黃敏 易勇 劉艷松 謝春平 何智兵
摘要:采用DCMS(直流磁控濺射)和DCMS/HiPIMS(直流磁控濺射/高功率脈沖磁控濺射)共濺射在不同負偏壓下沉積銅薄膜,使用X射線衍射儀、場發射掃描電子顯微鏡、白光干涉儀、納米壓痕技術和四點探針法對薄膜的晶體取向、形貌、粗糙度、力學和電學性能進行表征。結果表明:與 DCMS 銅薄膜相比,隨著負偏壓增加,DCMS/HiPIMS共濺射銅薄膜晶粒尺寸先減小后增大,Cu(111)取向減弱,硬度逐漸增大,電阻率逐漸降低;高負偏壓(100 V)下Cu(111)向Cu(220)轉變,薄膜致密,表面粗糙度減小,硬度增大(約3.5 GPa),電阻率降低(約2 μΩ·cm)。銅薄膜的結構和性能強烈依賴于由HiPIMS和負偏壓共同決定的銅離子通量和能量。
關鍵詞:直流磁控濺射 高功率脈沖磁控濺射 銅薄膜 襯底偏壓 硬度 電阻率
中圖分類號:O484; TG174.444文獻標志碼:A文章編號:1671-8755(2023)03-0001-07
Structure and Properties of DCMS and DCMS/HiPIMS Cosputtered
Copper Films under Different Bias Voltages
HUANG Min1, YI Yong1, LIU Yansong2, XIE Chunping2, HE Zhibing2
(1. State Key Laboratory of Environmentfriendly Energy Materials, Southwest University of
Science and Technology, Mianyang 621010, Sichuan, China; 2. Research Center of Laser Fusion,
China Academy of Engineering Physics, Mianyang 621900, Sichuan, China )
Abstract:? Copper films were deposited by DCMS (direct current magnetron sputtering)? and DCMS/HiPIMS(direct current magnetron sputtering/highpower impulse magnetron sputtering) cosputtering under various substrate negative biases. The crystal orientation, morphology, roughness, mechanical and electrical properties of the films were characterized by X-ray diffraction, field emission scanning electron microscope, white light interferometer, nanoindentation technique and fourpoint probe method. The results show that compared with DCMS copper films, the grain size of DCMS/HiPIMS cosputtered copper films first decreases and then increases with the increase of negative bias, the Cu(111) orientation weakens, the hardness gradually increases, and the resistivity gradually decreases. Under high negative bias (100 V), Cu(111) transforms to Cu(220), the film is compact, the surface roughness decreases, the hardness increases (about 3.5 GPa), and the resistivity decreases (about 2 μΩ·cm). The structure and properties of copper thin films are strongly dependent on the copper ion flux and energy determined by HiPIMS and negative bias.
Keywords:? Direct current magnetron sputtering; Highpower impulse magnetron sputtering; Copper films; Substrate negative bias; Hardness; Resistivity
銅(Cu)薄膜具有較高導電性和導熱性,是制造業中應用最廣泛的材料。隨著超大規模集成電路(VLSI)等行業對新材料的需求不斷增加,傳統的鋁及其合金已不能滿足要求。銅薄膜具有比鋁及其合金更優的導熱性和延展性,更低的成本和體積電阻率(ρ=1.67 μΩ·cm),可滿足VLSI中尺寸縮減和互連材料的需求[1-3]。但是,作為VLSI中的新型布線材料,Cu薄膜在標準芯片制造過程中易被破壞和腐蝕,傳統制備方法(濺射沉積)和模式(反應離子蝕刻) 對改善集成電路質量并不現實,已不適用于制備Cu薄膜。因此,迫切需要改進沉積方法,獲得更高質量、更高硬度及更低電阻率的銅薄膜[2, 4]。直流磁控濺射(DCMS)是制備銅薄膜的傳統方法,具有高沉積速率、高放電穩定性和高附著力等優點。但是,DCMS薄膜具有不均勻、多孔、顯著熱負荷和陰影效應等缺陷。高功率脈沖磁控濺射(HiPIMS)是一種新型技術,具有高離化率和薄膜均勻性,但沉積速率低,放電可控性較差[5- 6]。因此,需要開發更有效的濺射方法來制備高密度、低粗糙度、良好力學性能和低電阻率的銅薄膜。DCMS/HiPIMS共濺射技術是一種新穎的鍍膜技術。該技術結合兩種技術的特點,可實現微米厚薄膜的晶粒取向,提高薄膜的結晶度、均勻性和性能等,有望在VLSI中制備高質量銅薄膜[7]。近年來,利用DCMS/HiPIMS共濺射技術制備TiAlCrN,TiAlN和TiC薄膜取得重大成就,這些薄膜具有高致密性、高結晶度、高硬度和低應力等特點[5, 7],但利用DCMS/HiPIMS共濺射技術制備銅薄膜的系統研究鮮有報道。磁控濺射中,達到生長薄膜的離子轟擊特性是影響薄膜質量和性能的重要參數,也是磁控濺射行業的研究熱點和重點[8-10]。離子轟擊能量是影響薄膜特定微觀結構、晶體取向和相生長等的重要因素,由襯底負偏壓決定。有報道提出[9,11-12],離子轟擊能量可有效控制生長薄膜的能量傳遞和表面吸附原子的遷移率,改善薄膜致密性、質量、力學和電學性能等[8-10,13-14]。為此,本文開展在不同負偏壓(0 ~100 V)下DCMS/HiPIMS共濺射制備銅薄膜的研究。使用X射線衍射儀、掃描電子顯微鏡、白光干涉儀、納米壓痕測試儀、四探針電阻率測試儀對樣品的擇優取向、晶粒尺寸、形貌、粗糙度、力學和電學性能進行表征。
1實驗
1.1銅薄膜的制備
圖1為DCMS/HiPIMS共濺射銅薄膜的實驗原理圖。如圖1所示,采用JGP560超高真空鍍膜設備在雙面拋光硅片(111)上沉積3 μm厚的銅薄膜。硅片(10 mm×10 mm×0.5 mm)分別用丙酮和乙醇超聲清洗20 min后用壓縮空氣吹干。實驗本底真空約5×10-6 Pa,濺射氣體為高純氬氣(純度99.999 %,流量10 mL/min),工作氣壓約0.6 Pa。DCMS 實驗的斜銅靶(純度99.99 %,直徑76 mm,厚度6 mm)直接連接100 W直流電源。耦合DCMS/HiPIMS 共濺射的兩個銅靶分別接入直流電源和高功率脈沖電源。高功率脈沖電源保持恒定的脈沖直流電壓(650 V)、功率(150 W)、脈沖寬度(100 μs)和重復頻率(100 Hz)。表1為DCMS和DCMS/HiPIMS共濺射銅薄膜的沉積條件和薄膜特性參數。校準DCMS和HiPIMS沉積速率(分別為0.49 nm·s-1和0.23 nm·s-1)后,以50% 離化率計算共濺射所需直流功率(恒為40 W)。所有靶材距離襯底約15 cm,并與襯底中心法線成40°。為研究襯底負偏壓的影響,依次向襯底提供0,20,40,60,80,100 V 的直流負偏壓(標記為0,-20,-40,-60,-80,-100 V)。襯底保持正反10 r/min均勻轉動以保證鍍膜均勻性。
1.2薄膜的性能與表征
使用掠入射X射線衍射儀(GIXRD,0.5°,Rigaku SmartLab 9 kW)表征銅薄膜的晶體結構和擇優取向;采用超高分辨率場發射掃描電子顯微鏡(FE-SEM,蔡司,德國,BRUKER XFlash 6130)研究銅薄膜的厚度、形貌;使用白光干涉儀(GT-O5X,10×目鏡,50× 物鏡)測量薄膜表面粗糙度;采用納米壓痕測試儀(U9820 A,G200壓頭,最大載荷8 mN,最大壓入深度250 nm)連續剛度模式(CSM)測量薄膜的壓痕硬度,為防止襯底干擾,壓入深度不超過銅薄膜厚度的1/10[10];使用四探針測試儀(電流50 mA,電壓? 210 V,HRMS-800)測量銅薄膜電阻率。
2結果和討論
2.1不同負偏壓下銅薄膜的結構取向和晶粒尺寸
圖2為不同負偏壓下DCMS和DCMS/HiPIMS共濺射銅薄膜的XRD圖譜。如圖2(a)、圖2(b)所示,薄膜所有衍射光譜均符合銅的標準卡片(JCPDS#04-0836)。圖3表示Cu(111)和Cu(220)峰的相對強度,即I(111)/I(220),用于定義銅薄膜擇優取向。因為密排Cu(111)晶面具有最低的表面能和最穩定的結構,所以銅薄膜在Si(111)襯底上優先以(111)晶面生長[15-16]。如圖2(a)所示,DCMS銅薄膜均以Cu(111)晶面擇優生長,并且Cu(111)強度隨負偏壓的增加呈遞增趨勢。如圖2(b)所示,除了-100 V外,與DCMS銅薄膜類似,DCMS/HiPIMS共濺射銅薄膜以Cu(111)擇優生長,且Cu(111)強度隨著負偏壓的增加而增大,薄膜結晶度提高。Mukherjee等[17]認為,等離子體能量隨著負偏壓的增加而增加,導致薄膜表面吸附銅原子遷移率增加[8, 14]。然而,在-100 V時,銅薄膜擇優取向從(111)變為(220),表明該偏壓下較高的離子能量促進Cu(220)晶面生長。類似于Cemin等[4, 8]和Engwall等[6]的研究,隨著轟擊離子能量增加,可實現Cu薄膜的織構轉變。
用謝樂(Scherrer)方程計算了不同負偏壓下銅薄膜的晶粒尺寸[3, 14],結果如圖4所示。對于 DCMS 薄膜,平均晶粒尺寸在9.5 nm和13.5 nm之間。低負偏壓(<60 V)下,晶粒尺寸增大與薄膜表面微量銅離子的有效能量轉換和吸附原子的擴散有關。高負偏壓(>60 V)下,晶粒尺寸減小歸因于再濺射和熱負荷導致吸附原子的擴散能損失[16, 18-19]。DCMS/HiPIMS共濺射薄膜的晶粒尺寸為11~14 nm,-60 V下形成最細晶粒。研究發現,較低或較高的負偏壓環境下,富銅離子的共濺射薄膜晶粒尺寸略大,這與吸附原子遷移率和表面擴散能增加有關。然而,在-40 V至-80 V的偏壓下,晶粒尺寸較小且低于DCMS薄膜的主要原因是二次成核出現并成為主導,這也反應在掃描電鏡觀察到的不均勻的顆粒形貌中[3,15,17]。
2.2不同負偏壓下銅薄膜的微觀結構和粗糙度
圖5為DCMS和DCMS/HiPIMS共濺射銅薄膜的微觀結構。銅薄膜表面均表現為大小不一的塊狀顆粒,并利用Nanomeasure軟件統計銅薄膜表面顆粒的平均尺寸為86~190 nm,均大于XRD中計算的晶粒尺寸。根據Ma等[15]的報道可知,較大顆粒形態是由小晶粒聚集而成,這導致表面粗糙度增加。與Cemin等[4]的研究結果類似, 圖5(a)-圖5(f)中DCMS薄膜主要是纖維柱狀結構且從表面突出,銅膜厚度接近3 μm(表1所示)[15]。與XRD結果相同,負偏壓增大,薄膜表面吸附原子擴散加快,促進晶粒不斷聚集,使表面顆粒尺寸增大。與DCMS薄膜不同,DCMS/HiPIMS共濺射銅薄膜厚度略小于3 μm,因為共濺射的沉積速率受HiPIMS影響。共濺射銅薄膜是多孔纖維結構(圖5(g)-圖5(l)),因為原子遷移率和微晶邊界都受到嚴格動力學限制[13, 20],這嚴重影響薄膜的粗糙度和硬度。與XRD類似,-40 V至-80 V下,共濺射薄膜的顆粒尺寸低于DCMS薄膜,但較低或較高負偏壓下尺寸較大,表明不同偏壓對具有高通量銅離子的共濺射銅晶粒生長有不同的影響[14-15,19,21]。
圖6是DCMS和DCMS/HiPIMS共濺射Cu薄膜的表面粗糙度(Ra)變化曲線和3D形貌圖,其Ra值如表1所示。與SEM結果一致,DCMS銅薄膜Ra較大(圖6(b)-圖6(g)),因為晶粒生長并在表面聚集成大顆粒[3, 19]。然而,DCMS/HiPIMS共濺射銅薄膜的表面粗糙度受到內部多孔結構、晶粒尺寸和表面顆粒影響(圖6(h)-圖6(m))。結合XRD圖譜和SEM形貌圖,負偏壓小于80 V時銅薄膜中具有豐富孔隙,導致共濺射薄膜粗糙度大于DCMS薄膜[13],大于80 V時,共濺射表面粗糙度減小,因為大量銅離子的有效能量轉換和吸附原子擴散加快,促進晶粒生長并使薄膜結構相對致密[3,16,18]。最小粗糙度出現在粒徑最小的銅薄膜中。以上結果表明,濺射金屬離子通量和能量對薄膜生長和微觀結構起主導作用。
2.3不同負偏壓下銅薄膜的硬度和電阻率
圖7所示是銅薄膜的納米壓痕硬度和電阻率。與其他研究相比[2, 15, 22],所有薄膜都顯示出相對較高的硬度。由于施加負偏壓形成大顆粒導致表面粗糙,DCMS薄膜硬度逐漸下降。DCMS/HiPIMS共濺射時,由于薄膜孔隙減少和致密度增加,硬度增加。此外,共濺射銅薄膜在高負偏壓(>60 V)下的硬度較高,因為較高能量的離子轟擊效應增加了薄膜的表面致密性,粗糙度降低。由于孔隙和表面粗糙度的影響,低負偏壓(<60 V)下較小晶粒尺寸的銅薄膜硬度較低[22]。DCMS銅薄膜在0 V時出現的最大硬度(4 GPa)主要與細晶粒強化效應有關[1- 2]。該結果表明,共濺射中的銅離子的入射能量較大,可以有效觀察到更光滑的表面和更高的硬度[20]。
如圖8所示,隨著離子轟擊偏壓的增加,薄膜電阻率降低。晶界效應和內部雜質、位錯等缺陷是影響金屬薄膜電阻率的主要因素[23]。DCMS薄膜電阻率下降的主要原因是晶粒長大減小了晶界密度、減少了電子散射[3,15,22]。然而,DCMS/HiPIMS共濺射薄膜的電阻率不完全取決于晶粒尺寸。在-40 V和-80 V之間,電阻率取決于豐富孔隙產生的大量位錯。此外,施加負偏壓后,因為高通量銅離子產生的晶界和位錯效應對電阻率的影響大于DCMS中的中性原子,所以DCMS/HiPIMS共濺射Cu薄膜的電阻率低于DCMS薄膜[15]。
3結論
本文采用DCMS/HiPIMS磁控共濺射法在Si(111)襯底上制備銅薄膜,研究襯底負偏壓(0~100 V)對DCMS/HiPIMS共濺射Cu薄膜的晶體取向、晶粒尺寸、微觀結構、粗糙度、硬度和電阻率的影響。與DCMS相比,等離子體中銅離子通量和能量對薄膜的結構、形貌、力學和電學性能有顯著影響。施加襯底負偏壓可有效改變離子轟擊能量,從而改變生長薄膜表面的能量擴散和吸附銅原子的遷移率。負偏壓增加,共濺射銅薄膜晶粒尺寸有先減小后增加的趨勢,最小粒徑為11.2 nm。負偏壓增加,薄膜致密性和光滑度增加,硬度增加,電阻率降低。高負偏壓(100 V)下,共濺射中的高通量銅離子具有高能量,使銅薄膜生長取向改變,即從Cu(111)轉變為Cu(220)。較高的離子轟擊能量促進表面能量轉換和吸附原子的擴散、遷移,導致銅薄膜具有更高的硬度(約3.5 GPa)和更低的電阻率(約2 μΩ·cm)。
參考文獻
[1]KHODABAKHSHI F, KAZEMINEZHAD M. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel[J]. Materials & Design, 2011, 32(6): 3280-3286.
[2]KURAPOVA O Y, GRASHCHENKO A S, ARCHAKOV I Y, et al. The microstructure and mechanical properties of twinned copperbismuth films obtained by DC electrodeposition[J]. Journal of Alloys and Compounds, 2021, 862: 158007.
[3]VILOAN R P B, HELMERSSON U, LUNDIN D. Copper thin films deposited using different ion acceleration strategies in HiPIMS[J]. Surface and Coatings Technology, 2021, 422: 127487.
[4]CEMIN F, LUNDIN D, CAMMILLERI D, et al. Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(5): 051506.
[5]GUI B H, ZHOU H, ZHENG J, et al. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron cosputtering[J]. Ceramics International, 2021, 47(6): 8175-8183.
[6]ENGWALL A M, SHIN S J, BAE J, et al. Enhanced properties of tungsten films by highpower impulse magnetron sputtering[J]. Surface and Coatings Technology, 2019, 363: 191-197.
[7]ZOITA N C, DINU M, KISS A E, et al. A comparative investigation of heteroepitaxial TiC thin films deposited by magnetron sputtering using either hybrid DCMS/HiPIMS or reactive DCMS process[J]. Applied Surface Science, 2021, 537: 147903.
[8]CEMIN F, ABADIAS G, MINEA T, et al. Benefits of energetic ion bombardment for tailoring stress and microstructural evolution during growth of Cu thin films[J]. Acta Materialia, 2017, 141: 120-130.
[9]MBIOMBI W M, WAMWANGI D, MATHE B A, et al. Tuning structural, electrical and mechanical properties of diamondlike carbon films by substrate bias voltage[J]. Materials Today Communications, 2021, 28: 102501.
[10]BOBZIN K, BROGELMANN T, KRUPPE N C, et al. Pulse synchronized substrate bias for the High Power Pulsed Magnetron Sputtering deposition of CrAlN[J]. Thin Solid Films, 2021, 732: 138792.
[11]SAHU B P, DUTTA A, MITRA R. Influence of substrate bias voltage on structure and properties of DC magnetron sputtered Ni-Zr alloy thin films[J]. Journal of Materials Research, 2020, 35(12): 1543-1555.
[12]MIRZAEI S, ALISHAHI M, SOUCEK P, et al. Effect of substrate bias voltage on the composition, microstructure and mechanical properties of W-B-C coatings[J]. Applied Surface Science, 2020, 528: 146966.
[13]KUO C C, LIN C H, CHANG J T, et al. Effect of voltage pulse width and synchronized substrate bias in highpower impulse magnetron sputtering of zirconium films[J]. Coatings, 2021, 11: 7.
[14]DU H, ZANSKA M, BRENNING N, et al. Bipolar HiPIMS: the role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films[J]. Surface and Coatings Technology, 2021, 416: 127152.
[15]MA D L, JING P P, GONG Y L, et al. Structure and stress of Cu films prepared by high power pulsed magnetron sputtering[J]. Vacuum, 2019, 160: 226-232.
[16]WU B H, WU J, JIANG F, et al. Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering[J]. Vacuum, 2017, 135: 93-100.
[17]MUKHERJEE S K, JOSHI L, BARHAI P K. A comparative study of nanocrystalline Cu film deposited using anodic vacuum arc and dc magnetron sputtering[J]. Surface and Coatings Technology, 2011, 205(19): 4582-4595.
[18]LIM J W, ISSHIKI M. Effect of substrate bias voltage on the texture and microstructure of Cu thin films deposited by ion beam deposition[J]. Metals and Materials International, 2003, 9(2): 201-205.
[19]AVINO F, FONNESU D, KOETTIG T, et al. Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse[J]. Thin Solid Films, 2020, 706: 138058.
[20]ZHU X G, CHENG X L. Symmetric tilt grain boundary evolution during the growth of copper thin films: molecular dynamics simulation[J]. Physica B: Condensed Matter, 2020, 578: 411838.
[21]LATIF R, JAAFAR M F, AZIZ M F, et al. Influence of tantalums crystal phase growth on the microstructural, electrical and mechanical properties of sputterdeposited tantalum thin film layer[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105314.
[22]MLADENOVIC I O, MIKOLIC N D, LAMOVEC J S, et al. Application of the composite hardness models in the analysis of mechanical characteristics of electrolytically deposited copper coatings: The effect of the type of substrate[J]. Metals, 2021, 11: 111.
[23]LEE Y Z, ZENG W Y, CHENG I C. Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying[J]. Thin Solid Films, 2020, 699: 137913.