王來力 劉書軼 李啟正 張穎 王曉蓬


摘要: 為準確核算絲綢產品的碳足跡,本文對核算邊界、核算數據、溫室氣體去除、研究結果計算等關鍵問題進行了分析討論。研究結果表明:選擇“搖籃到大門”或“大門到大門”作為絲綢產品碳足跡的核算邊界具有較好的可操作性;確定核算邊界內的關鍵溫室氣體排放源,必要時選擇適用的數據分配方法并保持核算邊界內分配方法的一致性,可提高核算數據的質量;蠶絲生物碳的溫室氣體去除量可在絲綢產品碳足跡核算結果報告時單獨說明;絲綢企業的碳中和行動可納入絲綢產品的碳足跡核算結果;核算邊界一致和排放因子數據一致是不同絲綢產品碳足跡計算結果可比的兩個關鍵前提。
關鍵詞: 絲綢產品;碳足跡;核算邊界;碳中和;分配;核算數據
中圖分類號: TS141
文獻標志碼: A
文章編號: 1001-7003(2023)04-0026-05
引用頁碼:
041104
DOI: 10.3969/j.issn.1001-7003.2023.04.004(篇序)
工業綠色低碳發展和產品綠色低碳消費是中國碳達峰碳中和戰略的關鍵內容,產品生命周期碳足跡的核算可以為產品工業生產制造和產品消費階段的碳減排提供重要參考。工業和信息化部發布的《“十四五”工業綠色發展規劃》將產品碳足跡核算列入工業綠色發展的主要任務,國家發展改革委員會、工業和信息化部等部門發布的《促進綠色消費實施方案》提出探索建立重點產品全生命周期碳足跡標準。
碳足跡的概念和核算方法討論始于2005年前后,Carbon Trust在2007年發布了《Carbon Footprint Measurement Methodology,Version 1.1》,其后英國標準學會(British Standards Institution,BSI)、國際標準化組織(International Organization for Standardization,ISO)、世界資源研究所(World Resources Institute,WRI)、世界企業永續發展委員會(World Business Council for Sustainable Development,WBCSD)等機構推動了碳足跡核算規范、標準的制定[1-2]。BSI于2008年發布了《PAS 2050:2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services》,并在2011年發布了更新版本PAS 2050:2011。WRI和WBCSD于2011年共同發布了《GHG Protocol: Product life cycle accounting and reporting standard》。該技術規范中雖未明確定義產品碳足跡的概念,但已基本完整地規定了產品生命周期溫室氣體排放量化、評價和報告的通用要求。ISO在2013年發布了《ISO/TS 14067:2013 Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification and communication》,定義了產品碳足跡的概念,規定了產品碳足跡核算邊界設定、核算數據清單、核算方法等要求,該技術規范后續更新為ISO 14067:2018國際標準。依據上述三個通用標準和技術規范進行具體產品生命周期碳足跡核算、評價與報告時,不同的核算人員對產品碳足跡核算的邊界設定、數據收集和分配方法等關鍵要素的理解不同,往往導致產品碳足跡核算結果的不確定度較高、可比性較差的問題[3]。BSI在2014年發布的《PAS 2395:2014 Specification for the assessment of greenhouse gas (GHG) emissions from the whole life cycle of textile products》技術規范和中國紡織工業聯合會2018年發布的《T/CNTAC 11—2018紡織產品溫室氣體排放核算通用技術要求》團體標準,實現了國際通用標準和技術規范向紡織行業的轉化。國內外亦有相關機構制定產品碳足跡核算的產品類別規則(Product Category Rules,PCR)標準,以更加詳細地規范產品碳足跡的核算,中國紡織行業標準《產品碳足跡產品種類規則紡織產品》,團體標準《產品碳足跡產品種類規則毛紗線》《產品碳足跡產品種類規則毛織物》《產品碳足跡產品種類規則毛針織品》等已在制定中。
絲綢產品是消費者青睞的紡織產品類別,中國的蠶繭和生絲產量占全球80%以上[4],絲綢面料、絲綢服裝、絲綢家紡
產品等生產加工量亦是全球最大。絲綢產品的碳足跡核算對于絲綢行業的低碳發展具有重要意義,故本文對絲綢產品碳足跡核算的邊界設定、數據收集與分配、結果計算等關鍵技術進行討論,為絲綢產品碳足跡核算與標準制定提供參考。
1 核算邊界
產品碳足跡是對產品生命周期評價中的全球氣候變化影響指標的量化,因此產品碳足跡的核算通常遵循生命周期評價的理論框架。絲綢產品全生命周期過程可分為蠶繭獲取、產品生產制造、產品銷售使用、產品廢棄處理和回收再利用五個階段,每個階段又可細分為多個鏈段。蠶繭獲取階段主要為蠶的養殖,根據蠶的品種不同,養殖方式有傳統的桑蠶養殖、柞蠶養殖和工廠化桑蠶養殖等。生產制造階段則包括多個鏈段,如繅絲、織造、煉白、染色、印花、縫制等,銷售使用階段包括貿易零售、洗滌護理,廢棄階段是絲綢產品生命周期終點,回收再利用階段則是再生絲綢產品的生命周期起點。
根據ISO 14067:2018中對產品碳足跡的定義,其可量化產品全生命周期內或部分生命周期階段內(一個或多個生命周期鏈段)溫室氣體排放和去除之后對氣候變化的影響。部分生命周期階段碳足跡(Partial carbon footprint of a product,partial CFP)的核算邊界可以有“搖籃到墳墓”(Cradle to grave)、“搖籃到大門”(Cradle to gate)、“大門到大門”(Gate to gate)等不同情景。絲綢產品全生命周期過程有多種過程產品(如白廠絲、絲綢面料、絲綢服裝),若對過程產品進行全生命周期評價,由于其后續的應用去向不能確定,通常不能獲得碳足跡核算所需的數據,例如白廠絲可能用于生產染色面料進而生產絲綢服裝,亦可能用于生產印花面料進而生產絲綢圍巾,因此絲綢產品碳足跡的核算邊界選擇“搖籃到大門”或“大門到大門”具有較好的可操作性和實用性。在銷售使用、廢棄處理和回收再利用階段模式確定的情況下,例如從工廠到零售店鋪的運輸方式和距離、線上或線下銷售形式、洗滌方式和次數、廢棄后的處理方法(如填埋、燃燒發電)、回收再利用方法等,亦可以將核算邊界設定為從“搖籃到墳墓”,核算絲綢產品全生命周期的碳足跡。
“搖籃到大門”“大門到大門”的核算邊界可根據絲綢產品碳足跡核算目的進行靈活調整,如圖1所示?!皳u籃到大門”可選擇從蠶卵起始,到蠶繭、白廠絲、絲綢面料等不同過程產品,“大門到大門”可選擇從蠶繭起始,到白廠絲、絲綢面料,亦可選擇從白廠絲起始,到絲綢面料、絲綢服裝。雖然絲綢產品碳足跡的核算邊界具有較大的選擇空間,但在進行碳足跡核算結果報告及不同產品間碳足跡比較,或者量化同一種產品采用優化生產工藝后減少的碳足跡時,需要明確說明選擇的核算邊界。
2 核算數據
核算數據是產品碳足跡核算的基礎,ISO 14067:2018將核算數據分為初級數據、現場數據和二手數據。初級數據是從產品生命周期過程直接測量或是根據直接測量結果計算得到的數據,其中在產品碳足跡核算邊界范圍內得到的數據為現場數據,初級數據之外的數據統稱為二手數據,如文獻中的數據、行業數據庫數據。絲綢產品碳足跡核算邊界內的溫室氣體排放源有直接溫室氣體排放和間接溫室氣體排放,燃料燃燒的溫室氣體排放(如天然氣鍋爐燃燒排放)、生產過程中化學反應的溫室氣體排放(如碳酸鹽類反應產生二氧化碳)、廢水處理中的溫室氣體排放(如甲烷、氧化亞氮)[5]等屬于直接溫室氣體排放數據,核算邊界內消耗的非現場燃燒的能源(如外購電力)、物料(如染料、助劑、包裝材料)等屬于間接溫室氣體排放數據。人員的呼吸作用雖然受勞動狀態影響,但作為基本的生理活動,其產生的二氧化碳排放通常不納入絲綢產品碳足跡的核算數據。生產設備、廠房等固定資產雖然直接、間接地產生溫室氣體排放,但由于其使用時間較長,且通常不是為某一種絲綢產品的生產而限定的投入,因此同樣亦不納入產品絲綢產品碳足跡的核算數據。絲綢產品碳足跡核算的主要數據如表1所示。
根據企業的計量水平不同,溫室氣體排放源數據有的可以精確到待核算的絲綢產品,有的則是某一時間段內的總體數據。如某車間每月度的照明耗電數據,若該月度內車間同時生產包括待核算絲綢產品在內的多種產品,則需要對月度的照明耗電數據按照產品特性、產量、價值等因素分配到待核算絲綢產品和共生產品[6]。在核算邊界內若多個鏈段皆涉及數據分配,選擇的分配方法應保持一致。如在前處理車間按照價值因素對坯綢的照明耗電量進行分配,則在后續的印花車間同樣應按照價值因素對印花面料的照明耗電量進行分配。若某個鏈段產出具有利用價值的副產品時,同樣需要對該鏈段的核算數據進行分配。如繅絲階段同時產生蠶絲、蛹襯、蠶蛹,則應將繅絲階段的數據在三種產品中進行分配。若產出的副產品利用價值較低(如僅作為固廢處理)或副產品產量較少時(如少于產量的1%),則無需對該鏈段的核算數據進行分配。除收集絲綢產品碳足跡核算的投入、產出數據外,還需要考慮各階段過程產品的含水率,如繅絲階段的蠶絲含水率和復搖階段的蠶絲含水率不同,應根據含水率數據對該兩個階段的產量數據進行修正處理。
3 溫室氣體去除
ISO 14067:2018對產品碳足跡的定義中包括產品生命周期階段溫室氣體的排放量和去除量,其中溫室氣體去除方式有植物光合作用吸收二氧化碳并轉化為生物炭、人工碳捕捉封存和利用等。蠶絲雖然不是直接從植物中獲取,但傳統養蠶模式投喂的桑葉、柞樹葉和現代工廠化養蠶模式投喂的飼料(含桑葉、豆粕)則是植物源產品,所含的碳元素可溯源到空氣中的二氧化碳。桑葉、柞樹葉或人工飼料經蠶進食后,其中所含的碳元素去向包括蠶呼吸作用轉換為二氧化碳排到大氣中、吸收到蠶的身體組織中(最終到蠶蛹中)、轉移到蠶沙和蠶絲中,因此桑葉、柞樹葉或人工飼料的固碳量并不等于蠶絲的固碳量。
產品碳足跡的量化單位為二氧化碳當量,也即將甲烷、氧化亞氮、氫氟碳化物、全氟碳化物、六氟化硫等按照給定時間內(如50年、100年)的輻射強迫影響轉化為等量的二氧化碳[7]。蠶絲的生物炭固碳效應受絲綢產品使用時間長短影響,使用時間越長固碳效應越顯著,反之則越不顯著。由于蠶絲產品的使用時間通常難以達到50年的時長,因此蠶絲生物炭的二氧化碳去除量可不納入蠶絲產品碳足跡的計算,但可以將該去除量在碳足跡核算報告中以數據清單的形式予以說明。碳足跡核算邊界設定為“搖籃到墳墓”時,采用燃燒的方法處理廢舊絲綢產品會將其中的碳元素以溫室氣體的形式排放到大氣中,但同時會產生熱量。若將這些熱量進行利用,則可以節約化石燃料的使用,減少溫室氣體排放,相當于溫室氣體去除。
若絲綢產品生產企業通過購買碳匯、采用人工碳捕捉封存和利用的方式從大氣中去除溫室氣體,則應在碳足跡核算中予以計算。如生產企業購買一定量的碳匯,并聲明分配于待核算碳足跡的絲綢產品的份額,便可在碳足跡結果計算時用于抵消核算邊界內的溫室氣體排放量。
4 結果計算
碳足跡核算邊界內直接溫室氣體排放中的化學反應排放可通過化學平衡方程式計算,能源燃燒的溫室氣體排放可基于能源含碳量、碳氧化因子、低位發熱值等因素計算。核算邊界內間接溫室氣體排放按照GHG排放=AD×EF(AD為活動數據,EF為排放因子)的方法計算,AD由納入計算的非現場燃燒的能源(如外購電力)、物料(如染料、助劑、包裝材料等)投入量數據組成,EF的計算則相對較為復雜。在碳足跡核算時可選擇相關機構發布的EF數據、文獻中的EF數據、商業數據庫的EF數據等。在選擇使用EF數據時,應充分考慮其時間、地域的差異。如某種絲綢產品在浙江省生產制造,使用的電力由華東電網供應,則電力的EF數據應選擇華東電網發布的數據。
EF數據目前仍是制約產品碳足跡結果計算的關鍵因素,其主要表現為數據不完整、時效性較差、地域覆蓋不全。數據不完整是指諸多物料尚無EF數據,如絲綢面料染色過程投入的某些染料EF數據尚缺失。時效性差是指現有的部分EF數據為歷史數據,如5年前、10年前甚至更早時期的數據。地域覆蓋不全是指EF數據僅有某一個或某幾個特定區域的數據,如不同國家、不同地域的電網輸出電力的EF不同,但已發布或研究得到的電力EF數據并未覆蓋所有國家、地域。隨著碳足跡領域的研究深入和拓展,EF數據仍在動態更新中,在計算絲綢產品的碳足跡時,應對選用的EF數據詳細說明。EF數據的一致性亦是不同絲綢產品在同一核算邊界范圍內可比(如選擇相對低碳的絲綢產品)或者同一種絲綢產品不同生產工藝條件下可比(如量化與評價同一種絲綢產品生命周期的溫室氣體減排量)的關鍵前提。
絲綢產品碳足跡的計算結果為核算邊界內各過程碳足跡的加和,以功能單位產品碳足跡的形式報告。根據產品類別不同可設定不同的功能單位,如繅絲階段可設定單位質量的白廠絲為功能單位,織造階段可設定單位質量或單位米數的坯綢為功能單位,制成品制造階段可設定一件絲綢服裝、一條絲巾、一條蠶絲被為功能單位。當功能單位為米、件、條等非質量單位時,應注明其質量信息,以方便不同過程碳足跡加和時進行準確折算。
5 結 語
絲綢產品碳足跡核算可為絲綢產品低碳設計、生產制造過程碳減排、消費者綠色低碳消費提供參考,對絲綢行業的綠色低碳發展亦有重要意義。絲綢產品生命周期鏈條長,涉及的投入產出要素多,需充分、系統地分析絲綢產品碳足跡核算的關鍵問題,以確保碳足跡核算結果的有效性和可比性。
1) 絲綢產品碳足跡的核算邊界可根據核算需求靈活設定,以“大門”為核算邊界終點更適合絲綢產品離散式的生命周期特點,具有較好的可操作性。
2) 核算數據的完整性和準確性是碳足跡核算的關鍵基礎,需明確核算邊界內的關鍵溫室氣體排放源,必要時選擇適用的數據分配方法,以確保收集的核算數據質量。
3) 蠶絲生物炭的溫室氣體去除效應受絲綢產品的使用時長影響,在報告絲綢產品碳足跡核算結果時,可將生物炭對應的溫室氣體去除量單獨說明;絲綢企業的碳中和行動可納入絲綢產品的碳足跡核算結果的報告。
4) EF數據影響絲綢產品碳足跡計算結果的準確性,核算邊界一致和EF數據一致是不同絲綢產品碳足跡計算結果
可比,或者量化同一種絲綢產品生命周期溫室氣體減排量的兩個關鍵前提。
參考文獻:
[1]王來力, 丁雪梅, 吳雄英. 紡織產品碳足跡研究進展[J]. 紡織學報, 2013, 34(6): 113-119.
WANG Laili, DING Xuemei, WU Xiongying. Research progress of textile carbon footprint[J]. Journal of Textile Research, 2013, 34(6): 113-119.
[2]白偉榮, 王震, 呂佳. 碳足跡核算的國際標準概述與解析[J]. 生態學報, 2014, 34(24): 7486-7493.
BAI Weirong, WANG Zhen, L Jia. Summary and analysis of international standards on carbon footprint accounting[J]. Acta Ecologica Sinica 2014, 34(24): 7486-7493.
[3]劉書軼, 朱紫嫄, 邱笑笑, 等. 絲綢產品生命周期環境表現研究進展[J]. 絲綢, 2021, 58(11): 5-9.
LIU Shuyi, ZHU Ziyuan, QIU Xiaoxiao, et al. Research progress in environmental performance assessment of silk products[J]. Journal of Silk, 2021, 58(11): 5-9.
[4]中華人民共和國工業和信息部. 蠶桑絲綢產業高質量發展行動計劃(2021—2025年)[EB/OL]. (2020-09-26)[2022-05-05]. http://www.gov.cn/zhengce/zhengceku/2020-09/26/content_5547331.htm.
Ministry of Industry and Information Technology. Action plan for high-quality development of silk industry (2021-2025)[EB/OL]. (2020-09-26)[2022-05-05]. http://www.gov.cn/zhengce/zhengceku/2020-09/26/con-tent_5547331.htm.
[5]呂宗青, 單曉雨, 肖喜林, 等. 遵從現行化學需氧量標準導致污水處理過程中產生過量溫室氣體排放[J]. 中國科學: 地球科學, 2022, 52(1): 144-156.
L Zongqing, SHAN Xiaoyu, XIAO Xilin, et al. Excessive greenhouse gas emissions from wastewater treatment plants by using the chemical oxygen demand standard[J]. Scientia Sinica (Terrae), 2022, 52(1): 144-156.
[6]馮文艷, 吳雄英, 丁雪梅. LCA分配方法在紡織服裝碳足跡核算中的應用[J]. 印染, 2014, 40(13): 39-42.
FENG Wenyan, WU Xiongying, DING Xuemei. Application of LCA allocation method to calculation of carbon footprint of textile and apparel products[J]. China Dyeing & Finishing, 2014, 40(13): 39-42.
[7]IPCC. Climate change 2014: Synthesis report[R]//Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: Geneva, 2014: 1-151.
Discussions on key issues of carbon footprint accounting of silk products
WANG Laili1a,b, LIU Shuyi1a, LI Qizheng2, ZHANG Ying1a, WANG Xiaopeng1b,c
(1a.School of Fashion Design & Engineering; 1b.Silk and Fashion Culture Center; 1c.Institute of Science and Technology, Zhejiang Sci-TechUniversity, Hangzhou 310018, China; 2.Zhejiang Provincial Innovation Center of Advanced Textile Technology,Shaoxing 312000, China; 3.International Silk Union, Hangzhou 310018, China)
Abstract:
The green and low-carbon development of industries and green and low-carbon consumption of products are the key elements of carbon peak and carbon neutrality strategy in China. The accounting of carbon footprint of products in the life cycle provides an important reference for the carbon mitigation in the industrial production and consumption progresses. The concept of carbon footprint and the discussion about its accounting methods started around 2005, and has subsequently experienced a series of developments and refinements. There are also related institutions at home and abroad developing Product Category Rules (PCR) for product carbon footprint accounting to standardize the accounting of product carbon footprint in more detail. Silk products are are favored by consumers. China is a major producer of silkworm cocoons and raw silk, and the largest producer and processor of silk fabrics, silk garments, and silk home textile products in the world. The carbon footprint accounting of silk products is of great significance for the low carbon development of the silk industry.
In order to accurately calculate the carbon footprint of silk products, the key issues such as the accounting boundary, accounting data, greenhouse gas (GHG) sequestration and result calculation were analyzed and discussed. The whole life cycle of silk products is divided into five stages, namely the acquisition of silkworm cocoons, the manufacture of products, the sales and use of products, the disposal of products and recycling. Each phase is divided into several segments. The accounting boundary of the carbon footprint of silk products can be adjusted flexibly based on the accounting purpose, but when the carbon footprint accounting results are reported and the carbon footprint of different products is compared, or the reduced carbon footprint of the same product using an optimized manufacturing process is quantified, the accounting boundary needs to be explained clearly. Accounting data are the basis of product carbon footprint accounting. The paper lists the GHG emission sources and data inventories of silk products at each stage, and gives examples of the distribution method of GHG emission sources in the accounting process. The ways of greenhouse gas sequestration involve absorbing carbon dioxide and converting it into biochar through plant photosynthesis, artificial carbon capture, storage and utilization. Generally, the use time of silk products is not more than fifty years, so the carbon dioxide sequestration of silk may not be included into the calculation of the carbon footprint of silk products. If manufacturers of silk products remove greenhouse gases from the atmosphere by purchasing carbon sinks and adopting artificial carbon capture, storage and utilization, the greenhouse gases should be calculated in the carbon footprint accounting. When the GHG emission results are calculated, chemical reaction emissions of direct greenhouse gas emissions within the accounting boundary of carbon footprint can be calculated by chemical equilibrium equation. Indirect greenhouse gas emissions within the accounting boundary can be calculated according to the method of GHG emission = AD×EF (AD represents activity data, and EF represents the emission factor), and EF data are still the key factor restricting the calculation of carbon footprint results of products. The calculation result of the carbon footprint of silk products is the sum of carbon footprints in each process within the accounting boundary, and different functional units can be set according to different product categories. In this paper, the key technologies such as boundary setting, data collection and distribution, and result calculation are systematically discussed for the carbon footprint accounting of silk products and the development of standards. The results show that it is feasible to choose “cradle to gate” or “gate to gate” as the accounting boundary of carbon footprint of silk products. The quality of accounting data can be improved by determining the key emission sources of GHG within the accounting boundary, selecting the appropriate allocation methods and maintaining the consistency of the allocation methods within the accounting boundary when necessary. The GHG sequestration of silk can be explained separately in the report of carbon footprint sequestration results of silk products; the carbon neutralization actions of silk enterprises can be incorporated in the carbon footprint quantification results of silk products; consistent accounting boundary and emission factors are two key prerequisites for the feasibility of carbon footprint quantification results of different silk products.
The carbon footprint accounting of silk products provides a reference for low-carbon design of silk products, carbon emission reduction in the manufacturing process, and green and low-carbon consumption of consumers. It is also of great significance to the green and low-carbon development of the silk industry. The life cycle chain of silk products is long and involves many input and output elements. It is necessary to fully and systematically analyze the key issues of carbon footprint accounting of silk products to ensure the validity and comparability of carbon footprint accounting results.
Key words:
silk products; carbon footprint; accounting boundary; carbon neutralization; allocation; accounting data
收稿日期:
2022-07-11;
修回日期:
2023-02-24
基金項目:
中國工程院戰略研究與咨詢項目(2022-XY-19);中央外經貿專項資金(繭絲綢)項目(浙財建〔2022〕95號);浙江省教育廳一般科研項目(工程碩士專項)(Y202148096);浙江省大學生科技創新活動暨新苗人才計劃項目(2022R406C077)
作者簡介:
王來力(1985),男,教授,博士,主要從事紡織服裝綠色可持續發展的研究。