999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

肝臟脂質從頭合成的機制及其抑制劑在非酒精性脂肪性肝病中的研究進展*

2023-10-11 02:30:26范超文高維蔓柯尊麗俞琦
中國病理生理雜志 2023年9期
關鍵詞:胰島素小鼠

范超文, 高維蔓, 柯尊麗, 俞琦

· 綜述 ·

肝臟脂質從頭合成的機制及其抑制劑在非酒精性脂肪性肝病中的研究進展*

范超文, 高維蔓, 柯尊麗△, 俞琦△

(貴州中醫藥大學基礎醫學院,貴州 貴陽 550025)

非酒精性脂肪性肝病;脂質從頭合成;代謝酶;轉錄因子;抑制劑

非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是在排除了飲酒及其他明確的肝損傷因素的情況下,以肝細胞內三酰甘油(triacylglycerol, TAG)過度堆積導致的肝臟脂質沉積為特征,包括了非酒精性脂肪肝、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH),并可進展為肝纖維化、肝硬化和肝細胞癌的一種代謝綜合征[1]。據估計,全球1/4的人口患有NAFLD,僅在中國就有超過1.2億的患者,這給世界醫療衛生系統造成了極大負擔[2]。脂質從頭合成(de novo lipogenesis, DNL)是通過碳水化合物等非脂質物質合成TAG的一個復雜但被高度調節的代謝途徑,通常只發生在肝臟細胞和脂肪細胞中[3]。NAFLD的肝臟脂質沉積主要受高碳水化合物飲食后的DNL增加所驅動,并且NAFLD患者的肝臟DNL水平是正常人的3倍以上,過度的DNL是導致NAFLD的主要原因之一[4]。近年來的研究顯示,固醇調節元件結合蛋白1c(sterol-regulatory element binding protein-1c, SREBP-1c)等多種轉錄因子參與肝臟DNL的調控,而抑制肝臟DNL成為了治療NAFLD的研究熱點。本文旨在闡明肝臟DNL介導NAFLD的機制,并歸納其相關抑制劑,為防治NAFLD的研究提供新的思路。

1 NAFLD中肝臟脂質沉積與肝臟DNL的關系

肝臟中脂肪的堆積由TAG合成和分解之間的平衡決定,而TAG合成的底物脂肪酸(fatty acid, FA)來源于飲食攝取的外源性FA和通過肝臟細胞和脂肪細胞DNL獲取的內源性FA[5]。在餐后狀態下,未消化的膳食通過腸道菌發酵產生乙酸鹽等短鏈脂肪酸(short-chain fatty acid, SCFA),被結腸吸收后經由門靜脈入肝[6],膳食中的長鏈脂肪酸(long chain fatty acid, LCFA)則由小腸細胞所吸收。而后LCFA主要以乳糜微粒(chyle microsome, CM)中的TAG形式進入血液循環,其中大部分TAG被脂蛋白脂肪酶(lipoprotein lipase, LPL)分解為非酯化脂肪酸(non-esterified fatty acid, NEFA),或被組織細胞氧化利用,或被輸送到脂肪組織儲存起來,剩余約1/3則被肝臟吸收[7]。在碳水化合物過量的情況下,肝臟和脂肪組織啟動DNL;而處于饑餓狀態時,白色脂肪組織中的TAG會發生脂解,并將產生的NEFA釋放入血,血漿中的NEFA在滿足了組織供能需求后會被肝臟回收[8]。肝臟內的FA有氧化、自噬以及酯化為TAG并與載脂蛋白B(apolipoprotein B, APOB)組裝成極低密度脂蛋白(very-low-density lipoprotein, VLDL)輸送到肝外等三條去路[9]。當肝臟TAG產生速率大于消耗速率時便會沉積在肝細胞內形成脂滴(lipid droplets, LDs)。肝臟DNL的增加在肝臟脂質沉積的形成過程中至關重要。已有研究證實,NAFLD患者肝臟中TAG總量的15%來源于膳食攝入,26%來自肝臟DNL,59%來自血漿NEFA,其肝臟DNL水平較正常人顯著升高[10]。NAFLD中肝臟脂質沉積形成的過程詳見圖1。

Figure 1. The process of the formation of hepatic lipid deposition in NAFLD.

2 肝臟DNL的機制與NAFLD的發生發展

過量的葡萄糖和果糖攝入是導致NAFLD的重要飲食風險因素,而肝臟DNL主要從葡萄糖和果糖的糖酵解中獲得底物[11],其中果糖在肝臟中的代謝速度約是葡萄糖的4倍,對DNL的貢獻要遠大于葡萄糖[12]。在餐后狀態下,葡萄糖和果糖通過葡萄糖轉運蛋白5(glucose transporter 5, GLUT5)被腸道吸收,并通過腸細胞基底外側膜中的GLUT2流出到門靜脈血中,而肝臟GLUT5的表達較低,肝臟中葡萄糖和果糖的吸收主要由GLUT2介導[13]。盡管葡萄糖和果糖的代謝途徑不同,但最終都通過糖酵解生成丙酮酸,丙酮酸氧化脫羧生成乙酰輔酶A,而后進入肝細胞線粒體內。

2.1乙酰輔酶A的合成對肝臟DNL的影響乙酰輔酶A是DNL的中心代謝物和底物,其作為中央碳代謝的一種樞紐性物質,聯系著糖、脂質、蛋白質等多條代謝途徑。參與DNL的乙酰輔酶A主要來源于檸檬酸轉運系統:在線粒體的三羧酸(tricarboxylic acid, TCA)循環中,乙酰輔酶A與草酰乙酸在檸檬酸合酶的催化下縮合,以檸檬酸鹽的形式進入胞質,并在ATP檸檬酸裂解酶(ATP-citrate lyase, ACLY)的作用下釋放出乙酰輔酶A[14]。Morrow等[15]的研究發現,抑制NASH小鼠肝細胞中的ACLY可以改善肝細胞脂肪變性,并降低血糖、TAG和膽固醇等指標,這與乙酰輔酶A的減少有關。除ACLY外,胞質乙酰輔酶A也可由乙酸鹽通過乙酰輔酶A合成酶短鏈家族成員2(acyl-CoA synthetase short chain family member 2, ACSS2)產生[16]。Zhao等[17]使用同位素示蹤技術證明了小鼠肝臟特異性敲除無法抑制果糖誘導的肝臟DNL異常,膳食果糖提供的成脂乙酰輔酶A主要通過被腸道菌轉化為乙酸鹽后,由ACSS2催化產生。乙酸鹽大部分來自于腸道菌的發酵,小部分可由組蛋白脫乙酰內源性生成[18];其不僅可以為DNL提供原料,也參與了信號分子的傳遞,如Hong等[19]發現膳食補充乙酸鹽可以通過下調脂肪酸合酶(fatty acid synthase, FASN)蛋白表達的方式抑制NAFLD小鼠的肝臟DNL。出乎預料的是,Yenilmez等[20]通過D2O摻入棕櫚酸的方式測量ACLY及ACSS2選擇性耗竭小鼠肝臟總DNL水平的變化,發現ACLY耗竭反常地提高了小鼠肝臟DNL水平,ACSS2耗竭則沒有影響;并且ACLY 耗竭后肝臟DNL的增加與SREBP-1c及下游成脂基因的表達升高有關,這表明肝臟DNL受相關代謝酶和轉錄因子的影響或許遠大于其直接底物乙酰輔酶A。

2.2肝臟DNL相關代謝酶與NAFLD的關系

2.2.1乙酰輔酶A羧化酶1(acetyl-CoA carboxylase 1, ACC1)肝臟DNL涉及復雜的胞內酶促反應,其中多步反應的催化酶表達都在NAFLD中上調[21]。ACC作為DNL的限速酶,是目前最有潛力的NASH治療靶點之一,其亞型ACC1在肝臟內高度表達,負責將乙酰輔酶A羧化為丙二酰輔酶A。最近的研究[22]發現,花生四烯酸12-脂氧合酶可以直接靶向ACC1,通過阻礙ACC1的溶酶體降解途徑引起肝臟DNL代謝異常,從而促進NASH的發展。除了檸檬酸鹽可以通過促進聚合激活ACC外,AMP依賴的蛋白激酶(AMP-activated protein kinase, AMPK)作為細胞能量變化的感受器,也是控制ACC活性的主要激酶;當細胞能量低時,AMPK被激活,導致ACC1磷酸化而失活[23]。AMPK的激活劑PF-06409577在嚙齒動物和猴子的NAFLD模型中表現出降低肝臟和全身脂質的作用,這與ACC1的磷酸化密切相關[24]。

2.2.2FASNFASN催化肝臟DNL的最后步驟:7個丙二酰輔酶A與1個乙酰輔酶A產生16碳的棕櫚酸;隨后棕櫚酸被極長鏈脂肪酸延長酶6(elongation of very long chain fatty acids protein 6, ELOVL6)和硬脂酰輔酶A去飽和酶1(stearoyl-CoA desaturase 1, SCD1)分別拉長和去飽和,生成棕櫚油酸[25]。FASN能驅動DNL并通過產生內源性棕櫚酸介導促炎和促纖維化的信號傳導。在NAFLD發病機制的“脂毒性”學說中,棕櫚酸及其脂毒性代謝產物如甘油二脂(diacylglycerol, DAG)和神經酰胺的積累被認為是胰島素信號受損的主要原因[25]。這些脂毒性物質也是一種重要的細胞內信號分子,其能通過肝星狀細胞(hepatic stellate cell, HSC)的核因子κB信號通路介導炎癥,并導致促纖維化基因如轉化生長因子β的激活和表達[26]。肝臟特異性敲除小鼠出現了預料之中的結果:肝細胞內丙二酰輔酶A水平升高,棕櫚酸水平降低[27]。最近的研究[28]還通過蛋白質組學分析篩選并鑒定了分選連接蛋白8作為FASN的關鍵結合蛋白,并進一步證明了其能夠直接與FASN結合從而促進FASN的泛素化降解,為干預DNL治療NAFLD的研究提供了新的靶點。

2.2.3SCD1SCD1可以將膳食中的硬脂酸和FASN產生的棕櫚酸等飽和脂肪酸分別轉化為油酸和棕櫚油酸等單不飽和脂肪酸(monounsaturated fatty acid, MUFA),這兩種MUFA是人體TAG、磷脂和膽固醇的主要組成部分[25]。SCD1的總體耗竭能增加胰島素的敏感性,在分子水平上促進AMPK磷酸化和抑制磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳動物雷帕霉素靶標(phosphatidylinositol-3-kinase/protein kinase B/the mammalian target of rapamycin, PI3K/AKT/mTOR)信號通路,使肝臟DNL受阻[29]。MUFA在肝細胞脂肪變性期間表現出改善胰島素抵抗(insulin resistance, IR)和炎癥的有益作用,同樣可以通過AMPK以及PI3K/AKT調節DNL,而MUFA缺乏會增加NAFLD的易感性[30-31]。極低脂肪飲食喂養的SCD1敲除小鼠顯示出嚴重的肝損傷,在膳食補充油酸后,肝損傷明顯得到緩解,這是MUFA缺乏以及敲除導致肝臟基因表達顯著變化引起的副作用[29]。所以在將SCD1作為NAFLD治療新靶點的同時,SCD1與MUFA之間的矛盾關系也應納入考慮。

2.2.4甘油-3-磷酸酰基轉移酶(glycerol-3-phosphate acyltransferase, GPAT)肝臟DNL生成的FA并不能直接與甘油反應,而是先在長鏈脂酰輔酶A合成酶(long-chain acyl-CoA synthetase, ACSL)的作用下生成乙酰輔酶A,并轉移到內質網中;然后GPAT催化甘油-3-磷酸和乙酰輔酶A生成溶血磷脂酸(lysophosphatidic acid, LPA);LPA是溶血磷脂酸酰基轉移酶(lysophosphatide acid acyltransferase, LPAAT)的底物,用于催化磷脂酸(phosphatidic acid, PA)的形成;PA又被磷脂酸磷酸酶除去磷酸基,得到DAG[32]。GPAT在以上催化酶中顯示出最低的比活性,是反應的限速酶,其四種亞型中的GPAT1在肝臟中的表達最高,受到胰島素基于SREBP-1c的轉錄調節,也能被AMPK負調控[33]。Liao等[34]的研究發現,三種不同病因的NAFLD模型動物的mRNA水平均顯著升高,這表明GPAT1表達上調可以作為NAFLD模型成模與否的重要指標。

2.2.5二酰甘油酰基轉移酶(diacylglycerol acyltransferase, DGAT)DGAT是產生TAG最后一步反應的催化酶,它有兩種亞型:DGAT1在小腸細胞中表達,主要從膳食FA中重組TAG以形成CM,而DGAT2存在于肝臟、皮膚和脂肪組織中,負責將DAG轉化為TAG[25]。Gluchowski等[35]的研究發現,肝臟缺乏能夠顯著減少NAFLD小鼠的肝臟DNL相關基因的表達,并將肝臟TAG水平降低約70%,為DGAT2抑制劑作為NAFLD治療藥物的開發提供了有力支持。

在合成反應完成后,新生的TAG會被釋放到內質網膜的脂雙層之間,當肝臟DNL功能亢進時,過量的TAG便突破內質網膜進入胞質中形成LDs[32],最終導致NAFLD的發生。

2.3肝臟DNL相關轉錄因子與NAFLD的關系當前NAFLD患者肝臟DNL水平升高的機制尚不明確,但與高碳水飲食或IR導致的血漿胰島素和血糖持續性升高有密切關系[36]。成脂基因的表達量升高是一種響應葡萄糖和胰島素信號傳導的復雜機制,涉及多種轉錄因子。葡萄糖和胰島素都被證明可以通過激活SREBP-1c、碳水化合物反應元件結合蛋白(carbohydrate response element binding protein, ChREBP)和肝X受體(liver X receptor, LXR)上調肝臟成脂基因的表達[37]。葡萄糖和胰島素也能激活特定的激酶,而這些激酶將導致相應的轉錄因子核轉位,如葡萄糖能通過AMPK/mTOR通路促進SREBP-1c的活化[38];胰島素則通過PI3K/AKT/mTOR通路或AKT直接激活SREBP-1c[39]。

2.3.1SREBP-1cSREBP-1c是調控肝臟脂質代謝的關鍵核轉錄因子,幾乎參與所有肝臟FA和TAG合成基因的轉錄,當受到葡萄糖和胰島素的信號刺激,內質網中的SREBP裂解激活蛋白(SREBP cleavage-activating protein, SCAP)-SREBP-1c復合物與胰島素誘導基因(insulin induced gene, INSIG)解離,其活性N端在高爾基體中被剪切下來,核轉位后與膽固醇反應元件(sterol-regulatory element, SRE)結合,促進下游成脂基因的轉錄翻譯[40]。遺憾的是,Kawamura等[41]通過抑制NASH小鼠的SREBP發現,盡管減少了肝臟脂質沉積,但SREBP抑制會加劇肝臟損傷、纖維化甚至癌變,開發SREBP-1c抑制劑用于治療NAFLD的策略并不可行。

2.3.2ChREBPSREBP-1c并非唯一參與DNL調節的轉錄因子,ChREBP可以響應碳水化合物代謝,直接調節、、和等基因的表達[42],并且ChREBP也能通過激活肝臟中的靶基因ACSS2,在腸道菌發酵產生的乙酸鹽轉化為乙酰輔酶A的過程中發揮關鍵作用[17]。ChREBP的活性取決于細胞中葡萄糖的濃度,過量的碳水化合物飲食后,葡萄糖及其代謝產物能夠激活蛋白磷酸酶2A(protein phosphatase 2A, PP2A),導致ChREBP-Max樣蛋白(Max-like protein, MLX)異二聚體與核內DNL相關基因啟動子中的碳水化合物反應元件(carbohydrate response element, ChRE)結合,促進其轉錄[43]。有趣的是,小鼠的被敲除后,成脂基因的表達量顯著下調,但SREBP家族任何成員的表達都未受影響,這表明ChREBP的調脂能力獨立于SREBP-1c之外[44]。

2.3.3LXRLXR是一種配體依賴的的核受體超家族成員,它與類視黃醇X受體(retinoid X receptor, RXR)形成異二聚體,能響應葡萄糖和胰島素的刺激,核轉位并結合肝X受體反應元件(liver X receptor response element, LXRE),進而募集啟動靶基因轉錄的共激活因子[45]。LXR可以通過活化SREBP-1c和ChREBP間接控制DNL,也能通過不同于激活SREBP-1c的方式直接上調DNL相關代謝酶的基因表達[37]。不過LXR在NAFLD的治療中仍存在著較大爭議[46],其抑制劑會增加心血管疾病的風險,這可能與LXR在不同組織中的表達各異有關。Korach-André等[47]敲除小鼠全身的后發現,脂肪組織中的DNL增加,肝臟中的DNL卻顯著減少;另有研究報道[48],LXR在NAFLD患者的肝臟中上調,而在回腸中下調。所以如何精準下調肝臟基因表達而不對其他組織器官產生不良影響,是靶向LXR減輕肝臟DNL引起的NAFLD脂質沉積的研究要點。肝臟DNL相關代謝酶與轉錄因子在NAFLD中的作用機制如圖2。

Figure 2. The mechanism of hepatic DNL-related metabolic enzymes and transcription factors in NAFLD.

3 肝臟DNL抑制劑在治療NAFLD中的開發現狀

肝細胞內過量的脂滴堆積是NAFLD的標志性特征,而肝臟DNL是肝臟內TAG水平升高的關鍵驅動因素,因此肝臟DNL抑制劑的開發在NAFLD的臨床治療中具有重要意義。由于過度強烈和廣泛的脂質生成抑制對NAFLD的治療適得其反,目前肝臟DNL抑制劑的靶點主要是ACC和FASN等代謝酶,也有部分抑制ACLY、SCD1和DGAT活性的化合物嶄露頭角(表1),而肝臟DNL相關轉錄因子抑制劑的報道則較為罕見。

表1 肝臟DNL相關代謝酶抑制劑

ACLY通過控制成脂乙酰輔酶A的來源,將葡萄糖分解代謝與肝臟DNL聯系起來,其抑制劑的開發一直備受關注。羥基檸檬酸[49]和ETC-1002[50]是ACLY的競爭性抑制劑,都能通過抑制ACLY和激活AMPK干預肝臟DNL進程,但兩者在NAFLD中的研究較少,且都止步于動物實驗,缺少大規模臨床試驗以驗證其有效性和安全性。

基于ACC在調節肝臟DNL及FA氧化中的優勢,ACC抑制劑用于治療NAFLD的研究不斷涌現。GS-0976和PF-05221304都是肝臟特異性的ACC1、ACC2雙重抑制劑,GS-0976能夠促進FA氧化、抑制肝臟DNL和IR[51];而PF-05221304的口服利用度高,并且其高肝臟選擇性的特點可以極大地避免骨髓巨核細胞DNL抑制所導致的血小板生成障礙[52]。GS-0976和PF-05221304都可以通過抑制HSC的活化緩解NASH的纖維化進程,但另一種ACC抑制劑MK-4074在NASH大鼠模型中不影響纖維化,這表明ACC抑制對纖維化的影響可能是藥物特異性的[53]。值得注意的是,這些ACC抑制劑的單獨使用都不可避免的導致了高甘油三酯血癥的發生[53],已有研究表明[54]該副作用在分子水平上與LXR/SREBP1的高表達密切相關。有研究發現[55],PF-05221304與DGAT2抑制劑PF-06865571的聯合用藥可以改善血清TAG水平升高的副作用,有可能解決ACC單獨抑制的部分局限性。Tamura等[56]在對一種新型的ACC1選擇性抑制劑的研究中發現,該化合物在改善NAFLD/NASH小鼠的肝臟脂質沉積和纖維化的同時,血漿TAG水平并未升高,提示開發肝臟ACC1選擇性抑制劑或許是一種更為可行的方法。

與ACC抑制劑相比,FASN抑制劑并沒有明顯的副作用。TVB-3664、TVB-3166和TVB-2640都可以針對NASH的三個關鍵標志,在阻礙肝臟DNL進程的同時,也可以直接抑制免疫細胞和HSC等炎癥和纖維化的主導因素[57]。FT-4101在健康受試者和NAFLD患者的兩項隨機試驗中,證明了其能夠安全有效地減少NAFLD患者的肝臟DNL和脂質沉積[58]。

因為全身SCD1抑制引起的MUFA缺乏會降低胰島素敏感性從而造成嚴重后果[59],所以肝臟選擇性SCD1抑制劑的開發顯得尤為重要。SCD1部分抑制劑Aramchol等在早期實驗中被確定對嚙齒動物NASH模型的脂肪變性、炎癥和纖維化有抑制作用,且未見明顯的肝臟損傷[60],現已進入Ⅲ期臨床試驗,預計在不久的將來能為NASH的臨床用藥增添新的選項。

DGAT是FA合成TAG的核心代謝酶之一,目前處于臨床試驗階段的DGAT1抑制劑GSK3008356觀察到高脂肪餐受試者餐后TAG水平的下降[61];而DGAT2抑制劑包括PF-06865571、PF-06427878和反義寡核苷酸抑制劑Ionis-DGAT2Rx,對NAFLD的肝臟脂質沉積和血漿TAG水平升高也都有顯著的改善效果[62-64]。但相比于DGAT1抑制劑導致的胃腸道不良反應,DGAT2抑制劑在臨床上具有更好的耐受性,是今后開發的重點方向[65]。

4 總結與展望

近年來NAFLD的流行有著低齡化和擴大化的趨勢,而隨著認識的加深,醫學界對NAFLD的重視程度也與日俱增,甚至一些專家建議將NAFLD的命名法更改為代謝相關脂肪性肝病,可見代謝紊亂在其中的重要性。作為NAFLD中TAG合成代謝失控的主要參與者,肝臟DNL具體機制的研究一直在推陳出新,針對肝臟DNL的抑制劑也相繼問世。然而ACLY和LXR在肝臟DNL機制中的作用依然存在爭議,ACLY抑制劑還停留在臨床前研究階段,并且如何最大程度地減輕肝臟DNL抑制劑引起的不良反應也是一個困擾著國內外學者的難題。只有在不斷探索肝臟DNL機制的同時,用最新的理論支撐相關靶點抑制劑的研發,才能使NAFLD的臨床治療邁入新階段。

[1]王夢,孫岳,楊安寧,等. 巨噬細胞基因敲除對非酒精性脂肪性肝病小鼠肝細胞凋亡的影響[J]. 中國病理生理雜志, 2023, 39(1):123-130.

Wang M, Sun Y, Yang AN, et al. Effect of macrophagegene knockout on apoptosis of hepatocytes in mice with non-alcoholic fatty liver disease[J]. Chin J Pathophysiol, 2023, 39(1):123-130.

[2] Xiao J, Wang F, Wong NK, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1):212-221.

[3] Lawitz EJ, Li KW, Nyangau E, et al. Elevated de novo lipogenesis, slow liver triglyceride turnover, and clinical correlations in nonalcoholic steatohepatitis patients[J]. J Lipid Res, 2022, 63(9):1362.

[4] Esler WP, Bence KK. Metabolic targets in nonalcoholic fatty liver disease[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(2):247-267.

[5] Rowland LA, Guilherme A, Henriques F, et al. De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics[J]. Nat Commun, 2023, 14(1):1362.

[6] Zhu ZM, Zhu LY, Jiang L. Dynamic regulation of gut-derived short-chain fatty acids[J]. Trends Biotechnol, 2021, 40(3):266-270.

[7] Wen Y, Chen YQ, Konrad RJ. The regulation of triacylglycerol metabolism and lipoprotein lipase activity[J]. Adv Biol (Weinh), 2022, 6(10):e2200093.

[8] Wang XX, Rao HY, Liu F, et al. Recent advances in adipose tissue dysfunction and its role in the pathogenesis of non-alcoholic fatty liver disease[J]. Cells, 2021, 10(12):3300.

[9] Huang JK, Lee HC. Emerging evidence of pathological roles of very-low-density lipoprotein (VLDL)[J]. Int J Mol Sci, 2022, 23(8):4300.

[10] Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Invest, 2005, 115(5):1343-1351.

[11] Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health[J]. J Endocrinol, 2023, 257(2):e220270.

[12] Heinz F, Lamprecht W, Kirsch J. Enzymes of fructose metabolism in human liver[J]. J Clin Invest, 1968, 47(8):1826-1832.

[13] Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease[J]. Cell Metab, 2021, 33(12):2329-2354.

[14] Dominguez M, Brüne B, Namgaladze D. Exploring the role of ATP-Citrate lyase in the immune system[J]. Front Immunol, 2021, 12:632526.

[15] Morrow MR, Batchuluun B, Wu J, et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia[J]. Cell Metab, 2022, 34(6):919-936.e8.

[16] Luong A, Hannah VC, Brown MS, et al. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins[J]. J Biol Chem, 2000, 275(34):26458-66.

[17] Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020, 579(7800):586-591.

[18] Bose S, Ramesh V, Locasale JW. Locasale. Acetate metabolism in physiology, cancer, and beyond[J]. Trends Cell Biol, 2019, 29(9):695-703.

[19] Hong Y, Sheng LL, Zhong J, et al., a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes, 2021, 13(1):21-20.

[20] Yenilmez B, Kelly M, Zhang GF, et al. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice[J]. J Biol Chem, 2022, 298(10):102401.

[21] Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease[J]. Int J Mol Med, 2007, 20(3):351-358.

[22] Zhang XJ, She ZG, Wang J, et al. Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis[J]. Sci Trans Med, 2021, 13(624):eabg8117.

[23] Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature, 2018, 558(7710):470-474.

[24] Esquejo RM, Salatto CT, Delmore J, et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models[J]. EBioMedicine, 2018, 31:122-132.

[25] Parlati L, Régnier M, Guillou H, et al. New targets for NAFLD[J]. JHEP Rep, 2021, 3(6):100346.

[26] Dong ZX, Zhuang Q, Ning M, et al. Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells[J]. Ann Trans Med, 2020, 8(5):168.

[27] Chakravarthy MV, Pan ZJ, Zhu YM, et al. "New" hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis[J]. Cell Metab, 2005, 1(5):309-322.

[28] Hu Y, He W, Huang Y, et al. Fatty acid synthase-suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD[J]. Hepatology, 2021, 74(5):2508-2525.

[29] Piccinin E, Cariello M, De Santis S, et al. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1)[J]. Nutrients, 2019, 11(10):2283-2283.

[30] Ducheix S, Piccinin E, Peres C, et al. Reduction in gut-derived MUFAs via intestinal stearoyl-CoA desaturase 1 deletion drives susceptibility to NAFLD and hepatocarcinoma[J]. Hepatol Commun, 2022, 6(10):2937-2949.

[31] Ravaut G, Légiot A, Bergeron KF, et al. Monounsaturated fatty acids in obesity-related inflammation[J]. Inter J Mol Sci, 2020, 22(1):330-330.

[32] Jarc E, Petan T. Lipid droplets and the management of cellular stress[J]. Yale J Biol Med, 2019, 92(3):435-452.

[33] Karasawa K, Tanigawa K, Harada A, et al. Transcriptional regulation of acyl-CoA:glycerol--3-phosphate acyltransferases[J]. Int J Mol Sci, 2019, 20(4):964.

[34] Liao K, Pellicano AJ, Jiang K, et al. Glycerol-3-phosphate acyltransferase1 is a model-agnostic node in nonalcoholic fatty liver disease: implications for drug development and precision medicine[J]. ACS Omega, 2020, 5(29):18465-18471.

[35] Gluchowski NL, Gabriel KR, Chitraju C, et al. Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice[J]. Hepatology, 2019, 70(6):1972-1985.

[36] Smith GI, Shankaran M, Yoshino M, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease[J]. J Clin Invest, 2019, 130(3):1453-1460.

[37] Viscarra J, Sul HS. Epigenetic regulation of hepatic lipogenesis: role in hepatosteatosis and diabetes[J]. Diabetes, 2020, 69(4):525-531.

[38] Yoon I, Nam M, Kim HK, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1[J]. Science, 2020, 367(6474):205-210.

[39] Yellaturu CR, Deng X, Cagen LM, et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles[J]. J Biol Chem, 2009, 284(12):7518-7532.

[40] Ferré P, Phan F, Foufelle F. SREBP-1c and lipogenesis in the liver: an update[J]. Biochem J, 2021, 478(20):3723-3739.

[41] Kawamura S, Matsushita Y, Kurosaki S, et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis[J]. J Clin Invest, 2022, 132(11):e151895.

[42] Iizuka K, Takao K, Yabe D. ChREBP-mediated regulation of lipid metabolism: involvement of the gut microbiota, liver, and adipose tissue[J]. Front Endocrinol (Lausanne), 2020, 11:587189.

[43] Régnier M, Carbinatti T, Parlati L, et al. The role of ChREBP in carbohydrate sensing and NAFLD development[J]. Nat Rev Endocrinol, 2023, 19(6):336-349.

[44] Iizuka K, Bruick RK, Liang GS, et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis[J]. Proc Natl Acad Sci U S A, 2004, 101(19):7281-7286.

[45] Cariello M, Piccinin E, Moschetta A. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(5):1519-1539.

[46] Ni MZ, Zhang BB, Zhao J, et al. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease[J]. Biomed Pharmacother, 2019, 113:108778.

[47] Korach-André M, Archer A, Gabbi C, et al. Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice[J]. Am J Physiol Endocrinol Metab, 2011, 301(1):E210-E222.

[48] Ahn SB, Jun DW, Jang K, et al. Duodenal Niemann-Pick C1-like 1 expression was negatively correlated with liver X receptor expression in nonalcoholic fatty liver disease[J]. Korean J Inter Med, 2019, 34(4):777-784.

[49] Li LL, Chu X, Yao Y, et al. (-)-Hydroxycitric acid alleviates oleic acid induced steatosis, oxidative stress and inflammation in primary chicken hepatocytes by regulating AMPK mediated ROS levels[J]. J Agric Food Chem, 2020, 68(40):11229-11241.

[50] Sanjay KV, Vishwakarma S, Zope BR, et al. ATP citrate lyase inhibitor bempedoic acid alleviate long term HFD induced NASH through improvement in glycemic control, reduction of hepatic triglycerides & total cholesterol, modulation of inflammatory & fibrotic genes and improvement in NAS score[J]. Curr Res Pharmacol Drug Discov, 2021, 2:100051.

[51] Goedeke L, Bates J, Vatner DF, et al. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents[J]. Hepatology, 2018, 68(6):2197-2211.

[52] 楊柳,李錦忠,李敏然. 脂肪生成抑制劑治療非酒精性脂肪性肝病的研究進展[J]. 世界華人消化雜志, 2022, 30(16):735-742.

Yang L, Li JZ, Li MR. Progress in research of lipogenesis inhibitors for treatment of nonalcoholic fatty liver disease[J]. World Chin J Digestol, 2022, 30(16):735-742.

[53] Neokosmidis G, Cholongitas E, Tziomalos K. Acetyl-CoA carboxylase inhibitors in non-alcoholic steatohepatitis: is there a benefit?[J]. World J Gastroenterol, 2021, 27(39):6522-6526.

[54] Kim CW, Addy C, Kusunoki J, et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation[J]. Cell Metab, 2017, 26(3):576-576.

[55] Calle RA, Amin NB, Carvajal-Gonzalez S, et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials[J]. Nat Med, 2021, 27(10):1836-1848.

[56] Tamura YO, Sugama J, Iwasaki S, et al. Selective acetyl-CoA carboxylase 1 inhibitor improves hepatic steatosis and hepatic fibrosis in a pre-clinical NASH model[J]. J Pharmacol Exp Ther, 2021, 379(3):280-289.

[57] O'Farrell M, Duke G, Crowley R, et al. FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibrosis in preclinical models[J]. Sci Rep, 2022, 12(1):15661-15661.

[58] Beysen C , Schroeder P, Wu E, et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with NAFLD non-alcoholic fatty liver disease:results from two early phase randomized trials[J]. Diabetes Obes metab, 2020, 23(3):700-710.

[59] Nowak C, Salihovic S, Ganna A, et al. Effect of insulin resistance on monounsaturated fatty acid levels: a multi-cohort non-targeted metabolomics and mendelian randomization study[J]. PLoS Genet, 2016, 12(10):e1006379.

[60] Ratziu V, de Guevara L, Safadi R, et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial[J]. Nat Med, 2021, 27(10):1825-1835.

[61] Okour M, Gress A, Zhu XY, et al. First-in-human pharmacokinetics and safety study of GSK3008356, a selective DGAT1 inhibitor, in healthy volunteers[J]. Clin Pharmacol Drug Dev, 2019, 8(8):1088-1099.

[62] Amin NB, Darekar A, Anstee QM, et al. Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study[J]. BMJ Open, 2022, 12(3):e056159.

[63] Amin NB, Carvajal-Gonzalez S, Purkal J, et al. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis[J]. Sci Transl Med, 2019, 11(520):eaav9701.

[64] Loomba R, Morgan E, Watts L, et al. Novel antisense inhibition of diacylglycerol-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2020, 5(9):829-838.

[65] Amin NB, Saxena AR, Somayaji V, et al. Inhibition of diacylglycerol acyltransferase 2 versus diacylglycerol acyltransferase 1: potential therapeutic implications of pharmacology[J]. Clin Ther, 2023, 45(1):55-70.

Research advances in mechanism of liver de novo lipogenesis and its inhibitors in non-alcoholic fatty liver disease

FAN Chaowen, GAO Weiman, KE Zunli△, YU Qi△

(,,550025,)

Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in China. However, there is no officially approved specific drug in clinic. Hepatic lipid deposition is a characteristic pathological manifestation of NAFLD and often used as the first indicator in the diagnosis of the disease. Involving a variety of metabolic enzymes and transcription factors, the hepatic de novo lipogenesis (DNL) is a major factor to induce the formation of lipid deposition in NAFLD. At present, liver DNL has attracted wide attention as it regards as a potential target for the prevention and treatment of NAFLD. A large number of inhibitors targeting DNL have shown good therapeutic effect in animal models and clinical trials. In this review, the recent progression of the mechanism and inhibitors of liver DNL in NAFLD will be elucidated, aiming to provide more clues for lipid-lowering therapy of NAFLD.

non-alcoholic fatty liver disease; de novo lipogenesis; metabolic enzyme; transcription factor; inhibitor

R575.5; R363

A

10.3969/j.issn.1000-4718.2023.09.013

1000-4718(2023)09-1642-08

2023-04-03

2023-06-30

國家自然科學基金資助項目(No. 82060797; No. 81960796; No. 81860776);貴州省科技計劃項目(黔科合基礎-ZK[2021]一般400號);中央支持地方高校改革發展資金(黔教技[2023]067號)

俞琦 Tel: 0851-88233038; E-mail: 756128099@qq.com;柯尊麗 Tel: 0851-88308014; E-mail: Zunli_Ke2015@163.com

(責任編輯:宋延君,羅森)

猜你喜歡
胰島素小鼠
愛搗蛋的風
如何選擇和使用胰島素
人人健康(2023年26期)2023-12-07 03:55:46
小鼠大腦中的“冬眠開關”
自己如何注射胰島素
米小鼠和它的伙伴們
門冬胰島素30聯合二甲雙胍治療老年初診2型糖尿病療效觀察
糖尿病的胰島素治療
餐前門冬胰島素聯合睡前甘精胰島素治療2型糖尿病臨床效果
加味四逆湯對Con A肝損傷小鼠細胞凋亡的保護作用
臨床常用胰島素制劑的分類及注射部位
主站蜘蛛池模板: 国产乱人伦AV在线A| 97久久免费视频| 无码AV日韩一二三区| www.亚洲天堂| 日韩欧美高清视频| 夜夜爽免费视频| 播五月综合| 婷五月综合| 在线视频一区二区三区不卡| 香蕉久人久人青草青草| 国产亚洲视频免费播放| 国产a v无码专区亚洲av| 国产精品久久自在自线观看| 五月激情综合网| 日韩在线永久免费播放| 国产在线一区二区视频| 亚洲日韩国产精品综合在线观看| 99久久国产综合精品2020| 国产青青草视频| 71pao成人国产永久免费视频| 又黄又爽视频好爽视频| 日韩免费成人| 国产乱人免费视频| 色亚洲激情综合精品无码视频| 欧美不卡视频在线观看| 日本免费高清一区| 国产亚洲精品自在久久不卡 | 国产乱子伦精品视频| 精品自拍视频在线观看| 久久国产乱子伦视频无卡顿| 国产日韩欧美精品区性色| 真人免费一级毛片一区二区| 亚洲天堂日韩av电影| 中文字幕亚洲乱码熟女1区2区| yjizz国产在线视频网| 亚洲三级a| 国产成人艳妇AA视频在线| 亚洲热线99精品视频| 在线va视频| 成人精品区| 国产小视频网站| 国产福利小视频高清在线观看| 久久久久人妻一区精品| 婷婷综合色| 免费观看成人久久网免费观看| 亚洲一级毛片在线观| 88国产经典欧美一区二区三区| 9999在线视频| 99爱视频精品免视看| 91无码视频在线观看| 天天色综网| 亚洲精品成人片在线播放| 国产一区二区精品福利| 欧美97欧美综合色伦图| 国产亚洲男人的天堂在线观看| 免费日韩在线视频| 免费国产不卡午夜福在线观看| 91精品国产福利| 视频二区亚洲精品| 国产高清在线丝袜精品一区| 欧美成一级| 亚洲动漫h| 日韩国产高清无码| 日本一区二区三区精品视频| 色老二精品视频在线观看| 国产91高跟丝袜| 丁香六月激情婷婷| 91精品免费高清在线| 精品视频在线一区| 色综合中文综合网| 久久久久无码精品国产免费| 日本爱爱精品一区二区| 亚洲男人的天堂视频| a色毛片免费视频| 成人免费一级片| а∨天堂一区中文字幕| 免费网站成人亚洲| 2019国产在线| 国产精女同一区二区三区久| 亚洲无码视频一区二区三区 | 欧美人人干| 亚洲久悠悠色悠在线播放|