陳帥康 肖木 迪麗努爾 孫添琦 艾爾西丁·阿巴斯 馬榮



DOI:10.13925/j.cnki.gsxb.20230201
摘? ? 要:【目的】由嗜果刀孢菌(Wilsonomyces carpophilus)引起的穿孔病對野杏、野生櫻桃李、栽培杏和桃的葉片、果實造成了嚴重危害。對嗜果刀孢菌的室內藥劑篩選及拮抗菌的種類鑒定可有效防治野杏真菌性穿孔病。【方法】采用菌絲生長速率法和孢子萌發法測定8種殺菌劑對嗜果刀孢菌的室內毒力;同時從野杏葉片上分離出1株拮抗細菌,結合形態學特征、生理生化特性和基于16S rDNA基因序列的系統發育分析開展拮抗菌株的鑒定。【結果】室內毒力測定結果表明,50%多菌靈對嗜果刀孢菌菌絲生長抑制效果較好,75%百菌清抑制效果較差,有效中濃度(ρ,median effective concentration,EC50)為918.8 mg·L-1;27%戊唑·噻霉酮對分生孢子萌發毒力較強,EC50為0.060 5 mg·L-1,75%百菌清對分生孢子萌發毒力較弱,EC50為1103.0 mg·L-1;拮抗菌株XHG-1-3m2對嗜果刀孢菌抑制率為88.88%,同時對17種病菌具有抑菌效果,經鑒定該菌株為萎縮芽孢桿菌Bacillus atrophaeus。【結論】50%多菌靈對嗜果刀孢菌菌絲生長抑制效果較好;27%戊唑·噻霉酮對分生孢子萌發抑制效果較好;菌株XHG-1-3m2對嗜果刀孢菌有較好的抑制效果。
關鍵詞:野杏;嗜果刀孢菌;萎縮芽孢桿菌;防治
中圖分類號:S662.2;S436.629 文獻標志碼:A 文章編號:1009-9980(2023)10-2229-12
Indoor fungicide screening and identification of antagonistic strains against Wilsonomyces carpophilus
CHEN Shuaikang1, XIAO Mu2, Dlinur1, SUN Tianqi1, Aierxiding·Abasi1, MA Rong1*
(1Collage of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; 2Xinyuan State Owned Forest Administration Bureau of Yili Kazakh Autonomous Prefecture, Xinyuan 844900, Xinjiang, China)
Abstract: 【Objective】 Prunus armeniaca is one of the main tree crops in the Tianshan wild fruit forest, which plays an important role in maintaining the stability of the Tianshan wild fruit forest ecosystem. The occurrence of wild apricot perforation disease caused by Wilsonomyces carpophilus has become an important factor endangering the healthy growth of P. armeniaca. W. carpophilus mainly harms the leaves and fruits of P. armeniaca, causing leaf perforation and fruit browning. Screening of fungicides and identification of antagonistic fungi against W. carpophilus can effectively control fungal perforation of wild apricot. 【Methods】 Based on the previous research, 8 types of commonly used low-toxicity and high-efficiency fungicides on the market were selected as the test agents, and the concentrations of each fungicide were adjusted according to the recommended dilution ratio and pre-experiment results of the commercial agents. Using the mycelial growth rate method to determine the toxicity of different fungicides for the mycelial growth of W. carpophilus. Mix the fungicide and PDA medium in a 1∶9 ratio to form a medicated medium, inoculate the bacterial cake into the center of the plate, and use the non-medicated medium as the control. Measure the colony diameter using the cross over method to calculate the inhibition rate of mycelial growth. Prepare a suspension of conidia of W. carpophilus, mix the prepared suspension with the medicinal solution and incubate at a constant temperature for 14 hours before observing the results. The spore germination standard is set below: when the length of the bud tube exceeds half of the maximum diameter length of the spore, it is considered as initial germination. The effective result is to control the germination rate to reach 90% or above. Use the spore germination method to compare the sensitivity of the conidia of W. carpophilus to the toxicity of eight fungicides. The toxicity regression equation (y=ax+b) was established by using the least square method with the natural logarithm of the concentration of the agent as the independent variable (x) and the probability values of the inhibition rate and the inhibition rate of spore germination as the dependent variable (y). Observe and record the size, color, transparency, surface texture, and other cultural characteristics of individual colonies of antagonistic strains, as well as the results of Gram staining and physiological and biochemical characteristics measurement; Using the Neighbor-jioning method, we selected known sequences with high homology on the NCBI website to construct a phylogenetic tree of antagonistic strains, and determined the taxonomic status of the strains based on comprehensive cultural characteristics and molecular biology results; Determinate the inhibitory effect of antagonistic strains on different pathogens using plate confrontation method. 【Results】 Different fungicides had inhibitory effects on the growth of the hyphae of W. carpophilus. Among them, 50% carbendazim at different concentration gradients had a strong inhibitory effect on the growth of the hyphae. After being inoculated into the medicated medium, the hyphae did not grow. 722 g·L-1 propamocarb hydrochloride and 36% quinoline·tebuconazole had strong inhibitory effects on the growth of W. carpophilus hyphae, with EC50 values being 0.322 5 mg·L-1 and 0.329 8 mg·L-1, respectively; The inhibitory effect of 75% chlorothalonil on the growth of W. carpophilus hyphae was poor, with an EC50 value of 918.8 mg·L-1. The results of inhibiting the germination of conidia of W. carpophilus using different fungicides showed that among the 8 selected fungicides, 27% pentazole·thiamethoxazole and 722 g·L-1 propamocarb hydrochloride had better inhibitory effects on the germination of conidia of W. carpophilus, with EC50 values being 0.060 5 mg·L-1 and 0.164 mg·L-1, respectively. The inhibitory effect of 75% chlorothalonil on the germination of conidia of W. carpophilus was poor, with an EC50 of 1103 mg·L-1. After incubating the antagonistic strain XHG-1-3m2 on LB solid culture medium at a constant temperature for 3 d, the single colony was circular, with irregular edges and milky white color in the early stage, but showed gradually deepened, opaque, and slightly raised in the later stage, and the surface was not smooth. Gram staining was positive, V-P and nitrate reduction reactions were both positive and aerobic, and can liquefy gelatin and hydrolyze starch. The similarity between strain XHG-1-3m2 and B. atrophaeus sequence reached 100% in the NCBI database BLAST results. The phylogenetic tree results showed that strain XHG-1-3m2 and B. atrophaeus were clustered into the same branch. Based on comprehensive cultural characteristics and molecular biology analysis, strain XHG-1-3m2 was identified as B. atrophaeus. The antagonistic strain XHG-1-3m2 had an inhibitory effect of 88.88% on W. carpophilus, which can inhibit the growth of W. carpophilus hyphae, cause deformities, shorten internodes and affect the normal growth of hyphae. Simultaneously, it had inhibitory effects on all 17 other pathogenic fungi. 【Conclusion】 50% carbendazim had a good inhibitory effect on the mycelial growth and conidial germination of W. carpophilus. The antagonistic strain XHG-1-3m2 was B. atrophicus, which can not only inhibit the growth of W. carpophilus, but also have good antagonistic effects on other fungi, with broad-spectrum antifungal properties.
Key words: Prunus armeniaca; Wilsonomyces carpophilus; Bacillus atrophaeus; Prevention and cure
嗜果刀孢菌(Wilsonomyces carpophilus)是引起新疆伊犁地區天山野果林野杏(Prunus armeniaca L.)真菌性穿孔病的病原菌[1]。由嗜果刀孢菌引起的穿孔病是危害核果類果樹的重要病害,而野杏(P. armeniaca L.)是天山野果林原始植物區系組成物種之一,對維持穩定的野果林生態系統起著重要作用[2]。因此,由嗜果刀孢菌引起的野杏穿孔病的防治對保護野杏種質資源及野果林生態系統的恢復有著重要意義。目前,嗜果刀孢菌的防治主要以化學防治為主。Azmy等[3]在2007—2008年在埃及Nobariya地區的杏樹上噴施克菌星(Punch)、烯唑醇(Sumi-8)、腈菌唑(Sythane-24)、戊菌唑(Topas-100)、多菌靈(Cam-zen)、肟菌酯(Flint)、吡唑醚菌酯(Pyraclostrobin)和氫氧化銅(Copper acrobat)8種殺菌劑進行杏樹嗜果刀孢菌的防治,發現腈菌唑、多菌靈、烯唑醇、克菌星和戊菌唑5種殺菌劑在1 mg·L-1時的防效能夠完全抑制杏樹穿孔病的發生。此外,克菌丹(captan)、己唑醇(hexaconazole)、苯醚甲環唑(difenoconazole)等[4]都可用來防治穿孔病。錢超等[5]和王召元等[6]使用代森鋅、代森錳鋅、苯醚甲環唑和甲基硫菌靈進行桃穿孔病田間防治,發現代森鋅和代森錳鋅800倍液對桃穿孔病均有不錯的防治效果。趙俊芳等[7]通過對比克菌康、戊唑醇和葉枯唑3種殺菌劑對杏李嗜果刀孢菌的田間藥效,發現戊唑醇2000倍液對杏李穿孔病的防效較好,防治效果達83.74%。近年來,伊犁地區天山野果林野杏穿孔病的大面積發生導致了野杏資源的減少,而有關嗜果刀孢菌化學藥劑防治的研究年限較早,且相關防治均在平原地區栽培杏園內開展,同時伊犁地區天山野果林尚未見防治研究報道。
生物防治能有效避免環境污染和病原物產生抗藥性等問題,因此越來越受到國內外專家學者的重視。Azmy等[3]發現哈茨木霉(Trichoderma harzianum)和綠色木霉(T. viride)能有效防止桃、杏和李穿孔病的發生,但枯草芽孢桿菌(Bacillus subtilis)的防效較低。Karlidag等[8]利用芽孢桿菌OSU-142懸浮液(109 CFU·mL-1)有效防止了杏穿孔病的發生。目前,國外生物防治均使用成品菌株制劑,國內尚未見嗜果刀孢菌生物防治的相關報道。因此,筆者在本研究中以嗜果刀孢菌YA21為供試菌株,通過生長速率法和孢子萌發法篩選防治殺菌劑,并采用平板對峙法篩選拮抗細菌,為嗜果刀孢菌的化學和生物防治提供理論依據。
1 材料和方法
1.1 供試材料
供試培養基:馬鈴薯瓊脂糖培養基(potato dextrose agar,PDA)配方為馬鈴薯200 g、葡萄糖20 g、瓊脂糖20 g、蒸餾水1 L;LB液體培養基配方為胰蛋白胨10 g、酵母粉5 g、NaCl 10 g、蒸餾水1 L;LB固體培養基是在LB液體培養基的基礎上添加瓊脂粉18 g。所有培養基均在121 ℃滅菌30 min后使用。
含藥培養基的制備:將不同殺菌劑按推薦倍數經預試驗調整后分別稀釋至相應的倍數備用。將配置好的PDA培養基每瓶99 mL分裝在250 mL錐形瓶中,待滅菌完成后冷卻至60 ℃加入配置好的殺菌劑,比例為V藥劑∶V培養基=1∶9,以不加殺菌劑的PDA平板作為對照,振蕩搖勻后倒入直徑90 mm的培養皿中備用[9]。
供試菌株:嗜果刀孢菌YA21(GenBank:OQ547194)于野杏芽中分離獲得;所有供試菌株均保存于新疆農業大學林學與風景園林學院森林保護學實驗室。
各供試殺菌劑試驗稀釋倍數根據商品藥劑推薦稀釋倍數及預試驗結果調整為最終試驗所用稀釋倍數。殺菌劑見表1。
1.2 不同殺菌劑對嗜果刀孢菌菌絲生長的抑制作用
用直徑5 mm滅菌打孔器打取菌餅,將菌餅菌絲一面向下放置于不同殺菌劑不同稀釋倍數和對照PDA平板中央,每個處理3次重復,置于25 ℃恒溫培養箱培養,每天觀察其生長狀況,采用十字交叉法測量菌落直徑,根據式(1)計算菌絲生長抑制率,采用菌絲生長速率法[10]對殺菌劑毒力進行評估。以藥劑稀釋倍數的自然對數值為自變量(x),以抑菌率的概率為因變量(y),利用最小二乘法建立毒力回歸方程(y=ax+b),計算出各供試殺菌劑的有效中濃度(median effective concentration,EC50),進行不同殺菌劑毒力大小的評估[11]。
[對照組菌落直徑-處理組菌落直徑對照組菌落直徑-菌餅直徑]×100。 (1)
1.3 不同殺菌劑對嗜果刀孢菌分生孢子萌發的抑制作用
純培養菌落在顯微鏡下觀察到有分生孢子產生后,向產孢平板內加入無菌水,用接種環在菌落表面輕輕刮取使分生孢子脫落,將分生孢子懸浮液用雙層無菌紗布過濾,過濾后的溶液使用離心機1000 r·min-1離心5 min,棄上清液,再加入無菌水配置成107個·mL-1的孢子懸浮液。將配置好的孢子懸浮液與藥液混勻,比例為V藥液∶V孢子懸浮液=1∶1,25 ℃恒溫保濕培養,根據預試驗結果14 h后進行觀察。采用孢子萌發法比較嗜果刀孢菌分生孢子對8種殺菌劑毒力的敏感性。孢子萌發標準為當芽管長度超過孢子最大直徑長度的一半時即視為萌發[4]。以加入清水的孢子懸浮液作為對照,對照萌發率超過90%時,統計8種殺菌劑不同稀釋倍數下的孢子萌發情況,根據式(2)和式(3),每個稀釋倍數檢查200個孢子,計算孢子萌發率和孢子萌發抑制率。孢子萌發對各殺菌劑敏感性毒力回歸方程建立同1.2。
孢子萌發率/%=[萌發孢子數檢查孢子數]×100;? ? ? ? ? (2)
[對照孢子萌發率-處理孢子萌發率對照孢子萌發率]×100。
利用Microsoft Excel 2019和GraphPad Prism 8.0軟件進行數據整理、統計與分析,求出各殺菌劑對嗜果刀孢菌菌絲和孢子的毒力回歸方程、EC50及相關系數。
1.4 拮抗菌株的分離與純化
選取具有典型野杏穿孔病癥的葉片,用無菌水沖洗干凈,無菌濾紙濾干水分。取病健交界部位切成5 mm的小塊,用3%次氯酸鈉溶液浸泡30 s,用無菌鑷子放置于LB固體培養基表面,每皿放置5塊,28 ℃恒溫培養箱中黑暗培養7 d。將采集的土壤樣品通過稀釋涂布法分離,取10 g土樣倒入150 mL的錐形瓶中,加無菌水至100 mL,充分振蕩,即制成10-3、10-5、和10-7的懸浮液,用移液槍吸取200 μL的上清液置于含有0.05 g·L-1鹽酸四環素的PDA培養基上,用無菌玻璃棒涂抹均勻,設置3次重復,放于28 ℃恒溫培養箱培養,待有明顯菌落出現后立即進行純化。待病原菌落長出后,將其周圍生長的單菌落劃線轉接至新的LB培養基中,轉接2~3次直至獲得純化的單菌落,再將純化的單菌落轉接到LB液體培養基中28 ℃、150 r·min-1振蕩培養24 h,-20 ℃冰箱中保藏備用。
1.5 拮抗菌株對嗜果刀孢菌的抑制效果
采用平板對峙法[12]測定拮抗菌株對嗜果刀孢菌的抑制效果。用直徑5 mm的打孔器在活化培養5 d的菌落邊緣取菌餅置于PDA平板中央。挑取單菌落細菌菌株在菌餅兩側劃線接種菌株,以只接種菌餅的平板為對照,每個處理3次重復,放入恒溫培養箱25 ℃培養,待對照菌落生長至滿皿或停止生長后,測量菌落直徑,依據式(4)計算抑制率。
[對照組菌落直徑-處理組菌落直徑對照組菌落直徑]×100。
1.6 拮抗菌株的鑒定
1.6.1 拮抗菌株的培養特征觀察及生理生化特性測定 挑取純化后的單菌落劃線轉接至新的LB固體培養基表面,28 ℃黑暗培養3 d后觀察,記錄單菌落的大小、顏色、透明度和表面質地等形態學特征[13],同時進行革蘭氏染色,測定拮抗菌株的生理生化特性。
1.6.2 拮抗菌株分子生物學鑒定 用Ezup柱式細菌基因組DNA抽提試劑盒提取拮抗菌株的DNA,采用細菌通用引物進行PCR擴增,引物序列為:27F(5-AGAGTTTGATCCTGGCTCAG-3)和1492R(5-TACCTTGTTACGACTT -3),引物由生工生物工程(上海)股份有限公司合成。PCR擴增反應總體系25 ?L:2×Taq PCR Master Mix 12.5 ?L,上下游引物各0.5 μL,模板DNA 1 ?L、ddH2O補充至25 μL。PCR擴增條件為:95 ℃預變性5 min;94 ℃變性30 s,57 ℃退火30 s,72 ℃延伸90 s,30個循環;72 ℃延伸10 min。PCR產物經1%瓊脂糖凝膠電泳(150 V,20 min)檢測后,凝膠成像系統分析結果。切割PCR產物電泳條帶所需DNA目的條帶,使用SanPrep柱式DNA膠回收試劑盒回收DNA片段。
將回收成功的PCR產物送至生工生物工程(上海)股份有限公司進行測序,在NCBI網站(https://www.ncbi.nlm.nih.gov/)進行BLAST同源序列比對[14],選取同源性較高的已知菌株序列,利用MEGA 6.0軟件進行序列分析,采用Neighbor-jioning法構建系統發育樹,確定菌株的分類地位。
1.7 拮抗菌株對不同病原菌的抑菌效果測定
方法同1.4。供試菌株見表2。
2 結果與分析
2.1 不同殺菌劑對嗜果刀孢菌菌絲生長的毒力測定結果
8種殺菌劑對嗜果刀孢菌的菌落生長均表現出抑制作用,但不同的殺菌劑抑菌效果有著明顯的差異。由表3可知,50%多菌靈各稀釋倍數梯度藥液對菌絲生長均有強抑制作用,嗜果刀孢菌菌絲均未生長,在抑菌試驗結束后將含50%多菌靈培養基上的菌餅回接至正常培養基,菌絲恢復生長;722 g·L-1霜霉威鹽酸鹽和36%喹啉·戊唑醇對嗜果刀孢菌菌絲的生長抑制作用較強,EC50分別為0.322 5和0.329 8 mg·L-1;27%戊唑·噻霉酮、20%吡唑·嘧菌酯和80%代森錳鋅的抑制作用次之,EC50分別為10.66、37.18和41.81 mg·L-1;40%福·福鋅的抑制作用較弱,EC50為114.5 mg·L-1;75%百菌清的抑制效果最差,EC50為918.8 mg·L-1。
2.2 不同殺菌劑對嗜果刀孢菌分生孢子萌發的毒力測定結果
嗜果刀孢菌分生孢子在25 ℃保濕培養14 h后,對照的萌發率為97%。8種殺菌劑對嗜果刀孢菌分生孢子的萌發都有一定的抑制作用。8種殺菌劑中27%戊唑·噻霉酮和722 g·L-1霜霉威鹽酸鹽的抑制效果最好,EC50分別為0.060 5和0.164 0 mg·L-1;其次是80%代森錳鋅,EC50為2.352 mg·L-1;20%吡唑·嘧菌酯和36%喹啉·戊唑醇的抑制效果較弱,EC50分別為34.41和58.50 mg·L-1;40%福·福鋅和50%多菌靈的抑制效果相對前5種殺菌劑較差,EC50分別為162.6和223.2 mg·L-1;75%百菌清的抑制效果最差,EC50為1103 mg·L-1(表4)。
2.3 拮抗菌株XHG-1-3m2的種類鑒定
2.3.1 拮抗菌株XHG-1-3m2的培養特征與生理生化特性 菌株XHG-1-3m2在LB固體培養基表面28 ℃黑暗培養3 d后,培養特征如圖1所示。該菌為桿狀、單菌落圓形、邊緣不整齊,前期乳白色,后期顏色逐漸加深、不透明、微隆起,表面不光滑,鑒定為革蘭氏染色陽性。
2.3.2 拮抗菌株XHG-1-3m2的生理生化特性測定 菌株XHG-1-3m2乙酰甲基甲醇試驗和硝酸還原反應均為陽性(表5),好氧,能使明膠液化,可以水解淀粉等,符合萎縮芽孢桿菌的生理生化特征。
2.3.3 拮抗菌株XHG-1-3m2的分子生物學鑒定 菌株XHG-1-3m2的16S rDNA擴增序列片段長度為1487 bp,GenBank登錄號為OQ438428。菌株XHG-1-3m2在NCBI數據庫BLAST結果與Bacillus atrophaeus序列相似度達到100%,采用鄰接法構建系統發育樹(圖2),菌株XHG-1-3m2與B. atrophaeus聚為同一支,綜合培養特征學及分子生物學分析確定菌株XHG-1-3m2為萎縮芽孢桿菌(B. atrophaeus)。
2.4 拮抗菌株XHG-1-3m2對嗜果刀孢菌菌絲生長的影響
采用平板對峙法測定拮抗菌株XHG-1-3m2對嗜果刀孢菌的抑制效果達88.88%(圖3)。嗜果刀孢菌在受到菌株XHG-1-3m2的抑制后菌落前沿顏色加深;挑取菌絲在顯微鏡下觀察,發現該菌菌絲畸形,節間縮短,末端相比正常菌絲膨大,粗細不均勻或產生多個分支或細胞質外滲的現象,影響了菌絲的正常生長。
2.5 拮抗菌株XHG-1-3m2對不同病原菌的抑菌測定結果
通過采用平板對峙法將菌株XHG-1-3m2劃線接種培養,發現菌株XHG-1-3m2對17種病原菌都有抑制效果(表6,圖4),其中對M. laxa(R1~R2)有明顯的抑制效果,抑制率為89.41%,對病菌D. aliena(M1~M2)、A. pullulans(G1~G2)、A. nigripycnidia(Q1~Q2)、C. ulmi(N1~N2)、P. herbarum(L1~L2)、C. pruinopsis(D1~D2)、D. maydis(P1~P2)的抑制率為60%~70%;對D. glomerata(J1~J2)、N. dematiosa(K1~K2)、N. quercina(O1~O2)、C. elatum(H1~H2)、N. nigrescens(F1~F2)、P. avenaria(A1~A2)、C. donetzica(C1~C2)、D. omnivora(B1~B2)、D. sarmentorum(I1~I2)的抑制率為50%~60%;對病菌N. gorlenkoana(E1~E2)無明顯的抑制效果。
3 討 論
嗜果刀孢菌先后在2019年和2020年被程元等[15]和葉雙華[16]證實在伊犁哈薩克族自治州野果林主要分布的縣域大量存在,并明確了真菌性穿孔病在野果林中的危害。目前,嗜果刀孢菌防治均在平原地區開展,缺乏山區防治的研究報道,且關于新疆地區由嗜果刀孢菌引起的真菌性穿孔病的防治研究也尚未見相關報道。筆者在本研究中采用菌絲生長速率法和孢子萌發抑制法研究了多菌靈、霜霉威、喹啉·戊唑醇、戊唑·噻霉酮、吡唑·醚菌酯、代森錳鋅、福·福鋅和百菌清8種殺菌劑室內對嗜果刀孢菌菌絲生長及孢子萌發的毒力,結果表明,供試的8種殺菌劑均具有一定的抑菌作用,其中多菌靈對菌絲生長抑制作用最強,在試驗中將殺菌劑稀釋倍數由500~2500倍液調整至2000~6000倍液,所接菌餅菌絲均未生長,在培養25 d后將菌餅回接至正常PDA培養基后菌絲恢復生長,表明該殺菌劑對嗜果刀孢菌菌絲生長具有強烈的抑制作用。Azmya等[3]2007—2008年在杏樹上噴施多菌靈防治杏穿孔病,結果顯示50%多菌靈500倍液噴施后能完全抑制穿孔病的發生,1000和2000倍液噴施后發病率為30%~40%。此外,在春季樹體發芽前噴施4~5°Bé石硫合劑、在生長季噴施代森鋅等對穿孔病的防治也能起到不錯的效果[5-6]。本研究中722 g·L-1霜霉威鹽酸鹽具有內吸、保護作用且兼具低毒、高效等特性,對菌絲生長和孢子萌發均具有較強的抑制作用。36%喹啉·戊唑醇對菌絲抑制效果較強,27%戊唑·噻霉酮對孢子抑制效果較強,這2種復配殺菌劑的室內抑菌效果較好,其有效成分多為三唑類殺菌劑,具有促進植物生長的作用,被廣泛應用于多種真菌病害防治。因此,在防治真菌性穿孔病的過程中,將這3種殺菌劑輪換使用,可以在提高防效的同時延緩病原菌抗藥性的產生。
筆者在本研究中首次從田間發病的野杏植株上分離到能夠對嗜果刀孢菌具有抑制效果的拮抗細菌萎縮芽孢桿菌B. atrophaeus,且該菌對其他多種病原真菌均具有不錯的抑制效果。芽孢桿菌屬是一類好氧或兼性厭氧的革蘭氏陽性菌,該屬細菌的重要特性是能夠產生芽孢抵抗各種不利條件和環境[17]。化學藥劑防治是目前控制植物病害大面積發生的主要手段,但化學藥劑的長期使用對自然環境的破壞難以恢復且存在病原菌出現耐藥性等潛在問題。生防菌的研究和應用逐漸被研究者重視起來,芽孢桿菌屬的枯草芽孢桿菌B. subtilis、解淀粉芽孢桿菌B. amyloliquefaciens、萎縮芽孢桿菌B. atrophaeus和貝萊斯芽孢桿菌B. velezensis都是應用廣泛的拮抗細菌。
朱杰等[12]利用平板稀釋法從枸杞根際土壤中篩選鑒定出的菌株QH-588為B. atrophaeus,該菌株不僅能夠明顯抑制櫻桃葉斑病菌的菌絲生長,還能夠抑制櫻桃葉斑病菌的孢子萌發。與該結果不同,本研究中嗜果刀孢菌在接種菌株XHG-1-3m2后于后續的試驗觀察中發現病原菌未能產孢,這表明B. atrophaeus對嗜果刀孢菌的防效可能會更好。劉欣等[18]從土樣中分離鑒定出對蘋果樹腐爛病具有良好拮抗效果的菌株DM3-18為B. atrophaeus。王璐[19]在研究中發現B. atrophaeus CP 297對黃曲霉也有明顯的抑制效果。付莉媛[20]從草莓根際土壤等樣品中分離篩選出4株芽孢桿菌對草莓根腐病菌具有良好的拮抗作用,經鑒定為B. velezensis和B. subtilis。敖靜等[21]篩選出對黃瓜枯萎病具有較強抑制作用的B. amyloliquefaciens菌株XN-3。郝芳敏等[22]從甜瓜根部分離得到對甜瓜多種真菌病害病原菌均有抑制作用的多黏類芽孢桿菌NBmelon-1,該菌對甜瓜幼苗的生長還具有促進作用。李娜等[23]從黃瓜根萎病根際土分離得到在黃瓜苗期對尖孢鐮刀菌(Fuasrium oxypsorum)有較好防治效果的弗雷德里克斯堡假單胞菌33-1(Pseudomonas frederiksbergensisi)。
萎縮芽孢桿菌對多種病原真菌的抑制效果都比較明顯,具有抑菌廣譜性。此外,4種生防細菌對病原菌抑制機制相似,都是通過影響病原菌菌絲正常生長導致畸形和抑制產孢或孢子萌發的方式達到抑菌效果。芽孢桿菌的抑菌機制多樣,能夠產生抗菌物質如抗生素、細菌素、酶類或其他抗菌蛋白等,通過不同的途徑抑制甚至殺死病原菌,也能夠通過產生促進植株生長的物質如合成植物激素、固氮等方式增強植物的生長能力,提高抗病性,從而達到防治或減少病害發生的效果[19, 24]。筆者在本研究中篩選出了嗜果刀孢菌的拮抗菌株XHG-1-3m2,對抑菌機制進行了初步探索,但對于其抑菌物質的種類、含量及具體抑菌機制尚不明確,有待進一步探索和研究。
4 結 論
筆者在本研究中所選用的8種殺菌劑對嗜果刀孢菌的菌絲生長和孢子萌發都有一定的抑制作用。50%多菌靈對嗜果刀孢菌菌絲生長抑制作用較強;27%戊唑·噻霉酮對嗜果刀孢菌分生孢子萌發抑制效果較強。筆者在本研究中首次從野杏發病葉片上分離篩選出對嗜果刀孢菌具有良好抑制效果的拮抗菌株XHG-1-3m2,綜合培養特征和16s rDNA序列分析確定菌株XHG-1-3m2為萎縮芽孢桿菌(B. atrophaeus)。
參考文獻 References:
[1] YE S H,JIA H Y,CAI G F,TIAN C M,MA R. Morphology,DNA phylogeny,and pathogenicity of Wilsonomyces carpophilus isolate causing shot-hole disease of Prunus divaricata and Prunus armeniaca in wild-fruit forest of western Tianshan Mountains,China[J]. Forests,2020,11(3):319.
[2] 林培鈞. 天山伊犁野果林在人類生態和果樹起源上的地位[J]. 農業考古,1993(1):133-137.
LIN Peijun. The position of wild fruit forest in Yili,Tianshan Mountain in human ecology and the origin of fruit trees[J]. Agricultural Archaeology,1993(1):133-137.
[3] AZMY A,KORRA A. Management of shot-hole disease of stone fruit trees caused by Stigmina carpophila[J]. Journal of Plant Protection and Pathology,2010,1(12):973-989.
[4] NABI A S,SHAH M U D,PADDER B A,DAR M S,AHMAD M. Morpho-cultural,pathological and molecular variability in Thyrostroma carpophilum causing shot hole of stone fruits in India[J]. European Journal of Plant Pathology,2018,151(3):613-627.
[5] 錢超,季紅健,陳加紅. 桃穿孔病的田間防治試驗[J]. 山西果樹,2017(6):3-4.
QIAN Chao,JI Hongjian,CHEN Jiahong. Field control test of peach perforation disease[J]. Shanxi Fruits,2017(6):3-4.
[6] 王召元,李永紅,常瑞豐,陳湖,韓繼成,劉國儉. 桃穿孔病的發生規律與綜合防治措施[J]. 河北果樹,2018(6):29-30.
WANG Zhaoyuan,LI Yonghong,CHANG Ruifeng,CHEN Hu,HAN Jicheng,LIU Guojian. Occurrence regularity and comprehensive control measures of peach perforation[J]. Hebei Fruits,2018(6):29-30.
[7] 趙俊芳,常聚普,喬趁峰,吉洪坤,楊玉巧,景向方. 幾種藥劑防治杏李穿孔病田間藥效對比試驗[J]. 北方園藝,2010(18):178-179.
ZHAO Junfang,CHANG Jupu,QIAO Chenfeng,JI Hongkun,YANG Yuqiao,JING Xiangfang. Comparative experiment on field efficacy of several chemicals to control apricot and plum perforation[J]. Northern Horticulture,2010(18):178-179.
[8] KARLIDAG H,ESITKEN A,ERCISLI S,DONMEZ M F. The use of PGPR (plant growth promoting rhizobacteria) in organic apricot production[J]. Acta Horticulturae,2010,862:309-312.
[9] 姜彩鴿,楊小偉,張怡,王國珍,王廣錄,方治永. 12種殺菌劑對葡萄灰霉病菌的室內毒力測定[J]. 寧夏農林科技,2017,58(8):33-35.
JIANG Caige,YANG Xiaowei,ZHANG Yi,WANG Guozhen,WANG Guanglu,FANG Zhiyong. Indoor toxicity of 12 fungicides against grape Botrytis cinerea Pers.[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2017,58(8):33-35.
[10] 陳宏州,楊敬輝,肖婷,吳祥,吉沐祥,莊義慶. 12種殺菌劑對葡萄灰霉病菌的毒力測定[J]. 江蘇農業科學,2015,43(1):124-127.
CHEN Hongzhou,YANG Jinghui,XIAO Ting,WU Xiang,JI Muxiang,ZHUANG Yiqing. Toxicity determination of 12 fungicides to Botrytis cinerea[J]. Jiangsu Agricultural Sciences,2015,43(1):124-127.
[11] 孫蕾. 吉林省葫蘆科作物炭疽病的病原鑒定及藥劑篩選[D]. 長春:吉林農業大學,2019.
SUN Lei. Pathogen identification and screening of the fungicides of Cucurbitaceae crop anthracnose caused by Colletotrichum in Jinlin Province[D]. Changchun:Jilin Agricultural University,2019.
[12] 朱杰,程亮,張綱,陳紅雨,付麗穎,姚強,郭青云. 櫻桃葉斑病生防菌株萎縮芽孢桿菌菌株QH-588的篩選鑒定[J]. 南方農業學報,2021,52(11):3022-3033.
ZHU Jie,CHENG Liang,ZHANG Gang,CHEN Hongyu,FU Liying,YAO Qiang,GUO Qingyun. Screening and identification of Bacillus atrophaeus QH-588 for biological control of cherry leaf spot[J]. Journal of Southern Agriculture,2021,52(11):3022-3033.
[13] 王敏,趙穎,蔡桂芳,王雪萍,張志東,馬榮. 野核桃枝枯病菌拮抗細菌的篩選及鑒定[J]. 新疆農業大學學報,2019,42(4):261-266.
WANG Min,ZHAO Ying,CAI Guifang,WANG Xueping, ZHANG Zhidong,MA Rong. Screening and identification of the antagonistic bacteria against wild walnut branch rot[J]. Journal of Xinjiang Agricultural University,2019,42(4):261-266.
[14] 周俊輝,游春平. 香蕉枯萎病菌4號小種拮抗細菌的篩選與鑒定[J]. 果樹學報,2011,28(2):278-283.
ZHOU Junhui,YOU Chunping. Screening and identification of antagonistic bacteria against Fusarium oxysporum f. sp. cubense race 4[J]. Journal of Fruit Science,2011,28(2):278-283.
[15] 程元,淮穩霞,姚艷霞,林若竹,劉忠軍,趙文霞. 新疆鞏留縣杏果實斑點病病原菌鑒定[J]. 林業科學研究,2019,32(2):117-122.
CHENG Yuan,HUAI Wenxia,YAO Yanxia,LIN Ruozhu,LIU Zhongjun,ZHAO Wenxia. The pathogen identification of apricot fruit spots disease in Gongliu County,Xinjiang[J]. Forest Research,2019,32(2):117-122.
[16] 葉雙華. 伊犁野果林中Juglanconis和Wilsonomyces屬引起的病害病原菌種類研究[D]. 烏魯木齊:新疆農業大學,2020.
YE Shuanghua. Identification of Juglanconis and Wilsonomyces pathogens species in Ili wild-fruit forest[D]. Urumqi:Xinjiang Agricultural University,2020.
[17] 劉秀花,梁峰,劉茵,翟興禮. 河南省土壤中芽孢桿菌屬資源調查[J]. 河南農業科學,2006,35(8):67-71.
LIU Xiuhua,LIANG Feng,LIU Yin,ZHAI Xingli. Genus Bacillus resources of soils in Henan Province[J]. Journal of Henan Agricultural Sciences,2006,35(8):67-71.
[18] 劉欣,馬強,宿靜瑤,付崇毅,杜美娥,李正男,孫平平. 蘋果樹腐爛病拮抗菌株的分離、篩選和鑒定[J]. 中國果樹,2022(5):50-56.
LIU Xin,MA Qiang,SU Jingyao,FU Chongyi,DU Meie,LI Zhengnan,SUN Pingping. Isolation,screening and identification of antagonistic strains against apple valsa canker[J]. China Fruits,2022(5):50-56.
[19] 王璐. 萎縮芽孢桿菌CP 297和解淀粉芽孢桿菌CP 2014對毛桃致腐霉菌的抑菌機理及保鮮應用[D]. 太谷:山西農業大學,2019.
WANG Lu. Bacteriostatic mechanism and preservation application of Bacillus atrophaeus CP 297 and Bacillus amyloliquefaciens CP 2014 against pathogenic mold isolated from peach[D]. Taigu:Shanxi Agricultural University,2019.
[20] 付莉媛. 北京地區草莓根腐病致病菌的分離鑒定及拮抗菌篩選[D]. 秦皇島:河北科技師范學院,2021.
FU Liyuan. Isolation and identification of the pathogen of strawberry root-rot disease in Beijing and screening of its antagonistic bacteria[D]. Qinhuangdao:Hebei Normal University of Science & Technology,2021.
[21] 敖靜,李楊,劉曉輝,高曉梅,孫玉祿. 一株黃瓜枯萎病拮抗細菌的篩選鑒定及抑菌作用初探[J]. 云南農業大學學報(自然科學),2022,37(3):429-434.
AO Jing,LI Yang,LIU Xiaohui,GAO Xiaomei,SUN Yulu. Screening and identification of antagonistic bacteria against Fusarium wilt of cucumber and preliminary study on its antifungal effect[J]. Journal of Yunnan Agricultural University (Natural Science),2022,37(3):429-434.
[22] 郝芳敏,臧全宇,馬二磊,丁偉紅,王毓洪,黃蕓萍. 甜瓜多種真菌病害拮抗細菌NBmelon-1的鑒定及其促生和生防效果[J]. 中國瓜菜,2021,34(7):14-19.
HAO Fangmin,ZANG Quanyu,MA Erlei,DING Weihong,WANG Yuhong,HUANG Yunping. Identification,biocontrol and growth promoting effects of antagonistic bacteria NBmelon-1 of various fungal diseases in melon[J]. China Cucurbits and Vegetables,2021,34(7):14-19.
[23] 李娜,李晶,付麟雲,劉錦霞,丁品,武建榮. 1株優良生防細菌的篩選及其對甘肅溫室黃瓜枯萎病的防治效果[J]. 中國瓜菜,2022,35(1):86-90.
LI Na,LI Jing,FU Linyun,LIU Jinxia,DING Pin,WU Jianrong. Screening and identification of an excellent biocontrol bacteria against cucumber Fusarium wilt in heliogreenhouse of Gansu and its biological effect[J]. China Cucurbits and Vegetables,2022,35(1):86-90.
[24] 豆雅楠. 蘋果樹腐爛病病原菌的分離鑒定及其拮抗芽孢桿菌的篩選鑒定[D]. 蘭州:西北師范大學,2018.
DOU Yanan. Isolation and identification of pathogens of apple Valsa canker and screening of antagonistic Bacillus to the pathogens[D]. Lanzhou:Northwest Normal University,2018.
收稿日期:2023-05-24 接受日期:2023-06-19
基金項目:新疆維吾爾自治區杰出自然科學基金項目(2022D01E47);新疆農業大學大學生創新項目(dxscx2023156,dxscx2023175);第三次新疆綜合科學考察專項(2021xjkk05005-3)
作者簡介:陳帥康,男,在讀碩士研究生,研究方向為新疆林木病害的診斷。Tel:15719993537,E-mail:1627033151@qq.com
通信作者Author for correspondence. Tel:0991-8762361,E-mail:xjaumr@sina.com