999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

略陽烏雞褐殼蛋殼顏色量化體系的建立和遺傳基礎分析

2023-10-24 05:41:22陳球黃晶晶王哲鵬
中國農業科學 2023年17期

陳球,黃晶晶,王哲鵬

略陽烏雞褐殼蛋殼顏色量化體系的建立和遺傳基礎分析

陳球,黃晶晶,王哲鵬

西北農林科技大學動物科技學院,陜西楊凌 712100

【背景】褐殼蛋殼顏色與蛋殼強度、蛋內抗菌肽含量、血斑肉斑和孵化率有密切聯系,是影響蛋品質和銷售的一個重要的指標。然而,一些地方雞因選育程度低,存在蛋色偏淺、均勻度差等不足,給雞蛋的銷售和品牌的打造造成不利影響。【目的】探討以略陽烏雞為對象,建立能靈敏度量蛋殼顏色變異的量化體系,估計品種特異性蛋殼顏色的遺傳力,篩選參與蛋殼顏色調控的候選基因,為略陽烏雞褐殼蛋殼顏色選育奠定理論基礎。【方法】在略陽烏雞蛋用系62個半同胞家系中選取841只母雞,每只雞收集3枚蛋,用L*a*b色度體系量化蛋殼顏色。在貝葉斯框架下,用馬爾可夫鏈蒙特卡羅(Markov Chain Monte Carlo, MCMC)算法計算各色度指標的后驗遺傳力。用逆γ分布指定育種值和殘差方差的先驗分布。執行130 000迭代,棄去前30 000次迭代結果,按間隔100存儲迭代結果,獲得各方差組分的后驗分布和各指標的后驗遺傳力。選取產淺褐殼、褐殼、淺綠殼的母雞各8只,每只雞收集3枚蛋用于蛋殼色素含量的測定。用原卟啉和膽綠素標準品建立濃度與吸光度值的回歸關系,分別在670 nm和412 nm處測定膽綠素和原卟啉的吸光度,用回歸法求得待測樣本兩種蛋殼色素的濃度。采集褐殼(n=8)和淺褐殼(n=8)母雞的蛋殼腺,用qPCR法檢測和在蛋殼腺中的表達量。【結果】在3個色度指標中,a值遞減的變化規律與褐色向綠色調過渡的視覺觀感吻合度最高。L值和b值能夠反映褐殼顏色深淺的變化,但在區分褐色和綠色調上存在較大誤差。L值和b值分布呈現出較高的集中度,50%的樣本的L值和b值集中分布于73.3—79.1和13.1—18.2之間,而a值分布更為分散,50%的樣本分布于1.4—7.1之間。與上述分布特征保持一致,a值的變異系數88.2%要高于L值5.7%和b值24.0%。遺傳力估計結果顯示,a值主要受遺傳效應調控(h2=0.77),而L值(h2=0.46)和b值(h2=0.37)受環境效應影響更大。在蛋殼色素和蛋殼顏色之間,原卟啉濃度與3個色度指標均存在強相關關系(L:=-0.86,a:=0.73, b:=0.88),但膽綠素濃度僅與a值存在強負相關(=-0.73)。和是兩個催化原卟啉前體物合成的酶。表達結果顯示,在褐殼雞中的表達水平是淺褐殼的1.5倍(<0.05),但的表達量無顯著差異(>0.05)。【結論】原卟啉是影響略陽烏雞蛋殼顏色的關鍵色素,而是與蛋殼原卟啉含量和褐殼顏色顯著關聯的候選基因。a值是量化略陽烏雞蛋殼顏色準確度和靈敏度最高的指標,且具有較高的遺傳力。對a值向上選擇,有望在提高褐殼顏色深度和均勻度方面取得較大選擇反應。

略陽烏雞;蛋殼顏色;L*a*b色度空間;遺傳力;;

0 引言

【研究意義】褐殼蛋因蛋殼質量好、蛋內抗菌蛋白含量高、孵化率高,在我國禽蛋市場中占主導地位[1-4]。但是,一些地方雞由于選育程度低,蛋殼顏色存在較大的變異,給雞蛋的銷售和品牌的創立造成極為不利的影響。在闡明蛋殼顏色遺傳調節效應的基礎上,建立科學的育種方案,培育蛋色均一、色澤美觀的褐殼品種,對地方雞資源的開發利用具有重要意義。【前人研究進展】在野生鳥類中,蛋殼顏色是變異十分豐富的一個性狀[5]。它在偽裝[6]、阻擋太陽輻射[7]、調節蛋溫[8]、增加蛋殼強度[9]和吸引雄鳥參與孵化[10]等方面發揮了重要的作用。在家禽中,由于人工選擇,蛋殼顏色被固定為白殼、粉殼、褐殼、綠殼幾種顏色。蛋殼顏色是由沉積于蛋殼中的色素引起。原卟啉Ⅸ和膽綠素Ⅸ是兩種主要的蛋殼色素,前者負責紅褐的蛋殼著色,后者負責藍綠的蛋殼著色[11]。這些色素在蛋形成的最后階段由蛋殼腺分泌到蛋殼上,引起各種顏色、各種斑紋的蛋殼著色[11-12]。雖然年齡、藥物、疾病、應激、營養等非遺傳因素對蛋殼顏色均可產生不同程度的影響[1,13],但蛋殼顏色仍屬于主要受遺傳效應調控的性狀。雞和鴨的綠殼表型均被證實是由色素轉運基因突變引起,屬于單基因控制的顯性性狀[14-15]。但是,褐殼的遺傳機制目前尚不清楚。通過QTL定位,研究人員在雞的1、2、4和11號染色體上發現4個QTL與蛋殼顏色有關[16-18]。蛋殼腺表達研究發現,原卟啉前體物合成基因、和轉運基因、、在深褐殼和淺褐殼間均存在顯著表達差異[19-20]。但是,Zheng等[21]在比較白殼、粉殼和褐殼雞和的表達量時卻并未發現顯著差異。在用尼卡巴嗪構建的褐殼蛋褪色模型中,、、的表達量與蛋殼顏色變化關系也未得到證實,只有的差異表達的結果得到重復[22]。除了蛋殼腺差異表達基因外,肝臟差異表達基因與蛋殼原卟啉合成和褐殼著色也有密切聯系[23]。鑒于QTL定位和表達研究難以鎖定主效基因,研究人員通過估計蛋殼顏色的遺傳力對遺傳效應的總體作用進行了定量評估。在用L*a*b體系量化蛋殼顏色后,研究人員在橫斑洛克、洛島紅及白來航與東鄉綠殼雞的雜交群體中獲得了較高的色度指標遺傳力估計結果(L:0.64—0.74,a:0.42—0.64,b:0.55—0.6)[24-25],Cavero等在羅曼褐中發現褐殼表型為中等遺傳力(0.33—0.46)性狀[26],但Kamanli在橫斑洛克中估計的色度指標遺傳力僅為0.2左右[27]。這些研究表明,與單基因調控的綠殼表型相比,褐殼有著更為復雜的遺傳基礎。在不同品種,甚至不同環境下,對褐殼顏色發揮調節作用的遺傳機制可能并不相同。【本研究切入點】略陽烏雞是一個產自陜西略陽縣一帶的地方品種。該品種因蛋肉品質優良、藥食同源等優點而深受消費者的喜愛[28]。略陽烏雞蛋殼顏色以褐色調為主,有少部分個體產顏色偏綠的蛋。蛋殼顏色在整個產蛋周期中維持穩定,但在個體之間呈現出由淺到深的連續性變異。這些表型特征肯定了遺傳效應對蛋殼顏色的決定作用。但是,我們尚缺乏對遺傳效應的定量認識,也不清楚之前報道的候選基因與褐殼顏色的關系在略陽烏雞中是否也存在。【擬解決的關鍵問題】本研究在用L*a*b體系量化略陽烏雞蛋殼顏色的基礎上,研究了3個色度指標的分布特征和與蛋殼色素含量的相關性,估計了L, a, b值的遺傳力,分析了和表達量與褐殼顏色深淺的關系,期望建立對蛋殼顏色變化有較高靈敏度和準確度的量化體系,獲得品種特異性色度指標遺傳力估計結果,發現參與略陽烏雞蛋殼顏色調控的候選基因,為略陽烏雞褐殼性狀的選育提純奠定理論基礎。

1 材料與方法

1.1 略陽烏雞的飼養

從略陽烏雞蛋用系核心群四世代62個半同胞家系中隨機選取841只母雞。四世代母雞出殼時間為2019年12月,淘汰時間為2020年10月,在略陽縣龍昊烏雞種源繁育中心飼養。育雛期(0—6周齡)采用籠養育雛,養殖密度為40—60只/m2,育雛溫度28—33 ℃,4周齡脫溫,光照時間18—22 h。在10周齡,將青年雞轉入產蛋雞舍。在產蛋周期內,雞舍維持16 h恒定光照,單籠養殖,自由采食、飲水。育雛期(0—6周齡)用全價配合料(楊凌海大飼料)飼喂,青年期和產蛋期用35%濃縮料(楊凌海大飼料)、60%玉米和5%麩皮混合飼喂,粗蛋白16%—20%,能量12 MJ·kg-1,粗纖維<5%,鈣0.8%—3.5%,氯化鈉0.7%—1.8%,蛋氨酸>0.45%,粗灰分<8%。

1.2 蛋殼顏色的測定

本研究用L*a*b色度體系量化蛋殼顏色,L為亮度值,取值范圍為0—100,L值越大反映物體的顏色越白,反之越黑;a值為紅綠度值,無取值范圍限制,正值表示物體顏色偏紅,負值表示顏色偏綠;b值為藍黃度值,無取值范圍限制,正值表示顏色偏黃,負值為顏色偏藍。蛋殼顏色的L, a, b值用MiniScan EZ 4000便攜式分光光度計(Hunter Associates Laboratory,Inc.)在D65光源和10°入射角條件下測定。在母雞32周齡時,每只雞測定3枚蛋,3枚蛋L, a, b測定結果的平均值作為該樣本蛋殼顏色的代表值,用于后續分析。蛋殼顏色測定時間為2020年7月,在略陽縣龍昊烏雞種源繁育中心測定。

1.3 L, a, b值遺傳力估計

本研究用單變量動物模型y=Xb+Za+e估計L, a, b值的遺傳力,y為L, a, b測定值向量,X為設計矩陣,b為色度指標群體均值,Z為育種值效應設計矩陣,a為各色度指標的育種值,e為誤差項[29]。各色度指標后驗遺傳力在貝葉斯框架下用馬爾科夫鏈蒙特卡洛(Markov Chain Monte Carlo,簡稱MCMC)算法進行估計,運算過程由R語言MCMCglmm軟件完成[30]。育種值及殘差項方差的先驗分布由逆γ分布指定,逆γ分布的參數分別為V=1,nu=0.002[31]。MCMC迭代參數為nitt=130 000,burnin=30 000,thin=100[31]。迭代結束后,用posterior.mode命令計算遺傳力后驗分布眾數,用HPDinterval命令計算遺傳力的95%置信區間[31]。

1.4 蛋殼色素含量測定

從四世代略陽烏雞中依據主觀顏色評定,挑選產淺褐殼、褐殼和綠殼蛋的略陽烏雞各8只。每只雞收集連續產出的3枚蛋,分離蛋殼,測定蛋殼原卟啉和膽綠素濃度。3枚蛋的平均值作為該樣本蛋殼色素濃度的代表值。敲破雞蛋,棄蛋液,剝離蛋殼膜,用去離子水洗凈蛋殼,置65 ℃烘箱過夜干燥。每枚蛋稱取0.25 g蛋殼,置于4 mL蛋殼溶解液(無水甲醇﹕37.5%的鹽酸=2﹕1)中,室溫避光過夜,直至蛋殼完全溶解[32]。3 500 r/min離心45 min,取上清液,避光保存備測。

將4 mg原卟啉Ⅺ標準品(Sigma)溶解于4 mL蛋殼溶解液中,配成1 mg·mL-1標準品儲液。取0.12 mL儲液與1.88 mL蛋殼溶解液混合配成1×標樣(0.06 mg·mL-1),按2倍稀釋倍數依次稀釋前一標樣,配制2-1(0.03 mg·mL-1)— 2-9(0.000117 mg·L-1)標樣。將4 mg膽綠素標準品(Sigma)溶解于4 mL蛋殼溶解液中配成膽綠素標準品儲液。將0.087 mL儲液與1.913 mL蛋殼溶解液混合配成1×膽綠素標樣(0.043 mg·mL-1)。按2倍稀釋倍數依次稀釋前一標樣,獲得2-1(0.0215 mg·mL-1)—2-9(0.000084 mg·L-1)標樣。取200 μL樣品,用酶標儀(BioTek)在412 nm處測定原卟啉吸光度值,在670 nm處測定膽綠素吸光度值[32]。依據標樣建立的吸光值與濃度回歸方程,計算待測樣本原卟啉和膽綠素的濃度。原卟啉和膽綠素濃度用μg·g-1蛋殼表示。蛋殼色素含量測定時間為2021年1月,在西北農林科技大學動物營養科研平臺測定。

1.5 CPOX和ALAS1在蛋殼腺中的表達量檢測

將上述參與蛋殼色素濃度測定的淺褐殼(n=8)和褐殼(n=8)雞宰殺,采集蛋殼腺,置1 mL RNAstore(康為世紀)中,剪碎組織,在4 ℃浸泡過夜后置-80 ℃冰箱長期保存備用。取大約100 mg組織樣,吸干RNAstore,用TRNzol Universal總RNA 提取試劑(天根)按操作說明提取蛋殼腺總RNA。用1%瓊脂糖凝膠電泳檢查RNA的完整性,用NanoDrop2000(ThermoFisher Scientific)分光光度計測定RNA濃度。取1 μg總RNA,用SumOnetube RT Mixture Ⅲ(Summer Biotech)反轉錄試劑盒按操作說明合成cDNA。用實時熒光定量PCR(qPCR)檢測和在蛋殼腺中的表達量。qPCR反應體系由1 μL cDNA, 10 μL 2×FastHotstart SYBR QPCR Mixture (Summer Biotech), 0.4 μL正鏈引物(10 μmol·L-1),0.4 μL反鏈引物(10 μmol·L-1)和8.2 μL ddH2O組成。擴增引物為5′-GAGAGGACGGTATGTGGAGT -3′和5′-TTTGGGATTGCGGAGAAC-3′,擴增引物為5′-GCATCTATGTCCAAGCAATC-3′和5′-CA ACATCCTTCCATGTAGCC-3′,持家基因擴增引物為5′-ATACACAGAGGACCAGGTTG-3′和5′- AAACTCATTGTCATACCAGG-3′。qPCR在LightCycler? 96 System熒光定量PCR儀(Roche)中進行。qPCR反應條件為95℃變性2 min,(95℃變性10 s,60℃退火10 s,60℃延伸30 s)×40個循環,擴增結束后執行qPCR儀默認融解曲線程序,驗證qPCR擴增的特異性。每個樣品執行3個技術重復,以為內參基因,以淺褐殼組為對照,用2-ΔΔCt法以相對于淺褐殼組表達倍數的形式呈現表達量檢測結果。和表達量檢測時間為2020年12月,在西北農林科技大學動物營養科研平臺檢測。

1.6 統計分析

2 結果

2.1 略陽烏雞蛋殼顏色的量化和變異研究

略陽烏雞蛋殼顏色以褐色調為主,從褐殼、淺褐殼、白殼到淺綠殼呈現出連續性變異的特征(圖1-A)。在用L*a*b體系量化蛋殼顏色后,研究發現a值不僅能靈敏地捕捉到褐殼顏色逐漸變淺的變化規律,而且能準確區分褐色和綠色調,其逐漸遞減的變化趨勢與褐殼→淺褐殼→白殼→淺綠殼的視覺觀感最為接近。L值隨褐殼顏色變淺逐漸增大,b值逐漸減小(1#—6#樣本),但L值和b值并不能準確區分褐色和綠色調。例如,3#和12#、5#和10#的L值和b值較為接近,但在視覺觀感上二者呈現為完全不同的色調;8#和9#顏色較為接近,但b值相差1倍之多。

除了分析色度指標與主觀視覺觀感的吻合度外,研究也在大樣本(n=841)內分析了色度指標的群體分布特征(圖1-B)。L值變異范圍為59.7—89.8,均值為76.0±0.15,50%的樣本的L值集中于73.3—79.1之間。a值變異范圍為-6.7—15.5,均值為4.3±0.13,50%的樣本的a值集中于1.4—7.1之間。b值變異范圍為4.5—26.9,均值為15.6±0.13,50%的樣本的b值集中于13.1—18.2之間。在3個色度指標中,a值的變異系數為88.2%,顯著高于L值(5.7%)和b值(24.0%)的變異系數。

A:略陽烏雞蛋代表性蛋殼顏色。紅綠色圈內標注的數字代表各枚蛋的a值,黃藍色圈內的數字代表b值,白黑色圈內的數字代表L值;B:略陽烏雞蛋殼顏色(n=841)L, a, b值分布。LBC=Lüeyang Black-boned Chicken

2.2 蛋殼顏色L、a和b值遺傳力估計

略陽烏雞蛋殼顏色表現出連續性變異特征,符合數量性狀的遺傳特點。為了定量評估遺傳效應對略陽烏雞蛋殼顏色變異的決定性,本研究在量化蛋殼顏色的基礎上,進一步估計了L, a, b值的遺傳力。在3個色度指標中,L值和b值維持中等偏低遺傳力,遺傳力估計結果為0.46和0.37。a值維持了較高遺傳力,估計結果為0.77。3個色度指標遺傳力估計精度較為接近,95%置信區間寬度均為0.4左右(圖2)。

曲線描繪1000個后驗遺傳力概率分布,圖上方數字指各顏色指標后驗遺傳力眾數,括號中的數字為各指標后驗遺傳力的95%置信區間

2.3 蛋殼原卟啉和膽綠素含量與L, a, b值的相關性

為了闡明蛋殼色素濃度與略陽烏雞蛋殼顏色變異的關系,本研究分析了蛋殼原卟啉和膽綠素濃度與L, a, b值的相關性。原卟啉的濃度與L值存在強負相關性,與a值和b值均呈現出強正相關性(圖3)。蛋殼膽綠素濃度與a值呈現出顯著負相關性,但與L值和b值的相關關系均不顯著(圖3)。

2.4 CPOX和ALAS1表達量與褐殼顏色深淺的關系

已知原卟啉是影響略陽烏雞蛋殼顏色的關鍵色素。為了篩選出調控略陽烏雞褐殼顏色的候選基因,本研究比較了原卟啉前體物合成酶基因和在褐殼和淺褐殼間的表達差異。褐殼的L值顯著低于淺褐殼,a值、b值和原卟啉含量均顯著高于淺褐殼(表1),支持所選樣本蛋殼顏色量化和原卟啉含量測定結果與視覺觀感一致,樣本具有代表性。在褐殼雞蛋殼腺的表達水平是淺褐殼雞的(1.5±0.4)倍,但表達水平在褐殼和淺褐殼組間無顯著差異(圖4)。

圖中每個散點代表一個樣本,直線為回歸直線,灰色帶為回歸直線95%置信區間。圖上方數字為相關系數(r)和相關系數顯著性檢驗的P值

表1 褐殼和淺褐殼蛋殼顏色指標和原卟啉含量的比較

每個散點代表一個樣本,星號代表組內均值(n=8),星號兩側直線代表標準誤,圖上數字代表組間差異顯著檢驗的P值

3 討論

3.1 a值是捕捉蛋殼顏色變異性靈敏度最高的指標

鑒于略陽烏雞蛋殼顏色連續性變異的特點,建立一種能夠準確度量蛋殼顏色變異,且數值變化與視覺觀感保持一致的量化方法,是研究其遺傳基礎的前提。在用L*a*b色度體系對略陽烏雞蛋殼顏色的變異情況進行定量分析后,本研究發現L值和b值雖然受個別極值影響呈現出較寬的變異范圍,但50%的樣本的L值和b值集中于一個較窄取值區間內,而a值在變異范圍內分布更為均勻,其變異系數(88.2%)也明顯高于L值(5.7%)和b值(24.3%)。Kamanli[27]在橫斑洛克雞、Sasaki等[16]在白來航與洛島紅的F2雜交群體、Goger等[25]在洛島紅中均發現,a值的變異系數(74.97%,40.2%,34.9%)要明顯高于L值(9.22%,6.3%,5.76%)和b值(14.67%,27%,7.55%)。在羅曼褐蛋殼顏色隨產蛋時間變化的研究中, a值變化幅度也要明顯高于L值和b值[26]。這些研究表明a值在響應褐殼顏色變化的靈敏度方面要高于L值和b值,是量化蛋殼顏色變異、用于蛋殼顏色選育的理想指標[34]。

3.2 原卟啉是影響略陽烏雞蛋殼顏色的關鍵色素

Wang等[32]在分析綠殼蛋和褐殼蛋蛋殼色素含量時發現兩種色素同時存在于綠殼和褐殼蛋中,但褐殼蛋的原卟啉含量顯著高于綠殼蛋,而膽綠素含量顯著低于綠殼蛋。這些結果支持對綠殼和褐殼蛋的著色而言,兩種色素都在發揮作用,但可能有主次之分,即一種色素決定主色調,另一種色素起修飾作用。在綠殼蛋中,隨著原卟啉含量的升高,綠殼蛋的蛋殼顏色將由淺藍向藍綠、橄欖綠變化[35]。略陽烏雞褐殼顏色表現出連續性變異的特征,且顏色偏淺的蛋略帶有綠色光澤。通過相關分析,本研究發現原卟啉濃度與3個色度指標均存在強相關關系,但膽綠素僅與a值存在顯著負相關關系。原卟啉相關分析結果與Zeng等[36]報道的結果一致,但膽綠素的結果與Zeng等[36]報道的結果有所不同,在東鄉綠殼蛋雞中膽綠素與L值(=-0.67)和b值(=0.48)也存在顯著的相關關系。Li等[34]在分析長順雞不同顏色蛋殼色素含量時發現,原卟啉在褐殼中的含量顯著高于綠殼,但膽綠素在褐殼和綠殼組間并無差異。這些結果說明,在略陽烏雞中,原卟啉對蛋殼顏色的調節作用要大于膽綠素,而膽綠素所引起的細微變化只有靈敏度更高的a值能捕獲到。東鄉雞綠殼顏色的深度要遠遠高于略陽烏雞,在膽綠素的含量和蛋殼顏色的變異上可能產生更大幅度的變化。因此,這種變化在L和b值上也能反映出來。

在羅曼褐蛋雞中,褐殼理想的蛋色標準為L=60,a=20,b=30[26]。略陽烏雞蛋顏色(L=76.0±4.4,a=4.3±3.8,b=15.6±3.8)與此標準仍有較大差距。鑒于原卟啉含量與L、a、b值間的強相關關系,通過育種和營養手段提高原卟啉含量是促使略陽烏雞褐殼蛋色朝向理想蛋色標準靠近的有效手段。

3.3 CPOX是影響略陽烏雞蛋殼顏色的一個候選基因

在原卟啉合成通路中,ALAS1是催化甘氨酸和琥珀酰輔酶A合成δ-氨基乙酰丙酸的限速酶,而CPOX是促化糞卟啉原Ⅲ轉化為原卟啉原Ⅲ的酶[22]。盡管(位于12號染色體上)和(1號染色體)基因均未落在已知的蛋殼顏色QTL內[16-18],但鑒于這兩個候選基因在原卟啉前體物合成中的重要作用,它們仍有可能作為受主效應基因調控的下游基因參與褐殼蛋色的調控。Samiullah等[22]發現抗球蟲藥尼卡巴嗪主要通過下調致使褐殼顏色變淺。Li等[19]和Lu等[20]發現和在深褐殼樣本中的表達水平顯著高于淺褐殼。本研究發現在深褐殼中的表達量顯著高于淺褐殼組,而并未呈現這種表達差異。在蛋殼腺中的表達水平隨蛋的形成而變化,而的表達量在蛋形成的整個過程中維持恒定[22]。為此,本研究推測表達的時間依賴性增大了表達量比較的難度,即在無法保證樣本采集時間一致性的情況下將很難消除采樣時間不同造成的試驗誤差,發現組間表達差異。盡管如此,本研究所取得的結果證實是與略陽烏雞蛋殼中原卟啉含量和褐殼顏色深淺密切相關的一個候選基因。

3.4 3個色度指標遺傳力的差異

本研究發現略陽烏雞蛋殼顏色L值(h2=0.46)和b值(h2=0.37)的遺傳力估計結果均位于前人報道的遺傳力估計范圍(L值:h2=0.2—0.65,b值:h2=0.22—0.64)內,但a值遺傳力(h2=0.77)高于目前已報道的結果(a值:h2=0.21—0.74)[24-27]。此外,前人報道的3個色度指標的遺傳力較為接近[26,27],但本研究所得a值遺傳力要明顯高于L值和b值,與Goger等[25]在洛島紅中估計的結果(a值:h2=0.74 vs. L值:h2=0.37和b值:h2=0.64)較為接近。本研究推測a值遺傳力高可能與以下兩方面原因有關:第一、a值能響應于膽綠素含量變化。在3個色度指標中,a值是唯一一個能對膽綠素含量變化做出靈敏反應的色度指標。膽綠素在蛋殼中的沉積及其引起的綠殼色澤主要受遺傳效應調控[14-15,35]。因此,在引起a值變異的因素中,遺傳效應將起著非常重要的作用。第二、a值度量蛋殼顏色變化的高靈敏度。本研究基于半同胞數據用單變量動物性模型估計遺傳力。高遺傳力性狀在表型方面應該表現出家系內具有較高的一致性,但家系間存在較大的差異。a值較高的靈敏性和較大的變異系數表明,它更有可能捕捉到家系間蛋色的遺傳差異,獲得較高的遺傳方差和遺傳力估計結果。

相對于蛋殼綠色調主要受基因調控的特點,褐殼蛋殼顏色有著更為復雜的遺傳基礎,且易受年齡、藥物、疾病、應激、產蛋時間等多種非遺因素的影響[1,13]。Li等[19]發現L值與原卟啉含量存在強負相關關系,并建議L值作為度量褐殼蛋顏色深淺和原卟啉含量的一個指標。本研究發現除了L值外,b值也與原卟啉含量存在強正相關關系。基于上述結果,本研究推測L值和b值遺傳力偏低可能與褐殼復雜的遺傳基礎和易受環境影響的特點有關。

4 結論

研究發現a值是量化略陽烏雞蛋殼顏色準確度和靈敏度最高的色度指標,且主要受遺傳效應調控。對a值向上選擇,將有望在褐殼深度和均勻度上取得較大遺傳進展。鑒于a值與蛋殼色素間的強相關關系,將a值作為蛋殼色素含量的間接評價指標,在基因定位之類的大樣本研究中將為蛋殼色素含量不易測定、成本高提供一種解決方案。原卟啉是決定略陽烏雞蛋殼顏色變異的關鍵色素,是與原卟啉濃度和褐殼顏色深淺顯著關聯的一個候選基因。

[1] SAMIULLAH S, ROBERTS J R, CHOUSALKAR K. Eggshell color in brown-egg laying hens - a review. Poultry Science, 2015, 94(10): 2566-2575.

[2] ?EKERO?LU A, DUMAN M. Effect of egg shell colour of broiler parent stocks on hatching results, chickens performance, carcass characteristics, internal organ weights and some stress indicators. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2011, 17(5):837-842.

[3] JAVU016FRKOVá V G, POKORNá M, MIK?íK I, TU016FMOVá E. Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breeds. Poultry Science, 2019, 98(12): 6931-6941.

[4] DRABIK K, KARWOWSKA M, WENGERSKA K, PRóCHNIAK T, ADAMCZUK A, BATKOWSKA J. The variability of quality traits of table eggs and eggshell mineral composition depending on hens' breed and eggshell color. Animals, 2021, 11(5): 1204.

[5] CASSEY P, PORTUGAL S J, MAURER G, EWEN J G, BOULTON R L, HAUBER M E, BLACKBURN T M. Variability in avian eggshell colour: A comparative study of museum eggshells. PLoS ONE, 2010, 5(8): e12054.

[6] SKRADE P D B, DINSMORE S J. Egg crypsis in a ground-nesting shorebird influences nest survival. Ecosphere, 2013, 4(12): 1-9.

[7] LAHTI D C. Population differentiation and rapid evolution of egg color in accordance with solar radiation. The Auk, 2008, 125(4): 796-802.

[8] BAKKEN G S, VANDERBILT V C, BUTTEMER W A, DAWSON W R. Avian eggs: Thermoregulatory value of very high near-infrared reflectance. Science, 1978, 200(4339): 321-323.

[9] GOSLER A G, HIGHAM J P, JAMES REYNOLDS S. Why are birds’ eggs speckled? Ecology Letters, 2005, 8(10): 1105-1113.

[10] MORENO J, OSORNO J L. Avian egg colour and sexual selection: Does eggshell pigmentation reflect female condition and genetic quality? Ecology Letters, 2003, 6(9): 803-806.

[11] LANG M R, WELLS J W. A review of eggshell pigmentation. World’s Poultry Science Journal, 1987, 43(3): 238-246.

[12] KENNEDY G Y, VEVERS H G. A survey of avian eggshell pigments. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1976, 55(1): 117-123.

[13] LU M Y, XU L, QI G H, ZHANG H J, QIU K, WANG J, WU S G. Mechanisms associated with the depigmentation of brown eggshells: A review. Poultry Science, 2021, 100(8): 101273.

[14] WANG Z P, QU L J, YAO J F, YANG X L, LI G Q, ZHANG Y Y, LI J Y, WANG X T, BAI J R, XU G Y, DENG X M, YANG N, WU C X. An EAV-HP insertion in 5' Flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genetics, 2013, 9(1): e1003183.

[15] CHEN L, GU X R, HUANG X T, LIU R, LI J X, HU Y Q, LI G Q, ZENG T, TIAN Y, HU X X, LU L Z, LI N. Two cis-regulatory snps upstream of abcg2 synergistically cause the blue eggshell phenotype in the duck. Plos Genetics, 2020, 16(11): e1009119.

[16] SASAKI O, ODAWARA S, TAKAHASHI H, NIRASAWA K, OYAMADA Y, YAMAMOTO R, ISHII K, NAGAMINE Y, TAKEDA H, KOBAYASHI E, FURUKAWA T. Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2intercross chickens. Animal Genetics, 2004, 35(3): 188-194.

[17] SCHREIWEIS M A, HESTER P Y, SETTAR P, MOODY D E. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2resource population of chickens1. Animal Genetics, 2006, 37(2): 106-112.

[18] GOTO T, ISHIKAWA A, YOSHIDA M, GOTO N, UMINO T, NISHIBORI M, TSUDZUKI M. Quantitative trait loci mapping for external egg traits in F2chickens. The Journal of Poultry Science, 2014, 51(2): 118-129.

[19] LI G Q, CHEN S R, DUAN Z Y, QU L J, XU G Y, YANG N. Comparison of protoporphyrin IX content and related gene expression in the tissues of chickens laying brown-shelled eggs. Poultry Science, 2013, 92(12): 3120-3124.

[20] LU M Y, WANG W W, QI G H, XU L, WANG J. Mitochondrial transcription factor A induces the declined mitochondrial biogenesis correlative with depigmentation of brown eggshell in aged laying hens. Poultry Science, 2021, 100(3): 100811.

[21] ZHENG C W, LI Z S, YANG N, NING Z H. Quantitative expression of candidate genes affecting eggshell color. Animal Science Journal, 2014, 85(5): 506-510.

[22] SAMIULLAH S, ROBERTS J, WU S B. Downregulation of ALAS1 by nicarbazin treatment underlies the reduced synthesis of protoporphyrin IX in shell gland of laying hens. Scientific Reports, 2017, 7: 6253.

[23] HAN G P, KIM J M, KANG H K, KIL D Y. Transcriptomic analysis of the liver in aged laying hens with different intensity of brown eggshell color. Animal Bioscience, 2021, 34(5): 811-823.

[24] GUO J, WANG K H, QU L, DOU T C, MA M, SHEN M M, HU Y P. Genetic evaluation of eggshell color based on additive and dominance models in laying hens. Asian-Australasian Journal of Animal Sciences, 2020, 33(8): 1217-1223.

[25] GOGER H, DEMIRTAS S E, YURTOGULLARI S. A selection study for improving eggshell colour in two parent lines of laying hens and their hybrids. Italian Journal of Animal Science, 2016, 15(3): 390-395.

[26] CAVERO D, SCHMUTZ M, ICKEN W, PREISINGER R. Attractive eggshell color as a breeding goal. Lohmann Information, 2012, 47(2): 16-21.

[27] KAMANLI S. Estimation of genetic parameters for some performance traits in a selected Barred Rock line. Ankara üniversitesi Veteriner Fakültesi Dergisi, 2019, 66:391-396.

[28] 黨李蘋, 周雯馨, 劉瑞芳, 白云, 王哲鵬. 略陽烏雞體重和產蛋數性狀遺傳參數估計. 中國農業科學, 2020, 53(17): 3620-3628.

DANG L P, ZHOU W X, LIU R F, BAI Y, WANG Z P. Estimation of genetic parameters of body weight and egg number traits of Lueyang black-boned chicken. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628. (in Chinese)

[29] WILSON A J, RéALE D, CLEMENTS M N, MORRISSEY M M, POSTMA E, WALLING C A, KRUUK L E B, NUSSEY D H. An ecologist’s guide to the animal model. The Journal of Animal Ecology, 2010, 79(1): 13-26.

[30] HADFIELD J D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm RPackage. Journal of Statistical Software, 2010, 33(2): 1-22.

[31] Hadfield J D. MCMCglmm course notes. MCMCglmm R package. 2010. http://cran.r-project.org/web/packages/MCMCglmm/index.html.

[32] WANG X T, ZHAO C J, LI J Y, XU G Y, LIAN L S, WU C X, DENG X M. Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled eggs and Dongxiang blue-shelled eggs. Poultry Science, 2009, 88(8): 1735-1739.

[33] HARRELL F E. Hmisc: Harrell Miscellaneous. R package version 4.5-0. 2021. https://CRAN.R-project.org/package=Hmisc.

[34] LI G, XU J, CHEN S, TAN S, LI H. Pigment concentrations in eggshell and their related gene expressions in uterus of Changshun blue eggshell chickens. British Poultry Science, 2022, 63(3): 421-425.

[35] PUNNETT C. Genetic studies in poultry. Journal of Genetics, 1933, 27(3): 465-470.

[36] ZENG L S, XU G Y, JIANG C Y, LI J Y, ZHENG J X. Research Note: L*a*b* color space for prediction of eggshell pigment content in differently colored eggs. Poultry Science, 2022, 101(8): 101942.

Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken

CHEN Qiu, HUANG JingJing, WANG ZhePeng

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi

【Background】Brown eggshell color is closely relevant to eggshell strength, concentrations of egg white antimicrobial protein and yolk carotenoid, blood and meat spots, and hatchability, and is an important index affecting quality and sale of eggs. However, due to absence of selection for eggshell color, color of brown eggs that some indigenous breeds lay is light and highly variable, which has an adverse effect on sale of eggs and creation of egg brands. 【Objective】The aims of this study are to establish a quantization method that could accurately and sensitively capture the variation of eggshell color, to estimate breed-specific heritability of eggshell color and to identify candidate genes associated with eggshell color in the Lüeyang black-boned chicken (LBC), so as to provide a theoretic basis for genetic improvement of LBC eggshell color. 【Method】841 hens from 62 half-sibling families of LBC breeding population were selected. Three eggs were collected from each hen, and then the eggshell color was quantified using the L*a*b color space, and posterior heritabilities of L, a, and b values were estimated in a Bayesian framework using the Markov Chain Monte Carlo (MCMC) algorithm. The prior distributions of breeding value and residual variances were set using an inverse-Gamma distribution. MCMC performed 130 000 iterations, dropped 30 000 iterations at the beginning and stored one every 100 iterations to obtain posterior distributions of variance components and posterior heritability estimates of color indexes. Hens that laid light brown (n=8), brown (n=8) and light blue (n=8) eggs were selected from LBC population. Three eggs were collected from each hen for the measurement of eggshell pigment, and the absorbance values were measured at 670 nm for biliverdin and at 412 nm for protoporphyrin. The concentrations of protoporphyrin and biliverdin were calculated by regression equations, which were fitted using absorbances and concentrations of standard samples. Shell glands of brown- (n=8) and light brown-shelled (n=8) hens were collected. Expression levels ofandin shell glands were detected using qPCR. 【Result】Among three color indexes, a* value kept a high consistency with the change of eggshell color based on subjective perception as a* value generally decreased with transition of egg color from brown to green hues. L and b values could accurately reflect the change of egg color from light to dark brown, but L and b values were unable to discriminate between brown and green hues reliably. L and b values showed low variation as L and b values of 50% of samples were distributed between 73.3-79.1 and 13.1-18.2. In contrast, a* values were evenly distributed among the samples as a* values of 50% of samples ranged from 1.4 to 7.1. In line with the distribution characteristics, the coefficient of variation (88.2%) of a value was higher than ones of L (5.7%) and b (24.0%) values. Estimation results of heritability showed that a* value (h2=0.77) was predominately affected by genetic factors. In contrast, L (h2=0.46) and b (h2=0.37) values were controlled by environmental effect to larger extents. For the relationship of eggshell pigment and color, protoporphyrin concentration had a strong correlation with all of three color indexes (L:=-0.86, a:=0.73, b:=0.88). But biliverdin concentration showed a strong (=-0.73) negative correlation with a* value alone.andwere two key enzymes that catalyze the biosynthensis of protoporphyrin precursors. Expression results showed that expression levels ofin shell glands of brown-shelled chickens were 1.5-fold higher (<0.05) than that in shell glands of light brown-shelled chickens.had no significant (>0.05) difference between brown- and light brown-shelled chickens.【Conclusion】These results indicated that protoporphyrin was the key pigment affecting LBC eggshell color, andwas a candidate associated with protoporphyrin concentration and color of brown eggs. The a* value was an optimal index quantifying eggshell color of LBC with high accuracy and sensitivity. In view of high heritability estimate of a* value, it was possible to increase brown hue and uniformity of LBC eggshell color via positive selection of a* value.

Lüeyang black-boned chicken; eggshell color; L*a*b color space; heritability;;

10.3864/j.issn.0578-1752.2023.17.017

2022-08-02;

2022-11-29

陜西省重點研發計劃(2021NY-028)、陜西省農業廳專項計劃畜禽新品種培育—略陽雞(K3031222058)

陳球,E-mail:chenqiu_960625@163.com。通信作者王哲鵬,Tel:029-87091960;E-mail:wangzhepeng-001@163.com

(責任編輯 林鑒非)

主站蜘蛛池模板: 国产丝袜无码精品| 最新国产成人剧情在线播放| 丝袜亚洲综合| 欧美日韩国产高清一区二区三区| 亚洲成人在线免费观看| 毛片基地美国正在播放亚洲 | 最新国产高清在线| 影音先锋丝袜制服| 97超碰精品成人国产| 暴力调教一区二区三区| 小说区 亚洲 自拍 另类| 国产不卡一级毛片视频| 国产精品爽爽va在线无码观看| 四虎影视8848永久精品| 精品无码视频在线观看| 五月激激激综合网色播免费| 欧美精品成人一区二区在线观看| 色婷婷久久| 亚洲国产日韩在线成人蜜芽| 国产精品真实对白精彩久久| 亚洲伊人天堂| 亚洲精品无码AⅤ片青青在线观看| 国产日韩精品一区在线不卡| 伊人蕉久影院| 欧美日韩精品一区二区视频| 在线欧美一区| jizz国产在线| 亚洲无码视频一区二区三区| 国产91av在线| 国产激爽大片在线播放| 日韩国产另类| 国产乱人伦精品一区二区| 亚洲欧美成人| 性做久久久久久久免费看| 成人免费黄色小视频| 日韩东京热无码人妻| 国产高清无码麻豆精品| 欧美亚洲综合免费精品高清在线观看 | 欧美日韩国产在线播放| 午夜在线不卡| 天天躁狠狠躁| 99re在线免费视频| 试看120秒男女啪啪免费| 91外围女在线观看| 久久免费观看视频| 一区二区三区成人| 黄色网址免费在线| 亚洲精品无码不卡在线播放| 亚洲最大综合网| 精品视频一区二区三区在线播 | 欧美一级专区免费大片| 国产亚洲精品资源在线26u| 99热国产这里只有精品无卡顿"| 91美女在线| 国产波多野结衣中文在线播放| 亚洲区第一页| 中国一级特黄视频| 亚洲综合一区国产精品| 青青青国产视频| 在线免费无码视频| 久久亚洲天堂| 精品人妻AV区| 欧美一级一级做性视频| 高清国产在线| 精品人妻AV区| 精品无码专区亚洲| 日韩高清中文字幕| 国产精品制服| 欧美日韩一区二区在线播放| 精品国产网| 亚洲综合片| 国产日本一线在线观看免费| 色网站在线免费观看| 亚洲最大情网站在线观看| 国产精品浪潮Av| 久久夜色精品| 99九九成人免费视频精品| 青青草原偷拍视频| 91精品aⅴ无码中文字字幕蜜桃 | 91毛片网| 伊人久久福利中文字幕| 亚洲开心婷婷中文字幕|