胡月?王濤?羅小麗
摘要:近年來,隨著碳青霉烯類抗生素的廣泛使用,耐碳青霉烯類腸桿菌科細菌(carbapenem-resistant Enterobacteriaceae,CRE)越來越常見,嚴重威脅公眾健康,為社會經濟帶來極大負擔。在兒童患者中,CRE感染通常十分兇險,且在碳青霉烯酶構成譜、用藥選擇等方面存在一定特殊性,給治療帶來巨大的挑戰。本文就兒童CRE感染的流行病學特點、治療策略展開綜述,為臨床工作提供一定參考。
關鍵詞:兒童;耐碳青霉烯類腸桿菌科細菌;流行病學;治療方案
中圖分類號:R978.1文獻標志碼:A
Research of progress on the infection caused by carbapenem-resistant Enterobacteriaceae in Chinese children
Hu Yue, Wang Tao, and Luo Xiaoli
(Pediatric Intensive Care Unit, The Affiliated Chengdu Womens and Childrens Central Hospital, University of Electronic Science and Technology of China, School of Medicine, Chengdu 611731)
Abstract In recent years, with the widespread use of carbapenem antibiotics, carbapenem-resistant Enterobacteriaceae (CRE) have become more common, posing a severe threat to public health and bringing great economic burden. In pediatric patients, CRE infection is usually very dangerous, and there are certain particularities in the composition spectrum of carbapenemases and drug selection that bring great challenges to treatment. This article reviewed the epidemiological characteristics and treatment strategies of CRE infection in children, and provide some reference for clinical work.
Key words Children; Carbapenem-resistant Enterobacteriaceae; Epidemiology; Treatment
耐碳青霉烯類腸桿菌科細菌(carbapenem-resistant Enterobacteriaceae,CRE)指對碳青霉烯類抗生素不敏感的腸桿菌科細菌,即美羅培南、亞胺培南的最低抑菌濃度(minimum inhibitory concentration,MIC)≥4mg/L或厄他培南的MIC≥2 mg/L。CRE感染通常十分兇險,治療時面臨諸多困難,而兒童作為一個特殊群體,由于缺乏大量臨床研究作為支撐,加之其生長發育特點限制了部分藥物的選擇,使得CRE治療變得更加棘手。本文將對我國兒童CRE感染的流行病學特點及治療策略進行綜述。
1 流行病學特點
1.1 感染率
由全國11所三級甲等兒童教學醫院組成的中國兒童細菌耐藥監測組的數據顯示[1],2016-2020年我國兒童CRE總體檢出率為6.8%,2018年最高(8%),近年來呈逐漸下降趨勢,至2020年最低(4.7%),可能與醫院感染防控措施加強有關。我國兒童CRE檢出率存在地域差異,2017年北京市高達25.2%,同年上海市為12.1%,江西省為8%,山西省則僅為1%[2],不同地區制定抗感染方案時可適當參考當地CRE監測數據。
CRE定植或感染多發生于NICU(neonatal intensive care unit)、PICU(pediatric intensive care unit)血液腫瘤病房。雖然定植并不需要治療,但由于上述病房收治的患兒常常免疫功能低下、伴有嚴重的基礎疾病,需警惕定植細菌移位引起感染。在成人ICU患者中,CRE定植者發生相關感染的風險高于非定植者兩倍[3]。Xu等[4]的報道顯示上海地區CRE定植的住院患兒約45.6%來自于NICU。Yin等[5]則評估了上海地區NICU患兒CRE定植后發生感染的風險約為17.4%。Kong等[6]的報道顯示江蘇地區兒童CRE感染多見于重癥監護室,約26.6%CRE病例來自于PICU,約13.9%病例來自于CCU(cardiac care unit)。Dong等[7]指出在2011—2014年北京市兒童醫院收治的耐碳青霉烯類肺炎克雷伯菌(carbapenem-resistant K. pneumoniae,CRKP)血流感染的患兒中,約78.8%自于血液腫瘤病房。該研究團隊還對比了CRKP血流感染與碳青霉烯類敏感的肺炎克雷伯菌(carbapenem-susceptible K. pneumoniae,CSKP)血流感染的臨床特點,前者7 d死亡率、28 d死亡率分別達到了16.7%、18.5%,而后者分別為1.2%、2.4%,CRKP組死亡率高出CSKP組7~14倍,CRKP已成為肺炎克雷伯菌血流感染致死的一項獨立高危因素[8]。
CRE的流行之所以常見于上述科室,除其收治的兒童病情重,多有基礎疾病等因素外,還因為這部分兒童常常暴露于多種CRE感染或定植的高危因素下。一項多中心對照研究[9]顯示,3月內曾使用廣譜抗生素(如頭孢吡肟、頭孢他啶、哌拉西林-他唑巴坦、替卡西林-克拉維酸、環丙沙星、左氧氟沙星、亞胺培南和美羅培南等)、近期接受外科手術、機械通氣是3個十分重要的CRE定植或感染的高危因素。林碧玉等[10]的Meta分析顯示,除機械通氣外,中心靜脈置管、留置胃管、留置尿管等侵入性操作同樣可增加兒童CRE定植或感染的風險,另外,對于新生兒而言,生后1 min Apgar評分≤7亦為一項高危因素。可見對兒科重點科室CRE的監測十分重要。
1.2 碳青霉烯酶構成特點
我國兒童CRE感染以肺炎克雷伯菌最為多見,2020年其在兒童CRE中占比接近一半(47.9%),其后依次為大腸埃希菌(20.3%)、陰溝腸桿菌(11.9%)和產氣腸桿菌(7.5%)[11]。產生碳青霉烯酶是CRE耐藥的主要機制。根據Ambler分子分類法[12],碳青霉烯酶可分為A、B、D 3類。A類為絲氨酸碳青霉烯酶,包含blaKPC、blaGES、blaIMI、blaNMC-A、blaSME等,B類為金屬β-內酰胺酶,主要為blaNDM、blaIMP、blaVIM,D類為苯唑西林酶,以bla OXA-48、blaOXA-181和bla OXA-232亞型為主[13]。
我國成人CRE中最常檢出的碳青霉烯酶為blaKPC,之后為blaNDM,blaOXA-48相對較少;而我國兒童CRE則以blaNDM最多見,主要為blaNDM-1、blaNDM-5亞型,其次為blaKPC,主要為blaKPC-2亞型,最后為blaOXA-232亞型[14]。近10年來,我國兒科病房內CRE暴發感染大多與blaNDM相關。2014年云南昆明[15]、2016年江蘇南京[16]的NICU病房內均暴發了由攜帶blaNDM-1的CRKP菌株引起的院內感染。昆明的報道顯示,17例新生兒被感染,1例最終死亡,暖箱的水箱可能是細菌滋生及播散處。南京的報道顯示,6例新生兒中有5例患新生兒敗血癥,血培養均為陽性,1例考慮為新生兒呼吸窘迫綜合征,并從痰中分離出陽性菌,6例患兒最終在有效治療后痊愈。2015年江蘇徐州[17]則報道了一起由攜帶blaNDM-5的CRKP菌株引起的院內感染,某院NICU病房自收治了1例新生兒呼吸窘迫綜合征的患兒并從其痰中檢出產blaNDM-5的CRKP菌株后,在之后1年時間里陸續檢出11例陽性患兒,通過分析菌株的克隆關系發現前后12株分離株起源相同,最開始收治的患兒可能是感染的源頭。
除上述型別之外,我國兒童患者的臨床標本中還檢出了少量攜帶blaIMP的CRE菌株,相對常見的亞型為blaIMP-4、blaIMP-38等[18~20]。
碳青霉烯酶的構成特點并非一成不變,可隨時間推移發生動態變化,且不同地區有不同特點。例如,blaOXA-232于2016年首次在我國上海地區
檢出[21],隨后即成為上海市兒童醫院CRKP中最常見的酶亞型[22],報道顯示2016—2017年該院CRKP菌株中產blaOXA-232者占42.35%,而產blaNDM者則占36.06%,其中blaNDM-1、blaNDM-5分別為20.59%、16.47%,產blaKPC-2者為17.65%,另外還檢出了少量的blaIMP-4亞型(1.18%)。然而至2018年該院CRKP監測數據則顯示,碳青霉烯酶構成順序依次為blaKPC-2(58.1%)、blaNDM-5(32.6%)、blaNDM-1(4.7%)、blaIMP-4 (1.2%),全年僅檢出1例產blaOXA-232的CRKP菌株,占比為0.6%[23]。
碳青霉烯酶的檢測對臨床工作具有指導意義,酶種類不同可能影響患者的臨床結局。Pudpong等[24]
發現,在面對攜帶blaNDM-1或blaNDM-1聯合blaOXA-48的CRE感染時,美羅培南的MIC值常常>16 mg/L,而對于僅攜帶blaOXA-48的CRE菌株,美羅培南的MIC值往往<16 mg/L,且兩者的14 d死亡率亦有差異,前者明顯高于后者。Seo等[25]則對比了攜帶blaKPC或blaNDM的CRE菌株感染的臨床特點,發現KPC組美羅培南MIC值>8 mg/L較NDM組更常見,且對多黏菌素的不敏感率更高(KPC, 17% vs NDM, 0),KPC組定植后感染發生率、30 d死亡率均較NDM組更高(具體分別為:KPC, 8% vs NDM, 3%;KPC, 17% vs NDM, 9%),提示KPC可能導致更差的臨床結局。
2 治療策略
2.1 碳青霉烯類
碳青霉烯類抗生素屬于時間依賴性藥物,當游離藥物濃度高于MIC值的給藥間隔時間百分比(%fT>MIC)超過40%時,抗菌效果最佳,但對于危重患者、免疫缺陷患者而言,需要100%fT>MIC,甚至4~6倍100%fT>MIC,才能將療效最大化[26]。延長美羅培南輸注時間可提升%fT>MIC數值,與此同時,還可通過增加藥物劑量以加強抗感染效果。
Cies等[27]指出,針對美羅培南敏感的革蘭陰性菌感染的危重患兒,劑量為每日120~160 mg/kg,持續24 h輸注,可達到80%fT>MIC。Saito等[28]指出,對于考慮全身炎癥反應綜合征的危重患兒,往往需要更大劑量(40~80 mg/kgq8 h),每次持續輸注超過3 h才能達到理想的藥物代謝動力學目標。但當美羅培南MIC值≥4 mg/L時,則建議根據藥敏實驗選用更加敏感的其他藥物或新型藥物,如頭孢他啶/阿維巴坦、美羅培南-vaborbactam、亞胺培南-relebactam[29]。
2.2 多黏菌素
多黏菌素屬于多肽類抗生素,目前臨床使用的有兩種,分別為多黏菌素B和多黏菌素E。多黏菌素E以其前體形式黏菌素甲磺酸鹽(colistimethate sodium,CMS)靜脈給藥,約20%的CMS在體內轉化為活性形式發揮作用,其余則從腎臟排泄,該活化過程十分緩慢,達穩態所需時間較長。而多黏菌素B則直接以活性形式給藥,可以更快達到更高的穩態血藥濃度。且由于它不通過腎臟排泄,較多黏菌素E而言,兩者有效性雖相接近,但多黏菌素B腎毒性更低,因此在面對多重耐藥菌感染時,多黏菌素B是更加安全的選擇[30]。
Jia等[31]回顧性分析了多黏菌素B在治療我國兒童耐碳青霉烯類革蘭陰性菌(Gram-negative bacterial,CR-GNB)感染的有效性及腎毒性,研究共納入55例患兒,約70.9%的患兒培養轉陰,約52.7%的患兒臨床治療有效,表現為感染癥狀減輕,體溫及炎癥指標包括白細胞、C反應蛋白、降鈣素原恢復正常,或僅有一項指標雖異常但較前下降;約27.3%的患兒發生了不同程度的急性腎損傷,多數患兒在停藥1周后腎功能恢復或改善,僅有2例腎功能進行性惡化。由于多黏菌素B屬于濃度依賴性藥物,適當增加劑量可提升療效,但同時大劑量所帶來的急性腎損傷風險也將升高[32],臨床用藥時需謹慎權衡利弊。2019年推出的國際指南[33]推薦多黏菌素B需要首劑負荷,劑量為2.0~2.5 mg/kg,之后按照1.25~1.5 mg/kg q12h 超過1 h輸入進行維持。同時該指南還建議,針對CRE所致的侵襲性感染,多黏菌素聯合1種或1種以上敏感藥物的治療方案優于多黏菌素單藥治療,若無其余敏感的藥物,則可選擇MIC值相對最低的藥物聯合使用。Paul等[34]發表的隨機對照研究則顯示,面對CR-GNB感染時,多黏菌素聯合美羅培南的治療方案并未優于多黏菌素單藥治療,兩種方案的14 d治療失敗率、14 d死亡率、28 d死亡率均無統計學差異,雖然聯合治療使腎損傷幾率減少,但卻增加了腹瀉發生率。不過值得注意的是,該研究共納入406例成人患者,其中77%為鮑曼不動桿菌感染,腸桿菌科細菌感染者僅占18%,在CRE患者中,聯合用藥組的14 d治療失敗率為46%,28 d死亡率為21%,均低于單藥治療組(分別為68%和35%),雖然以上數據經分析后并無統計學意義,但可能是由于樣本量太小造成。
2.3 替加環素
替加環素屬于甘酰氨環素類抗生素,涵蓋了我國25個省65所醫院的大數據報道顯示替加環素對CRE的體外敏感率達89.7%[35]。該藥按照標準劑量給藥時,迅速分布到組織中,很難達到理想血藥濃度,成人大劑量替加環素(200 mg負荷,100 mg q12 h
維持)治療CRE感染時優于標準劑量(100 mg負荷,50 mg q12 h維持),且大部分患者耐受良好,最多見的不良反應為嘔吐、腹瀉[36]。但由于替加環素可影響牙釉質發育,引起牙齒變色,應慎用于8歲以下兒童。Purdy等[37]通過對比不同劑量梯度(0.75 mg/kg、
1.00 mg/kg、1.25 mg/kg)的替加環素在8~11歲嚴重感染患兒中的療效,發現維持劑量為1.2 mg/kg q12 h
時,替加環素在兒童中的藥物代謝動力學特點與成人使用標準劑量時相似,負荷劑量暫未明確。Iosifidis等[38]報道了替加環素在13例廣泛耐藥革蘭陰性菌感染患兒中的使用情況,負荷劑量1.8~6.5 mg/kg,
中位數4 mg/kg,維持劑量1~3.2 mg/kg,中位數1.4 mg mg/kg q12 h,患兒耐受良好,無嚴重不良反應發生,在替加環素使用超過5 d的11例患兒中,臨床好轉率約64%(7/11)。Chen等[39]報道了13例CR-GNB感染的兒童肝移植患者,其中9例為肺炎克雷伯菌感染,4例為鮑曼不動桿菌感染,所有患兒均接受了劑量為2 mg/kg q12h的替加環素治療,臨床好轉率及病原清除率分別為84.6%(11/13)、69.2%(9/13)。在兒童患者中,增加替加環素劑量或許同樣可獲得更好的臨床結局,但有待進一步佐證。目前部分體外實驗[40~41]及回顧性觀察性研究[42]均提示面對CRE感染時替加環素聯合用藥優于單藥治療,但仍需要更高質量的隨機對照研究進一步證明其優越性以及探討何種聯合用藥方案更合適。
2.4 磷霉素
磷霉素作為一種經典抗生素,近年來在多重耐藥細菌感染的治療方面重新得到重視。它可以干擾細菌細胞壁合成的第一步,是一種細菌繁殖期的快速殺菌劑,在與其他抗生素聯合使用時常具有協同作用或相加作用,幾乎不產生拮抗作用[43~44]。
目前國內尚未將磷霉素列入常規的藥敏試驗,國際上對磷霉素藥敏折點的判讀尚無統一標準。根據歐盟藥敏試驗標準,對于腸桿菌科細菌MIC≤
32 mg/L為敏感。但若為尿路感染中分離的大腸埃希菌,根據美國臨床和實驗室標準化協會標準,MIC≤64 mg/L即為敏感。文獻顯示[45] ,磷霉素用于治療CRE感染時,應達到70%fT>MIC目標值,MIC值越高,所需磷霉素的劑量越高,當MIC位于8~
32 mg/L時,磷霉素劑量為4~12 g/d,而當MIC位于32~96 mg/L時,磷霉素劑量應達到16~24 g/d;且每次輸注時間6 h或持續輸注24 h優于間歇給藥。希臘11個ICU病房的多中心研究顯示[46],磷霉素用于廣泛耐藥或全耐藥革蘭陰性菌感染時,靜脈給藥中位劑量24 g/d,中位療程14 d,臨床治愈成功率為54.2%,細菌清除率為56.3%,28 d死亡率為37.5%。
由于CRE的異質性耐藥、繁殖迅速等因素可能導致磷霉素單藥治療失敗[47],故目前更推薦聯合用藥方案。多項體外抗菌活性研究顯示[48~50],面對CRKP菌株時,磷霉素聯合多黏菌素優于磷霉素或多黏菌素單藥治療。Cremieux等[51]通過構建兔的CRKP骨髓炎模型發現多黏菌素聯合美羅培南或多黏菌素聯合磷霉素是僅有的治療手段,且除聯用磷霉素組外,其余治療組均出現了多黏菌素耐藥株。在臨床工作中,已有磷霉素、多黏菌素、多西環素的三聯用藥方案成功治愈CRKP骨髓炎患者的病例報道[52]。磷霉素聯合美羅培南在治療導管相關性尿路感染所繼發的CRKP血流感染方面亦取得了相應成功[53]。Zheng等[54]發表的回顧性分析顯示,嚴重CRKP感染的成人患者在使用頭孢他啶/阿維巴坦單藥治療時,其30 d死亡率高達47.6%,若聯合應用磷霉素,其死亡率則下降至33.3%。磷霉素亦可有效適用于兒童,一項納入37例接受聯合用藥方案的CRKP感染新生兒的研究顯示,除1例放棄治療外,其余均臨床好轉,且其中28例聯合使用了磷霉素,約占75.6%[55]。針對兒童患者,目前推薦靜脈用磷霉素每日劑量為200~400 mg/kg,
足月新生兒為200 mg/kg,早產兒減量為100 mg/kg,12歲以上或體重40 kg以上兒童劑量同成人,除早產兒按q12 h給藥外,其余均間隔6~8 h給藥[56]。但一項正在進行的臨床試驗所提示的給藥方案略有差異:大多數新生兒可按150 mg/kg,分2次給藥,<7 d或體重<1500 g的新生兒,則按100 mg/kg,
分2次給藥[57]。
2.5 頭孢他啶/阿維巴坦
頭孢他啶/阿維巴坦是一種頭孢菌素/新型β-內酰胺酶抑制劑合劑,對A類(如KPC)、D類(如OXA-48)碳青霉烯酶具有良好活性,但對B類金屬β內酰胺酶無效,其對于CRE感染的療效常常優于傳統藥物[58]。
2019年我國細菌耐藥性監測報告顯示,該藥對攜帶KPC、OXA-232的CRE菌株體外活性分別高達97.5%、100%[59]。頭孢他啶/阿維巴坦于2019年3月經美國FDA批準用于≥3月的兒童,并于同年5月在我國上市,多適用于復雜性尿路感染、復雜性腹腔感染、醫院獲得性肺炎包括呼吸機相關肺炎等。
目前對于≥3~6月、肌酐清除率> 50 mL/min/1.73 m2
的兒童,推薦劑量為50 mg/kg(頭孢他啶40 mg,阿維巴坦10 mg) q8 h,對于≥6月~18歲兒童,推薦劑量為62.5 mg/kg(頭孢他啶50 mg,阿維巴坦12.5 mg) q8 h[60]。后續關于該藥在兒童中使用情況的報道或研究十分有限,大多樣本量較少,或者為個案報道。Iosifidis等[61]報道了8例接受了頭孢他啶/阿維巴坦治療的廣泛或全耐藥肺炎克雷伯菌感染的5歲以下患兒,均取得了較好的臨床療效。Ji等[62]報道了1例先天性心臟病術后1月出現右肩嚴重化膿性關節炎及骨髓炎的3月齡患兒,骨髓及血培養均提示CRKP感染,在使用亞胺培南、亞胺培南聯合磷霉素治療均無效的情況下,最終選用頭孢他啶/阿維巴坦治療后感染得到迅速控制。
除此之外,還有新型藥物如美羅培南/法硼巴坦(vaborbactam)、亞胺培南西司他丁/雷巴坦(relebactam)等尚未于國內上市,兒童臨床試驗正在開展中,未來可能為兒童CRE感染提供更多治療選擇方案。
3 總結
我國兒童CRE感染形式仍十分嚴峻,應加強重點科室的監測及防控,同時有條件的醫療機構可開展碳青霉烯酶檢測以協助指導臨床用藥,碳青霉烯類、多黏菌素、替加環素、磷霉素、新型藥物如頭孢他啶/阿維巴坦等均對兒童CRE感染有一定療效,但應綜合考慮患兒年齡、基礎疾病、感染部位、臨床表現、病原體、藥敏試驗、甚至是經濟條件等決定用藥方案。目前針對聯合用藥問題尚存爭議,2022年美國傳染病協會推出的指南指出[63],當根據藥敏結果已有較好的單藥可供選擇時,不常規推薦聯合用藥。Tumbarello 等[64]報道,頭孢他啶/阿維巴坦在治療產KPC酶的CRKP感染時,單藥和聯合用藥的患者死亡率分別為26.1%和25.0%,并無明顯差異。一項納入了38例16歲以下CRE血流感染兒童的研究顯示[65],聯合用藥并不能改善臨床結局。但鑒于聯合用藥可以有效控制異質性耐藥[66],增強殺菌活性以及抑制細菌生長
速度[67],臨床工作中仍以2種以上藥物聯用居多。對于基礎情況差、疾病快速進展、出現感染性休克的患者,建議聯用[68],同時菌血癥、肺炎、中樞神經系統感染推薦聯用,復雜性尿路感染則可考慮單藥治療[69]。
總體而言,針對兒童CRE感染的數據相對較少,亟需更多更高質量的研究協助指導臨床工作,從而改善兒童患者的預后。
參 考 文 獻
Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): 28321.
郭燕, 胡付品, 朱德妹, 等. 兒童臨床分離碳青霉烯類耐藥腸桿菌科細菌的耐藥性變遷[J]. 中華兒科雜志, 2018, 56(12): 907-914.
Dickstein Y, Edelman R, Dror T, et al. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers[J]. J Hosp Infect, 2016, 94(1): 54-59.
Xu Q, Pan F, Sun Y, et al. Fecal carriage and molecular epidemiology of carbapenem-resistant Enterobacteriaceae from inpatient children in a pediatric hospital of Shanghai[J]. Infect Drug Resist, 2020, 13: 4405-4415.
Yin L, He L, Miao J, et al. Carbapenem-resistant Enterobacterales colonization and subsequent infection in a neonatal intensive care unit in Shanghai, China[J]. Infect Prev Pract, 2021, 3(3): 100147.
Kong Z, Liu X, Li C, et al. Clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Jiangsu province, China[J]. Infect Drug Resist, 2020, 13: 4627-4635.
Dong F, Zhang Y, Yao K, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniaebloodstream infections in a Chinese children's hospital: Predominance of new delhi metallo-β-lactamase-1[J]. Microb Drug Resist, 2018, 24(2): 154-160.
Zhang Y, Guo L, Song W, et al. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients[J]. BMC Infect Dis, 2018, 18(1): 248.
Chiotos K, Tamma P D, Flett K B, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant Enterobacteriaceae in children[J]. Antimicrob Agents Chemother, 2017, 61(12): e01440-17.
林碧玉, 劉婧婷, 金鳳玲. 兒童耐碳青霉烯類腸桿菌定植或感染危險因素的Meta分析[J]. 中國當代兒科雜志, 2022, 24(1): 96-101.
何磊燕, 付盼, 吳霞, 等. 中國兒童細菌耐藥監測組2020年兒童細菌耐藥監測[J]. 中國循證兒科雜志, 2021, 16(6): 414-420.
Ambler R P. The structure of beta-lactamases[J]. Philos Trans R Soc Lond B Biol Sci, 1980, 289(1036): 321-331.
Logan L K, Weinstein R A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace[J]. J Infect Dis, 2017, 215(1): 28-36.
Han R, Shi Q, Wu S, et al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China[J]. Front Cell Infect Microbiol, 2020, 10: 314.
Zheng R, Zhang Q, Guo Y, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China[J]. Ann Clin Microbiol Antimicrob, 2016, 15(1): 10.
Huang X, Cheng X, Sun P, et al. Characteristics of NDM-1-producing Klebsiella pneumoniae ST234 and ST1412 isolates spread in a neonatal unit[J]. BMC Microbiol, 2018, 18(1): 186.
Kong Z, Cai R, Cheng C, et al. First reported nosocomial outbreak of NDM-5-producing Klebsiella pneumoniae in a neonatal unit in China[J]. Infect Drug Resist, 2019, 12: 3557-3566.
Wang J, Lv Y, Yang W, et al. Epidemiology and clinical characteristics of infection/colonization due to carbapenemase-producing Enterobacterales in neonatal patients[J]. BMC Microbiol, 2022, 22(1): 177.
Bai Y, Shao C, Hao Y, et al. Using whole genome sequencing to trace, control and characterize a hospital infection of IMP-4-producing Klebsiella pneumoniae ST2253 in a neonatal unit in a tertiary hospital, China[J]. Front Public Health, 2021, 9: 755252.
Wang S, Zhao J, Liu N, et al. IMP-38-producing high-risk sequence type 307 Klebsiella pneumoniae strains from a neonatal unit in China[J]. mSphere, 2020, 5(4): 00407-20.
Yin D, Dong D, Li K, et al. Clonal dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae in neonates[J]. Antimicrob Agents Chemother, 2017, 61(8): e00385-17.
Tian D, Pan F, Wang C, et al. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniaeamong pediatric patients in Shanghai[J]. Infect Drug Resist, 2018, 11: 1935-1943.
Wang B, Pan F, Wang C, et al. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in China[J]. Int J Infect Dis, 2020, 93: 311-319.
Pudpong K, Pattharachayakul S, Santimaleeworagun W, et al. Association between types of carbapenemase and clinical outcomes of infection due to carbapenem resistance Enterobacterales[J]. Infect Drug Resist, 2022, 15: 3025-3037.
Seo H, Kim H J, Kim M J, et al. Comparison of clinical outcomes of patients infected with KPC-and NDM-producing Enterobacterales: a retrospective cohort study[J]. Clin Microbiol Infect, 2021, 27(8): 1161-1167.
Pascale R, Giannella M, Bartoletti M, et al. Use of meropenem in treating carbapenem-resistant Enterobacteriaceae infections[J]. Expert Rev Anti Infect Ther, 2019, 17(10): 819-827.
Cies J J, Moore W S, Enache A, et al. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children[J]. J Pediatr Pharmacol Ther, 2017, 22(4): 276-285.
Saito J, Shoji K, Oho Y, et al. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill pediatric patients[J]. Antimicrob Agents Chemother, 2021, 65(2): e01909-20.
Chiotos K, Hayes M, Gerber J S, et al. Treatment of carbapenem-resistant Enterobacteriaceae infections in children[J]. J Pediatric Infect Dis Soc, 2020, 9(1): 56-66.
Thomas R, Velaphi S, Ellis S, et al. The use of polymyxins to treat carbapenem resistant infections in neonates and children[J]. Expert Opin Pharmacother, 2019, 20(4): 415-422.
Jia X, Yin Z, Zhang W, et al. Effectiveness and nephrotoxicity of intravenous polymyxin B in carbapenem-resistant gram-negative bacterial infections among Chinese children[J]. Front Pharmacol, 2022, 13: 902054.
Cai Y, Leck H, Tan R W, et al. Clinical experience with high-dose polymyxin B against carbapenem-resistant Gram-negative bacterial infections-a cohort study[J]. Antibiotics, 2020, 9(8): 451.
Tsuji B T, Pogue J M, Zavascki A P, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP)[J]. Pharmacotherapy, 2019, 39(1): 10-39.
Paul M, Daikos G L, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: An open-label, randomised controlled trial[J]. Lancet Infect Dis, 2018, 18(4): 391-400.
Wang Q, Wang X, Wang J, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012–2016)[J]. Clin Infect Dis, 2018,? 67(2): 196-205.
Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections[J]. Clin Microbiol Infect, 2019, 25(8): 943-950.
Purdy J, Jouve S, Yan J L, et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: A multicenter, open-label, ascending-dose study[J]. Clin Ther, 2012, 34(2): 496-507.
Iosifidis E, Violaki A, Michalopoulou E, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant Gram-negative bacteria[J]. J Pediatric Infect Dis Soc, 2016, 6(2): 123-128.
Chen F, Shen C, Pang X, et al. Effectiveness of tigecycline in the treatment of infections caused by carbapenem‐resistant gram‐negative bacteria in pediatric liver transplant recipients: a retrospective study[J]. Transpl Infect Dis, 2019, 22(1): e13199.
Tian Y, Zhang Q, Wen L, et al. Combined effect of polymyxin b and tigecycline to overcome heteroresistance in carbapenem-resistant Klebsiella pneumoniae[J]. Microbiol Spectr, 2021, 9(2): e15221.
Zhou Y, Liu P, Zhang C, et al. Colistin combined with tigecycline: A promising alternative strategy to combat Escherichia coli harboring blaNDM-5 and mrc-1[J]. Front Microbiol, 2020, 10: 2957.
Wang X, Wang Q, Cao B, et al. Retrospective observational study from a Chinese network of the impact of combination therapy versus monotherapy on mortality from carbapenem-resistant Enterobacteriaceae bacteremia[J]. Antimicrob Agents Chemother, 2019, 63(1): e01511-18.
Avery L M, Sutherland C A, Nicolau D P. In vitro investigation of synergy among fosfomycin and parenteral antimicrobials against carbapenemase-producing Enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2019, 95(2): 216-220.
Antonello R M, Principe L, Maraolo A E, et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies[J]. Antibiotics, 2020, 9(8): 500.
Kanchanasurakit S, Santimaleeworagun W, McPherson C E, et al. Fosfomycin dosing regimens based on Monte Carlo simulation for treated carbapenem-resistant Enterobacteriaceae infection[J]. Infect Chemother, 2020, 52(4): 516-529.
Pontikis K, Karaiskos I, Bastani S, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria[J]. Int J Antimicrob Agents, 2014, 1(43): 52-59.
Lim T, Teo J Q, Goh A W, et al. In vitro pharmacodynamics of fosfomycin against carbapenem-resistant Enterobacter cloacae and Klebsiella aerogenes[J]. Antimicrob Agents Chemother, 2020, 64(9): e00536-20.
Bulman Z P, Zhao M, Satlin M J, et al. Polymyxin b and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model[J]. Int J Antimicrob Agents, 2018, 52(1): 114-118.
Diep J K, Sharma R, Ellis-Grosse E J, et al. Evaluation of activity and emergence of resistance of polymyxin B and ZTI-01 (fosfomycin for injection) against KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2018, 62(2): e01815-17.
Zhao M, Bulman Z P, Lenhard J R, et al. Pharmacodynamics of colistin and fosfomycin: A 'treasure trove' combination combats KPC-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2017, 72(7): 1985-1990.
Crémieux A, Dinh A, Nordmann P, et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2019, 74(9): 2666-2675.
Baron S A, Cassir N, Mékidèche T, et al. Successful treatment and digestive decolonisation of a patient with osteitis caused by a carbapenemase-producing Klebsiella pneumoniae isolate harbouring both NDM-1 and OXA-48 enzymes[J]. J Glob Antimicrob Resist, 2019, 18: 225-229.
Pérez-Palacios P, Palacios-Baena Z, López-Cerero L, et al. Successful outcome after treatment with a combination of meropenem and fosfomycin for VIM-1 and CTX-M-15 producing Klebsiella pneumoniae bloodstream infection[J]. J Infect, 2021, 83(4): e12-e13.
Zheng G, Zhang J, Wang B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: A retrospective cohort study[J]. Infect Dis Ther, 2021, 10(3): 1699-1713.
Yin D, Zhang L, Wang A, et al. Clinical and molecular epidemiologic characteristics of carbapenem-resistant Klebsiella pneumoniae infection/colonization among neonates in China[J]. J Hosp Infect, 2018, 1(100): 21-28.
Baquero-Artigao F, Del Rosal Rabes T. Fosfomycin in the pediatric setting: Evidence and potential indications[J]. Rev Esp Quimioter, 2019, 32(1): 55-61.
Obiero C W, Williams P, Murunga S, et al. Randomised controlled trial of fosfomycin in neonatal sepsis: Pharmacokinetics and safety in relation to sodium overload[J]. Arch Dis Child, 2022, 107(9): 802-810.
Karaiskos I, Galani I, Papoutsaki V, et al. Carbapenemase producing Klebsiella pneumoniae: Implication on future therapeutic strategies[J]. Expert Rev Anti Infect Ther, 2022, 20(1): 53-69.
Guo Y, Han R, Jiang B, et al. In vitro activity of new β-lactam–β-lactamase inhibitor combinations and comparators against clinical isolates of Gram-negative bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019[J]. Microbiol Spectr, 2022, 10(4): e0185422.
Franzese R C, McFadyen L, Watson K J, et al. Population pharmacokinetic modeling and probability of pharmacodynamic target attainment for ceftazidime-avibactam in pediatric patients aged 3 months and older[J]. Clin Pharmacol Ther, 2022, 111(3): 635-645.
Iosifidis E, Chorafa E, Agakidou E, et al. Use of ceftazidime-avibactam for the treatment of extensively drug-resistant or pan drug-resistant Klebsiella pneumoniae in neonates and children <5 years of age[J]. Pediatr Infect Dis J, 2019, 38(8): 812-815.
Ji Z, Sun K, Li Z, et al. Klebsiella pneumoniae carbapenem-resistant osteomyelitis treated with ceftazidime-avibactam in an infant: A case report[J]. Infect Drug Resist, 2021, 14: 3109-3113.
Tamma P D, Aitken S L, Bonomo R A, et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrumβ-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. Aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for Klebsiella pneumoniae carbapenemase-producing K. Pneumoniae infections: A retrospective observational multicenter study[J]. Clin Infect Dis, 2021, 73(9): 1664-1676.
Ara-Montojo M F, Escosa-García L, Alguacil-Guillén M, et al. Predictors of mortality and clinical characteristics among carbapenem-resistant or carbapenemase-producing Enterobacteriaceae bloodstream infections in Spanish children[J]. J Antimicrob Chemother, 2021, 76(1): 220-225.
Band V I, Hufnagel D A, Jaggavarapu S, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection[J]. Nat Microbiol, 2019, 4(10): 1627-1635.
Scudeller L, Righi E, Chiamenti M, et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli[J]. Int J Antimicrob Agents, 2021, 57(5): 106344.
Rodríguez-Ba?o J, Gutiérrez-Gutiérrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae[J]. Clin Microbiol Rev, 2018, 31(2): e00079-17.
Papst L, Beovi? B, Pulcini C, et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals[J]. Clin Microbiol Infect, 2018, 24(10): 1070-1076.
收稿日期:2022-08-22
項目基金:四川省科技廳項目資助(No. 2022JDKP0062);成都市高水平臨床重點專科建設項目
作者簡介:胡月,女,生于1994年,碩士,研究方向為兒童感染,E-mail: 619842539@qq.com
*通信作者,E-mail: 55050625@qq.com