型已經(jīng)可以出現(xiàn)聲子阻塞效應(yīng).在Ω=5κ時(shí),4支反聚束結(jié)構(gòu)依然存在且兩兩相交.在Ω=10κ時(shí),4支反聚束結(jié)構(gòu)不再相交,并且其最低二階關(guān)聯(lián)函數(shù)值與圖4(b)相比下降了10-0.5左右.在Ω=15κ時(shí),反聚束結(jié)構(gòu)只有2支了,而且二階關(guān)聯(lián)函數(shù)值升高到10-0.5,此時(shí)反聚束強(qiáng)度變?nèi)?因此,強(qiáng)控制場(chǎng)的振幅并非越大越好,強(qiáng)反聚束的出現(xiàn)需要取合適的強(qiáng)控制場(chǎng)振幅參數(shù).
聲子具有較低的本征頻率,對(duì)來(lái)自基底材料的熱噪聲極為敏感,因此需要研究在有限溫度下實(shí)現(xiàn)聲子阻塞.在圖5中繪制了系統(tǒng)二階關(guān)聯(lián)函數(shù)lg g(2)(0)在不同溫度下的圖像.可以看到當(dāng)T=0.05T0時(shí),與圖2(a)相比,圖5(a)中4支反聚束結(jié)構(gòu)依然存在,此時(shí)熱噪聲對(duì)聲子反聚束的抑制作用不明顯.當(dāng)T=0.08T0時(shí),反聚束結(jié)構(gòu)開始受到熱噪聲影響開始變得不清晰.當(dāng)T=0.11T0時(shí),反聚束結(jié)構(gòu)基本被破壞.當(dāng)T=0.14T0時(shí),已經(jīng)不存在反聚束結(jié)構(gòu)了.顯然,較高的熱噪聲對(duì)于聲子阻塞是極為不利的,聲子阻塞效應(yīng)難以在高溫度下存在.所幸的是,實(shí)驗(yàn)上已成功實(shí)現(xiàn)聲表面波和人工原子在20 mK[14]甚至10 mK[32]溫度下相互作用.
4 結(jié) 論
本文研究了聲表面波與級(jí)聯(lián)型三能級(jí)人工原子耦合系統(tǒng)中的聲子阻塞效應(yīng).根據(jù)系統(tǒng)密度主方程,數(shù)值模擬了聲子的二階關(guān)聯(lián)函數(shù)和平均聲子數(shù).結(jié)果顯示,在弱驅(qū)動(dòng)和強(qiáng)耦合下系統(tǒng)會(huì)出現(xiàn)強(qiáng)反聚束效應(yīng).聲子阻塞效應(yīng)的產(chǎn)生需要耦合強(qiáng)度和強(qiáng)控制場(chǎng)振幅取合適的參數(shù).最后,討論了環(huán)境中的熱噪聲對(duì)聲子阻塞的影響,表明熱噪聲會(huì)破壞聲子阻塞,實(shí)現(xiàn)聲子阻塞需要低溫環(huán)境.
參 考 文 獻(xiàn)
[1] ?KNILL E,LAFLAMME R,MILBURN G J.A scheme for efficient quantum computation with linear optics[J].Nature,2001,409(6816):46-52.
[2]HU J Y,YU B,JING M Y,et al.Experimental quantum secure direct communication with single photons[J].Light:Science & Applications,2016,5(9):e16144.
[3]DEGEN C L,REINHARD F,CAPPELLARO P.Quantum sensing[J].Reviews of Modern Physics,2017,89(3):035002.
[4]GEORGESCU I M,ASHHAB S,NORI F.Quantum simulation[J].Reviews of Modern Physics,2014,86(1):153-185.
[5]PIRANDOLA S,ANDERSEN U L,BANCHI L,et al.Advances in quantum cryptography[J].Advances in Optics and Photonics,2020,12(4):1012-1236.
[6]EISAMAN M D,F(xiàn)AN J,MIGDALL A,et al.Invited review article:single-photon sources and detectors[J].The Review of Scientific Instruments,2011,82(7):071101.
[7]GUSTAFSSON M V,AREF T,KOCKUM A F,et al.Propagating phonons coupled to an artificial atom[J].Science,2014,346(6206):207-211.
[8]KUZYK M C,WANG H L.Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems[J].Physical Review X,2018,8(4):041027.
[9]WANG X,MIRANOWICZ A,LI H R,et al.Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit[J].Physical Review A,2016,93(6):063861.
[10]XIE H,LIAO C G,SHANG X,et al.Optically induced phonon blockade in an optomechanical system with second-order nonlinearity[J].Physical Review A,2018,98(2):023819.
[11]SULKKO J,SILLANP M A,HKKINEN P,et al.Strong gate coupling of high-Q nanomechanical resonators[J].Nano Letters,2010,10(12):4884-4889.
[12]OCKELOEN-KORPPI C F,DAMSKGG E,PIRKKALAINEN J M,et al.Noiseless quantum measurement and squeezing of microwave fields utilizing mechanical vibrations[J].Physical Review Letters,2017,118(10):103601.
[13]MASSEL F,HEIKKIL T T,PIRKKALAINEN J M,et al.Microwave amplification with nanomechanical resonators[J].Nature,2011,480(7377):351-354.
[14]BOLGAR A N,ZOTOVA J I,KIRICHENKO D D,et al.Quantum regime of a two-dimensional phonon cavity[J].Physical Review Letters,2018,120(22):223603.
[15]MANENTI R,KOCKUM A F,PATTERSON A,et al.Circuit quantum acoustodynamics with surface acoustic waves[J].Nature Communications,2017,8:975.
[16]NOGUCHI A,YAMAZAKI R,TABUCHI Y,et al.Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit[J].Physical Review Letters,2017,119(18):180505.
[17]OCONNELL A D,HOFHEINZ M,ANSMANN M,et al.Quantum ground state and single-phonon control of a mechanical resonator[J].Nature,2010,464(7289):697-703.
[18]LIU Y X,MIRANOWICZ A,GAO Y B,et al.Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators[J].Physical Review A,2010,82(3):032101.
[19]RAMOS T,SUDHIR V,STANNIGEL K,et al.Nonlinear quantum optomechanics via individual intrinsic two-level defects[J].Physical Review Letters,2013,110(19):193602.
[20]XIE H,LIAO C G,SHANG X,et al.Phonon blockade in a quadratically coupled optomechanical system[J].Physical Review A,2017,96:013861.
[21]CAI K,PAN Z W,WANG R X,et al.Single phonon source based on a giant polariton nonlinear effect[J].Optics Letters,2018,43(5):1163-1166.
[22]TANG J S,WU Y,WANG Z K,et al.Vacuum-induced surface-acoustic-wave phonon blockade[J].Physical Review A,2020,101(5):053802.
[23]GUAN S G,BOWEN W P,LIU C J,et al.Phonon antibunching effect in coupled nonlinear micro/nanomechanical resonator at finite temperature[J].Europhysics Letters,2017,119(5):58001.
[24]SARMA B,SARMA A K.Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction[J].Scientific Reports,2018,8:14583.
[25]SHI H Q,ZHOU X T,XU X W,et al.Tunable phonon blockade in quadratically coupled optomechanical systems[J].Scientific Reports,2018,8:2212.
[26]NEMA J K,GUPTA S,THAKKAR R,et al.Novel hermetically sealed device to realize unconventional phonon blockade at near-micron dimensions and milliKelvin temperatures[J].AIP Advances,2021,11(1):015112.
[27]XU X W,CHEN A X,LIU Y X.Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit[J].Physical Review A,2016,94(6):063853.
[28]YANG J Y,JIN Z,LIU J S,et al.Unconventional phonon blockade in a tavis-cummings coupled optomechanical system[J].Annalen Der Physik,2020,532(12):2000299.
[29]PAAUW F G,F(xiàn)EDOROV A,HARMANS C J P M,et al.Tuning the gap of a superconducting flux qubit[J].Physical Review Letters,2009,102(9):090501.
[30]PENG Z H,LIU Y X,PELTONEN J T,et al.Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom[J].Physical Review Letters,2015,115(22):223603.
[31]GASPARINETTI S,PECHAL M,BESSE J C,et al.Correlations and entanglement of microwave photons emitted in a cascade decay[J].Physical Review Letters,2017,119(14):140504.
[32]MANENTI R,PETERER M J,NERSISYAN A,et al.Surface acoustic wave resonators in the quantum regime[J].Physical Review B,2016,93(4):041411.
Phonon blockade in an acoustic cavity coupled to a three-energy artificial atom
Guo Qin, Xie Wenzhi, Duan Zhenglu
(College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China)
Abstract: In this paper, the phonon statistics in an acoustic cavity coupled with a cascade three-level artificial atom are studied. The model adopted in this study is composed of a cascade three-level artificial atom and two acoustic Bragg mirrors, two of which constitute the acoustic cavity of the system. The results show that under the action of weak driving and strong control field, conventional phonon blocking will occur in the model; The system coupling strength and control field strength have a great influence on phonon blocking. In addition, the destructive effect of ambient thermal noise on phonon blocking is also studied. This work provides a feasible scheme for realizing phonon blocking in experiment, which can be used to prepare single phonon source.
Keywords: phonon blockade; single phonon source; three-energy level artificial atoms
[責(zé)任編校 楊浦 劉洋]
收稿日期:2022-03-17;修回日期:2022-04-30.
基金項(xiàng)目:國(guó)家自然科學(xué)基金(11964014);江西省主要學(xué)科學(xué)術(shù)與技術(shù)帶頭人(20204BCJ23026);江西省自然科學(xué)基金(20212BAB201018).
作者簡(jiǎn)介:郭琴(1972-),女,江西豐城人,江西師范大學(xué)教授,博士,研究方向?yàn)槔碚撐锢?
通信作者:段正路,E-mail:duanzhenglu@jxnu.edu.cn.