杜炳辰,王銘,劉春國,王世達,魏新宇,路雅曼,孫振釗,劉在斯,魏麗麗,王靖飛,楊德成
蓋塔病毒SC483株cDNA感染性克隆的構建
杜炳辰,王銘,劉春國,王世達,魏新宇,路雅曼,孫振釗,劉在斯,魏麗麗,王靖飛,楊德成
中國農業科學院哈爾濱獸醫研究所/動物疫病防控全國重點實驗室,哈爾濱 150069
【背景】蓋塔病毒(Getah virus, GETV)是一種由蚊蟲傳播的病毒,分類學上屬于披膜病毒科甲病毒屬成員。該病毒宿主范圍廣,可感染豬、馬、牛、狐貍等多種哺乳動物,人也可以感染,但在人群中造成的危害尚不知曉。動物感染主要臨床表現為發熱、皮疹、關節炎、繁殖障礙和死胎。GETV在世界范圍內流行較為廣泛,近年來在我國的流行呈上升趨勢,2018年我國南方多個豬場爆發該病,GETV在畜禽養殖及公共衛生方面的危害漸漸受到人們的關注。目前,尚無用于預防和治療蓋塔病毒感染的商業化疫苗和藥物。由于對GETV研究較少,其生物學特性、對不同物種的致病性和致病機制以及流行趨勢在很大程度上均是未知的。【目的】建立高效的GETV反向遺傳操作平臺,為深入研究GETV基因組結構與功能、致病機制以及開發新型疫苗奠定基礎。【方法】采取化學合成的方式人工合成了兩端分別含有錘頭狀核酶(HamRz)和丁肝病毒核酶(HdvRz)序列的GETV SC483株基因組全長,并克隆至低拷貝pOK12-CMV載體中,從而獲得含有GETV SC483株基因組全長cDNA克隆的重組質粒pGETV-SC483。將純化的重組質粒pGETV-SC483轉染BHK-21細胞進行病毒拯救。對拯救病毒進行連續傳代、鑒定以及生物學特性分析,并對感染性克隆質粒pGETV-SC483在大腸桿菌中的遺傳穩定性進行驗證。【結果】重組質粒pGETV-SC483轉染BHK-21細胞后,48 h即可觀察到GETV感染引起的典型細胞病變,獲得的拯救病毒命名為rSC483。分別提取拯救病毒和親本病毒基因組RNA,對病毒基因組進行RT-PCR擴增、I酶切以及序列測定。結果表明,拯救病毒不同于親本病毒,其含有人為引入以消去I酶切位點的G4332A突變的分子標記。使用GETV特異性抗體作為檢測抗體的間接免疫熒光試驗和病毒粒子形態學電鏡負染觀察結果進一步表明,GETV拯救成功。噬斑形成試驗和一步生長曲線試驗結果表明,拯救病毒與親本病毒具有相似的復制能力和增殖特性。另外,感染性克隆質粒pGETV-SC483在大腸桿菌DH5α中連續傳代后的測序結果表明,該重組質粒具有良好的遺傳穩定性。【結論】成功構建了穩定、高效的GETV SC483株全長cDNA感染性克隆,為GETV生物學特性及致病機理研究以及新型疫苗開發提供了技術平臺。
蓋塔病毒;cDNA感染性克隆;病毒拯救;反向遺傳操作系統
【研究意義】蓋塔病毒(Getah virus, GETV)為披膜病毒科()甲病毒屬()成員,屬于蟲媒病毒。GETV分布廣泛,澳大利亞、菲律賓、印度、日本、韓國、中國以及俄羅斯等地區相繼有該病毒分離或動物發病的報道[1-8]。GETV感染譜廣,馬、豬、牛、藍狐等均可感染[2, 9-12]。受感染的馬表現發熱、皮疹、后肢水腫和淋巴結腫大[13-14];而感染豬主要引起新生仔豬發熱、關節炎和死亡以及妊娠母豬繁殖障礙[15-17]。豬群在自然界被認為是GETV的主要放大宿主[18]。在流行地區發熱病人和健康人血清中均檢測到該病毒特異性抗體,表明GETV可以感染人,具有重要的公共衛生學意義[5, 19-22]。GETV病毒粒子呈球形,直徑約70 nm,有囊膜和纖突。基因組為單股正鏈RNA,全長約11 – 12 knt。其基因組5′端具有甲基化帽狀結構,3′末端具有Poly(A)尾巴結構。基因組包含兩個開放閱讀框(open reading frame, ORF),分別編碼4種非結構蛋白(nsP1、nsP2、nsP3和nsP4)和5種結構蛋白(CP、E3、E2、6K和E1)[23]。近年來,GETV感染引起的豬群發病屢見報道,2018年湖南省某豬場暴發GETV疫情,導致大約200頭新生仔豬死亡以及超過150頭妊娠母豬產死胎或木乃伊胎;隨后在山東某豬廠也出現GETV疫情[24]。目前,對于GETV的研究相對較少,尤其是其基因組的結構與功能、致病性以及致病機理,嚴重阻礙了有效疫苗和治療性藥物的研發。因此,借助反向遺傳技術對蓋塔病毒進行相關研究,可為該病的有效防控提供科學依據。【前人研究進展】近期,WANG等[25]、REN等[26]相繼利用真核啟動子CMV建立了GETV感染性cDNA克隆,但沒有很好地解決病毒基因組的精確轉錄問題,病毒基因組的5′和3′末端含有冗余序列,這些非病毒序列的攜帶可能會改變病毒的致病性,從而影響病毒基因組結構和功能研究。【本研究切入點】為了建立具有精確病毒基因組全長轉錄本的GETV反向遺傳操作系統,本研究采取基因合成的方式人工合成了兩端分別含有錘頭狀核酶(hammerhead ribozyme, HamRz)和丁肝病毒核酶(hepatitis delta ribozyme, HdvRz)序列的SC483株基因組全長,并克隆至含有CMV啟動子的載體中,成功構建了遺傳穩定的GETV cDNA感染性克隆,且拯救病毒具有與親本病毒相似的生物學特性。【擬解決的關鍵問題】建立GETV SC483株的反向遺傳操作系統,為深入研究GETV基因組結構和功能、致病機制以及新型疫苗的研發奠定基礎。
試驗于2021年2月—9月在中國農業科學院哈爾濱獸醫研究所動物疫病防控全國重點實驗室完成。
BHK-21細胞(ATCC CCL-10);豬源GETV毒株SC483(MN478486)由動物疫病防控全國重點實驗室分離鑒定并保存;大腸桿菌DH5α感受態細胞購自TaKaRa公司;重組質粒pOK12-CMV由動物疫病防控全國重點實驗室構建并保存。
GETV E2蛋白多抗血清由動物疫病防控全國重點實驗室制備并保存;Alexa Fluor 488標記的山羊抗鼠IgG購自Thermo Fisher Scientific公司;DMEM培養基、胎牛血清購自Gibco公司;KOD FX Neo高保真PCR酶購自TOYOBO公司;限制性內切酶I購自NEB公司;Simply P total RNA extraction Kit購自BioFlux公司;PrimeScript? 1st Strand cDNA Synthesis Kit購自TaKaRa公司;Polyethylenimine Transfection Reagent購自Sigma-Aldrich公司;無內毒素質粒大提試劑盒購自TIANGEN公司;2%磷鎢酸(pH 6.5)購自中鏡科儀公司。
在SC483株病毒基因組5′末端引入錘頭狀核酶(hammerhead ribozyme, HamRz)序列,在病毒基因組3′末端引入丁肝病毒核酶(hepatitis delta ribozyme, HdvRz)序列。在病毒基因組4332 nt位置將G突變為A,使該位置GCGGCCGC(I)變為GCAGCCGC,從而消除I酶切位點作為拯救病毒的分子標記。將設計好的SC483株全基因組全長cDNA序列分為A、B、C、D 4個片段送至吉林庫美生物公司進行人工合成并順次克隆于pOK12-CMV載體中,獲得含有正確GETV基因組全長cDNA克隆的重組質粒命名為pGETV-SC483。構建策略見圖1。

圖1 GETV SC483株全長cDNA感染性克隆的構建策略
采用無內毒素質粒大提試劑盒提取重組質粒pGETV-SC483,并按Polyethylenimine Transfection Reagent試劑盒說明書操作步驟將其轉染于80%—90%的單層BHK-21細胞。轉染后4 h用含2%胎牛血清的DMEM更換培養基繼續培養,觀察細胞病變(CPE),大約3 d左右收獲細胞上清,并在BHK-21細胞上連續傳代,拯救病毒命名為rSC483。
將rSC483與SC483-WT接種BHK-21細胞,繼續培養16 h;棄去培養基,加入4%多聚甲醛固定10 min,PBS洗3次;用含0.1% TX-100的PBS透膜20 min,PBS洗3次;用含1% BSA的PBS封閉45 min;加入GETV E2多抗血清(1﹕500)室溫孵育2 h,PBS洗4次;加入Alexa Fluor 488標記的山羊抗鼠IgG(1﹕2 000)室溫孵育1 h,PBS洗4次后在熒光顯微鏡下觀察。同時設不接毒細胞對照。
將拯救病毒感染的BHK-21細胞培養物3 500 r/min和8 000 r/min(4℃)各離心30 min,取上清,在含20%蔗糖的NTE緩沖液(pH 7.4)中24 500 r/min(4℃)離心1.5 h后,用100 μL PBS重懸沉淀。取20 μL重懸樣品于碳支持膜銅網上吸附2 min,用2%磷鎢酸(pH 6.5)染色15 s,干燥后進行透射電子顯微鏡(日立H-7650)觀察。
按照Simply P total RNA extraction kit說明書分別提取拯救病毒rSC483和親本病毒SC483-WT的基因組RNA,然后用PrimeScript? 1st Strand cDNA Synthesis Kit進行反轉錄,以此反轉錄產物為模板,利用引物BF(TGA ATA CCG ACG AGG AAA GCT AC)、BR(CGA CAT AGA CAC GGT ACC GTT TT)進行PCR擴增B片段,將目的片段膠回收純化后,使用限制性內切酶I進行酶切鑒定,同時進行測序分析。
將rSC483與SC483-WT稀釋至1000 TCID50后分別取100 μL接種于單層BHK-21細胞,37℃吸附1 h,每孔加入3 mL含1%甲基纖維素的DMEM覆蓋,37℃繼續培養3 d;棄去培養基,加入4%多聚甲醛溶液固定30 min,用0.5%結晶紫染色30 min,自來水洗去染色液,觀察蝕斑形成情況。
BHK-21細胞生長至90%單層時,按病毒感染復數(MOI)為5的劑量分別接種rSC483和SC483-WT,37℃吸附1 h后用PBS洗2次,加入含2% 胎牛血清的DMEM繼續培養,分別于感染后4 h、8 h、12 h、16 h、20 h、24 h、28 h、32 h和36 h收獲細胞上清,每個時間點設置3個重復,測定病毒半數感染量(TCID50)并繪制病毒的一步生長曲線。
將含有GETV SC483株全長cDNA的重組質粒pGETV-SC483轉染BHK-21細胞,轉染后48 h可觀察到明顯的CPE,72 h病變程度可達95%以上,病變細胞變圓、皺縮,呈現與親本病毒一致的病變形態。將細胞培養物連續傳代,CPE出現的時間縮短,病變更加典型。對照細胞形態正常,輪廓清晰(圖2)。
將拯救病毒與親本病毒分別感染BHK-21細胞,用GETV E2蛋白多抗血清進行IFA檢測。結果顯示,E2抗體與親本病毒和拯救病毒感染后的細胞都發生特異性反應,均可觀察到特異性熒光,而空白細胞不能與E2抗體發生特異性反應(圖3)。

圖3 拯救病毒IFA鑒定
拯救病毒經濃縮后進行負染色,電鏡下可觀察到直徑約70 nm、有囊膜及明顯的纖突的病毒粒子存在,具有典型的GETV的形態學特征(圖 4)。
提取拯救病毒基因組RNA,用RT-PCR方法擴增基因組B片段,膠回收后用I酶切。結果如圖5-A所示,拯救病毒的B片段不能夠被I切開,而親本病毒的B片段可被切成2段。對拯救病毒的B片段進行測序分析,結果顯示拯救病毒含有人為引入的G4332A分子標記(GCAGCCGC),消除了I酶切位點(圖5-B)。酶切和測序結果表明,拯救的病毒不是來自親本毒株的污染。

圖4 拯救病毒粒子電鏡觀察
拯救病毒感染BHK-21細胞后可形成明顯的蝕斑,且蝕斑形態大小與親本病毒相似(圖 6)。
為進一步了解拯救病毒的生長特性,將拯救病毒rSC483與親本病毒SC483-WT以MOI = 5的劑量感染BHK-21細胞,于不同時間點收集細胞上清,測定其TCID50,繪制拯救病毒和親本病毒的一步生長曲線。結果顯示,拯救病毒與親本病毒具有相似的復制能力和生長特性(圖7)。
將含有GETV SC483株基因組全長cDNA的重組質粒pGETV-SC483在大腸桿菌DH5α感受態細胞中連續傳代10次(P10),對P10代重組質粒進行全序列分析發現,無任何堿基發生突變或缺失,這表明該重組質粒在大腸桿菌中具有良好的穩定性。另外,將P10代重組質粒轉染BHK-21細胞,48 h后可觀察到明顯的CPE,表明病毒拯救成功。這些試驗結果表明,GETV SC483株cDNA感染性克隆具有良好的遺傳穩定性。

A:Not I酶切鑒定;B:測序鑒定。M:DNA分子量標準;1:親本病毒RT-PCR產物;2:拯救病毒RT-PCR產物;3:親本病毒RT-PCR產物Not I酶切;4:拯救病毒RT-PCR產物Not I酶切

圖6 拯救病毒在BHK-21細胞上的蝕斑表型

圖7 拯救病毒在BHK-21細胞上的一步生長曲線
GETV是一種人獸共患病病原。近年來,GETV的流行呈上升趨勢[9,11,24,27-30]。豬群在自然界中被認為是GETV的主要放大宿主,而我國又是養豬大國,因此GETV對畜牧業的影響以及其潛在的公共衛生威脅應引起足夠重視。目前,關于GETV基因的結構與功能以及其致病機理知之甚少。建立GETV的反向遺傳操作平臺可以在DNA水平上對其基因進行修飾和改造,通過拯救病毒的表型變化來確定相應基因的功能,從而實現對GETV基因組的結構和功能以及致病機制的深入理解,以應對GETV對我國畜禽健康養殖和公共衛生安全日益增長的威脅。
RNA病毒反向遺傳技術實質上就是將體外或體內獲得的病毒基因組RNA導入易感細胞,模擬真實病毒感染,獲得完整的具有感染性病毒的過程[31]。轉錄本的真實性,尤其是其5′末端和3′末端核苷酸準確性對病毒的拯救效率甚至成敗起著關鍵性作用[32]。REN等[26]將GETV基因組直接克隆到真核表達載體pBR322 CMV啟動子下游,以BGH Poly(A)信號序列終止。該感染性克隆在靶細胞內無法獲得精確的GETV基因組轉錄本,基因組的兩端均含有冗余序列,可能會影響病毒的拯救效率。WANG等[25]通過在GETV感染性cDNA克隆3′末端插入具有自我剪接能力的HdvRz核酶序列以獲得準確的病毒3′末端轉錄本,但基因組5′末端仍含有冗余序列。本研究通過在病毒基因組的5′末端引入具有自我剪切功能的HamRz核酶,在病毒基因組的3′末端引入HdvRz核酶,從而能夠在靶細胞中獲得精確的GETV基因組全長轉錄本RNA,進而有利于啟動病毒的自我復制實現病毒的高效拯救。此外,感染性cDNA克隆的穩定性也是影響病毒拯救的關鍵因素。本研究在構建GETV SC483株感染性cDNA克隆的過程中使用低拷貝pOK12載體和慢速生長的受體菌DH5α作為克隆菌株,將GETV SC483株感染性cDNA克隆在DH5α中連續傳代10次,沒有任何堿基發生突變,表明該感染性cDNA克隆具有良好的遺傳穩定性。
本研究首次將HamRz和HdvRz核酶序列引入蓋塔病毒SC483株全基因組兩端,構建了遺傳穩定的蓋塔病毒感染性cDNA克隆pGETV-SC483,并實現了病毒的高效拯救。蓋塔病毒高效反向遺傳操作平臺的建立為深入研究該病毒基因組結構與功能、致病機制以及開發新型疫苗提供了技術支撐。
[1] KANAMITSU M, TANIGUCHI K, URASAWA S, OGATA T, WADA Y, WADA Y, SAROSO J S. Geographic distribution of arbovirus antibodies in indigenous human populations in the Indo-Australian archipelago. The American Journal of Tropical Medicine and Hygiene, 1979, 28(2): 351-363.
[2] NEMOTO M, BANNAI H, TSUJIMURA K, KOBAYASHI M, KIKUCHI T, YAMANAKA T, KONDO T. Getah virus infection among racehorses, Japan, 2014. Emerging Infectious Diseases, 2015, 21(5): 883-885.
[3] BROWN C M, TIMONEY P J. Getah virus infection of Indian horses. Tropical Animal Health and Production, 1998, 30(4): 241-252.
[4] L'VOV S D, GROMASHEVSKI'I V L, ARISTOVA V A, MOROZOVA T N, SKVORTSOVA T M, GUSHCHINA E A, PETROVA E S, L'VOV D K. Isolation of Getah virus (Togaviridae, Alfavirus) strains in North- Eastern Asia. Voprosy Virusologii, 2000, 45(5): 14-18.
[5] LI X D, QIU F X, YANG H, RAO Y N, CALISHER C H. Isolation of Getah virus from mosquitos collected on Hainan Island, China, and results of a serosurvey. The Southeast Asian Journal of Tropical Medicine and Public Health, 1992, 23(4): 730-734.
[6] KSIAZEK T G, TROSPER J H, CROSS J H, BASACA-SEVILLA V. Isolation of getah virus from nueva ecija Province, republic of the Philippines. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1981, 75(2): 312-313.
[7] TURELL M J, O'GUINN M L, WASIELOSKI L P Jr, DOHM D J, LEE W J, CHO H W, KIM H C, BURKETT D A, MORES C N, COLEMAN R E, KLEIN T A. Isolation of Japanese encephalitis and Getah viruses from mosquitoes (Diptera: Culicidae) collected near Camp Greaves, Gyonggi Province, Republic of Korea, 2000. Journal of Medical Entomology, 2003, 40(4): 580-584.
[8] LI Y Y, LIU H, FU S H, LI X L, GUO X F, LI M H, FENG Y, CHEN W X, WANG L H, LEI W W, GAO X Y, LV Z, HE Y, WANG H Y, ZHOU H N, WANG G Q, LIANG G D. From discovery to spread: The evolution and phylogeny of Getah virus. Infection, Genetics and Evolution, 2017, 55: 48-55.
[9] LIU H, ZHANG X, LI L X, SHI N, SUN X T, LIU Q, JIN N Y, SI X K. First isolation and characterization of Getah virus from cattle in northeastern China. BMC Veterinary Research, 2019, 15(1): 320.
[10] FUKUNAGA Y, KUMANOMIDO T, KAMADA M. Getah virus as an equine pathogen. Veterinary Clinics of North America: Equine Practice, 2000, 16(3): 605-617.
[11] SHI N, LI L X, LU R G, YAN X J, LIU H. Highly pathogenic swine getah virus in blue foxes, Eastern China, 2017. Emerging Infectious Diseases, 2019, 25(6): 1252-1254.
[12] 李楠, 何于雯, 左媛媛, 孟錦昕, 徐天剛, 王靜林. 蠓蟲源蓋塔病毒(SZC30)結構基因分子生物學特征分析. 中國畜牧獸醫, 2021, 48(4): 1149-1160.
LI N, HE Y W, ZUO Y Y, MENG J X, XU T G, WANG J L. Analysis of molecular biological characteristics of structural genes of getah virus (SZC30) isolated from midge. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1149-1160. (in Chinese)
[13] WADA R, KAMADA M, FUKUNAGA Y, ANDO Y, KUMANOMIDO T, IMAGAWA H, AKIYAMA Y, OIKAWA M. Equine Getah virus infection: Pathological study of horses experimentally infected with the MI-110 strain. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science, 1982, 44(3): 411-418.
[14] KAMADA M, ANDO Y, FUKUNAGA Y, IMAGAWA H, AKIYAMA Y. Studies on Getah virus-pathogenicity of the virus for horses. Experimental Reports of Equine Health Laboratory, 1981, 18: 84-93.
[15] KUMANOMIDO T, WADA R, KANEMARU T, KAMADA M, HIRASAWA K, AKIYAMA Y. Clinical and virological observations on swine experimentally infected with Getah virus. Veterinary Microbiology, 1988, 16(3): 295-301.
[16] IZUMIDA A, TAKUMA H, INAGAKI S, KUBOTA M, HIRAHARA T, KODAMA K, SASAKI N. Experimental infection ofin swine. The Japanese Journal of Veterinary Science, 1988, 50(3): 679-684.
[17] SHIBATA I, HATANO Y, NISHIMURA M, SUZUKI G, INABA Y. Isolation offrom dead fetuses extracted from a naturally infected sow in Japan. Veterinary Microbiology, 1991, 27(3/4): 385-391.
[18] KUWATA R, SHIMODA H, PHICHITRASLIP T, PRASERTSINCHAROEN N, NOGUCHI K, YONEMITSU K, MINAMI S, SUPRIYONO, TRAN N T B, TAKANO A, SUZUKI K, NEMOTO M, BANNAI H, YOKOYAMA M, TAKEDA T, JITTAPALAPONG S, RERKAMNUAYCHOKE W, MAEDA K.epizootic among wild boars in Japan around 2012. Archives of Virology, 2018, 163(10): 2817-2821.
[19] 白志軍, 彭翼飛, 林立輝, 田小東, 陳翠華, 方美玉, 徐春華, 蔣廉華, 陳唯軍. 廣東、海南兩省人血清12種蟲媒病毒抗體調查. 中國人獸共患病雜志, 2000, 16(1): 83-84.
BAI Z J, PENG Y F, LIN L H, TIAN X D, CHEN C H, FANG M Y, XU C H, JIANG L H, CHEN W J. Prevalence of human antibody to arbovirus in Guangdong and Hainan Provinces. Chinese Journal of Zoonoses, 2000, 16(1): 83-84. (in Chinese)
[20] 梁勇, 張連山, 劉永為, 董運強, 王志強, 王峻巍, 梁國棟. 河北省涉縣發燒樣病人蓋塔病毒IgM抗體篩查. 中國衛生檢驗雜志, 2010, 20(10): 2562-2563.
LIANG Y, ZHANG L S, LIU Y W, DONG Y Q, WANG Z Q, WANG J W, LIANG G D. The screening ofIgM antibody to patients with fever from She County in Hebei Province. Chinese Journal of Health Laboratory Technology, 2010, 20(10): 2562-2563. (in Chinese)
[21] 梁勇, 張連山, 劉永為, 董運強, 王志強, 王峻巍, 梁國棟. 河北省涉縣正常人群蓋塔病毒感染狀況篩查分析. 河北醫藥, 2010, 32(21): 3079-3080.
LIANG Y, ZHANG L S, LIU Y W, DONG Y Q, WANG Z Q, WANG J W, LIANG G D. Screening and analysis ofvirus infection in normal population in Shexian County, Hebei Province. Hebei Medical Journal, 2010, 32(21): 3079-3080. (in Chinese)
[22] 趙春生, 白志軍, 彭翼飛, 趙文忠, 陳翠華, 方美玉, 田小東, 蔣廉華, 陳唯軍, 劉建偉, 林立輝. 我國南方人鼠蟲媒病毒血清流行病學調查. 中國公共衛生, 2001, 17(1): 64-66.
ZHAO C S, BAI Z J, PENG Y F, ZHAO W Z, CHEN C H, FANG M Y, TIAN X D, JIANG L H, CHEN W J, LIU J W, LIN L H. The seroepidemiolgical investigation of arbovirus in humans and rats of the south of China. China Public Health, 2001, 17(1): 64-66. (in Chinese)
[23] ZHAI Y G, WANG H Y, SUN X H, FU S H, WANG H Q, ATTOUI H, TANG Q, LIANG G D. Complete sequence characterization of isolates of(Genus Alphavirus, Family Togaviridae) from China. The Journal of General Virology, 2008, 89(Pt 6): 1446-1456.
[24] YANG T, LI R, HU Y, YANG L, ZHAO D, DU L, LI J, GE M, YU X. An outbreak ofinfection among pigs in China, 2017. Transboundary and Emerging Diseases, 2018, 65(3): 632-637.
[25] WANG N N, ZHAI X F, LI X L, WANG Y, HE W T, JIANG Z W, VEIT M, SU S. Attenuation of getah virus by a single amino acid substitution at residue 253 of the E2 protein that might be part of a new heparan sulfate binding site on alphaviruses. Journal of Virology, 2022, 96(6): e0175121.
[26] REN T W, MIN X L, MO Q R, WANG Y X, WANG H, CHEN Y, OUYANG K, HUANG W J, WEI Z Z. Construction and characterization of a full-length infectious clone of. Virologica Sinica, 2022, 37(3): 348-357.
[27] LU G, OU J J, JI J Z, REN Z X, HU X, WANG C Y, LI S J. Emergence of getah virus infection in horse with fever in China, 2018. Frontiers in Microbiology, 2019, 10: 1416.
[28] REN T W, MO Q R, WANG Y X, WANG H, NONG Z R, WANG J L, NIU C X, LIU C, CHEN Y, OUYANG K, HUANG W J, WEI Z Z. Emergence and phylogenetic analysis of a getah virus isolated in southern China. Frontiers in Veterinary Science, 2020, 7: 552517.
[29] REN X J, FU S H, DAI P F, WANG H Y, LI Y Y, LI X L, LEI W W, GAO X Y, HE Y, Lü Z, CHENG J X, WANG G Q, LIANG G D. Pigsties near dwellings as a potential risk factor for the prevalence of Japanese encephalitis virus in adult in Shanxi, China. Infectious Diseases of Poverty, 2017, 6(1): 100.
[30] 左媛媛, 元正菊, 何于雯, 任煒杰, 孟錦昕, 王淑娟, 鐘江國, 李楠, 王娟, 王靜林, 徐天剛. 廣州市及其周邊地區馬群中蓋塔病毒血清流行病學調查. 中國動物檢疫, 2021, 38(6): 35-39.
ZUO Y Y, YUAN Z J, HE Y W, REN W J, MENG J X, WANG S J, ZHONG J G, LI N, WANG J, WANG J L, XU T G. Sero- epidemiological investigation on the GTV in horses in Guangzhou city and its surrounding areas. China Animal Health Inspection, 2021, 38(6): 35-39. (in Chinese)
[31] 黃耀偉, 李龍, 于漣. 人類及動物RNA病毒的反向遺傳系統. 生物工程學報, 2004, 20(3): 311-318.
HUANG Y W, LI L, YU L. The reverse genetics systems for human and animal RNA viruses. Chinese Journal of Biotechnology, 2004, 20(3): 311-318. (in Chinese)
[32] 祁小樂, 高宏雷, 高玉龍, 鄧小蕓, 步志高, 王曉燕, 王笑梅. 雞傳染性法氏囊病病毒Gt株感染性分子克隆的構建. 中國農業科學, 2007, 40(10): 2343-2349.
QI X L, GAO H L, GAO Y L, DENG X Y, BU Z G, WANG X Y, WANG X M. Development of infectious molecular clones in infectious bursal disease virus Gt strain. Scientia Agricultura Sinica, 2007, 40(10): 2343-2349. (in Chinese)
Construction of Infectious cDNA Clone of GETV SC483 Strain
DU BingChen, WANG Ming, LIU ChunGuo, WANG ShiDa, WEI XinYu, LU YaMan, SUN ZhenZhao, LIU ZaiSi, WEI LiLi, WANG JingFei, YANG DeCheng
Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/ State Key Laboratory of Animal Disease Control and Prevention, Harbin 150069
【Background】Getah virus (GETV) is a mosquito-borne arbovirus, and belongs to thegenus in thefamily. GETV has an extensive host range, which includes multiple mammals, such as pig, horse, cattle, fox and so on, although GETV is not known to cause disease in human. GETV infection often causes clinical symptoms, such as fever, urticarial rash, arthritis, reproductive disorders, and fetal death. GETV is widely prevalent in the world, and the prevalence in China is on the rise in recent years. In 2018, it suddenly broke out in many pig farms in southern China. The harm for livestock and poultry production and public health caused by GETV has got widespread attention. Currently, there is still no specific antiviral drug or vaccine against GETV. Due to the lack of research on GETV, its biological characteristics, pathogenicity, pathogenesis and epidemic properties are largely unknown.【Objective】The aim of this study was to develop a reverse genetics platform of GETV, which could provide a basis for investigating the structure and function of GETV genome, the genetic determinant of pathogenesis, and developing novel vaccine against the virus.【Method】The full-length genome of the GETV SC483 strain flanked by a hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequence was chemically synthesized and cloned into a low-copy plasmid pOK12-CMV to generate the recombinant plasmid pGETV-SC483, which was transfected into BHK-21 cells to rescue the virus. Then, compared with the parental virus, the rescued-virus was serially passaged, identified, and analyzed for biological characteristics. The genetic stability of the recombinant plasmid pGETV-SC483 inwas also verified.【Result】The typical cell pathogenic effect (CPE) of GETV was observed in the cells after being transfected with the pGETV-SC483 for 48 h. The rescued GETV, namely rSC483, was successfully obtained, which had a G4332A mutation resulted in the deletion of aI restriction site to differentiate from the parental virus. The rescued virus was further verified by indirect immunofluorescence assay using GETV specific antibody as detection antibody and electron microscopic observation of virus particles. Furthermore, plaque phenotype and growth curve of the rescued virus were similar to that of its parental virus in BHK-21 cells. In addition, the infectious cloning plasmid pGETV-SC483 had good genetic stability inDH5α.【Conclusion】The successfully constructed full-length infectious cDNA clone of GETV SC483 strain provided a technical platform for the study of biological characteristics and pathogenesis of GETV as well as development of novel vaccine against GETV.
Getah virus; cDNA infectious clone; virus rescue; reverse genetics system
10.3864/j.issn.0578-1752.2023.17.019
2022-08-01;
2022-11-16
黑龍江省自然科學基金(YQ2021C038)、動物疫病防控全國重點實驗室自主研究課題(SKLVBP202121)
杜炳辰,E-mail:bingchendu@126.com。通信作者王靖飛,E-mail:wangjingfei@caas.cn。通信作者楊德成,E-mail:yangdecheng@caas.cn
(責任編輯 林鑒非)