999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

水分對(duì)煤全應(yīng)力-應(yīng)變過程滲流特征的影響

2023-12-29 08:25:28莊小威武海濤
煤礦安全 2023年12期

莊小威 ,唐 朝 ,武海濤

(1.山西潞安集團(tuán) 余吾煤業(yè)有限責(zé)任公司,山西 長治 046100;2.遼寧工程技術(shù)大學(xué) 安全科學(xué)與工程學(xué)院,遼寧 葫蘆島 125105)

隨著煤層開采深度不斷增加,煤層瓦斯的滲透特性不僅與所處應(yīng)力狀態(tài)有關(guān),而且還受煤巖體本身含水情況影響[1]。對(duì)于富水煤層、頂板淋水的高瓦斯煤層、需要注水降低沖擊傾向性的煤層以及采用水力增透技術(shù)促抽瓦斯的煤層,煤層含水率必然較高,影響煤層瓦斯抽采效率。因此,探究煤巖水分和地應(yīng)力綜合影響下的瓦斯?jié)B流特征對(duì)含水煤層瓦斯抽采有著重要的工程意義。

在煤巖滲透特性方面,國內(nèi)外學(xué)者進(jìn)行了大量實(shí)驗(yàn)研究。李波波等[2]針對(duì)煤巖滲透率的問題,采用降低孔隙壓力、升高溫度的方法進(jìn)行實(shí)驗(yàn)室實(shí)驗(yàn),得到不同孔隙壓力下煤巖滲透率隨溫度先降低后升高的特點(diǎn);潘一山等[3]通過電荷信號(hào)傳輸系統(tǒng),證明了圍壓卸荷過程煤巖瓦斯?jié)B流特性、電荷感應(yīng)規(guī)律與煤巖的內(nèi)部損傷演化過程密切相關(guān);尹光志等[4]以型煤為研究對(duì)象,討論了地應(yīng)力對(duì)突出煤瓦斯?jié)B透率的影響。此外,在應(yīng)力-應(yīng)變方面,曹樹剛等[5]通過室內(nèi)三軸壓縮滲流試驗(yàn),進(jìn)行了型煤和原煤在全應(yīng)力-應(yīng)變過程中的滲透特性對(duì)比研究;尹光志等[6]研究了全應(yīng)力-應(yīng)變過程中煤巖的瓦斯?jié)B透特性,指出煤巖內(nèi)部孔隙裂隙結(jié)構(gòu)的發(fā)育程度直接決定著煤巖內(nèi)的瓦斯流動(dòng)特性變化;黃啟翔[7]以型煤為對(duì)象,研究了瓦斯壓力對(duì)煤巖材料全應(yīng)力-應(yīng)變過程中瓦斯?jié)B透特性的影響,在一定的瓦斯壓力范圍內(nèi),增加瓦斯壓力可增大煤樣的滲透率;秦慶詞等[8]對(duì)巖石全應(yīng)力-應(yīng)變過程損傷特征進(jìn)行研究,從理論上確定了巖石殘余強(qiáng)度點(diǎn)應(yīng)變約為峰值應(yīng)變的4 倍,即當(dāng)軸向應(yīng)變大于等于4 倍的峰值應(yīng)變時(shí),巖石承載能力將趨于穩(wěn)定。

目前,針對(duì)不同含水煤巖瓦斯?jié)B透特性[9-11]、不同應(yīng)力-應(yīng)變狀態(tài)煤巖瓦斯?jié)B透特性[12-14]的研究成果豐富,但有關(guān)水分對(duì)煤巖的全應(yīng)力-應(yīng)變滲流特征影響研究成果較少。因此,為了探究水分對(duì)煤力學(xué)性質(zhì)和滲流特征的影響,采用干燥煤樣和飽水煤樣開展了全應(yīng)力-應(yīng)變滲流實(shí)驗(yàn),分析了2種含水狀態(tài)煤樣全應(yīng)力-應(yīng)變特征及滲透率演化規(guī)律;研究成果對(duì)含水煤層瓦斯抽采有一定的指導(dǎo)意義。

1 實(shí)驗(yàn)方案

1.1 實(shí)驗(yàn)煤樣

1)煤樣基礎(chǔ)參數(shù)。實(shí)驗(yàn)煤樣采自山西潞安集團(tuán)余吾煤業(yè)有限責(zé)任公司3#煤層,實(shí)測煤樣水分為1.13%,灰分6.61%,揮發(fā)分為12.59%。

2)煤樣制備。實(shí)驗(yàn)煤樣為原煤煤樣,具體制作方法如下:利用HZ-15 鉆孔取心機(jī),將現(xiàn)場取來的原始煤塊沿垂直層理方向鉆取直徑約為50 mm的煤心,然后用切割機(jī)將取出的煤心切割成φ50 mm×100 mm 的標(biāo)準(zhǔn)煤樣,最后用端磨機(jī)和砂紙將煤樣兩端面打磨平整。

對(duì)制取的標(biāo)準(zhǔn)煤樣進(jìn)行不同含水條件處理:①將煤樣1 置于烘干箱中,在105 ℃溫度下烘干12 h 以上制成干燥煤樣待用;②將煤樣2 采用真空飽水裝置將煤樣制成飽水煤樣待用。

1.2 實(shí)驗(yàn)設(shè)備

實(shí)驗(yàn)采用遼寧工程技術(shù)大學(xué)三軸滲流實(shí)驗(yàn)系統(tǒng)。實(shí)驗(yàn)系統(tǒng)主要由軸向應(yīng)力加載系統(tǒng)、三軸壓力室、伺服液壓控制系統(tǒng)、氣體監(jiān)測系統(tǒng)及應(yīng)變監(jiān)測系統(tǒng)組成。軸向應(yīng)力加載系統(tǒng)通過萬能試驗(yàn)機(jī)對(duì)試樣進(jìn)行加載;三軸壓力室內(nèi)穩(wěn)定的圍壓由伺服液壓控制系統(tǒng)提供;氣體壓力和流量通過氣體壓力表和氣體流量計(jì)獲得;煤樣應(yīng)變通過應(yīng)變監(jiān)測系統(tǒng)實(shí)時(shí)獲取。應(yīng)變監(jiān)測系統(tǒng)主要由反光鏡面、圖測橡膠、高精度攝像機(jī)以及圖像分析軟件構(gòu)成,原理為光學(xué)圖像監(jiān)測,以圖測橡膠膜上白色監(jiān)測區(qū)域變化來推算煤樣軸向變形量。三軸滲流裝置及萬能試驗(yàn)機(jī)如圖1,試件軸向應(yīng)變監(jiān)測如圖2。

圖1 三軸滲流裝置及萬能試驗(yàn)機(jī)Fig.1 Three-axial seepage device and universal test machine

圖2 試件軸向應(yīng)變監(jiān)測Fig.2 Coal sample axial strain monitoring

1.3 實(shí)驗(yàn)步驟

煤層瓦斯主要成分為CH4,通常還包括CO2、H2S、N2以及H2O[15]。實(shí)驗(yàn)采用在較低壓力下與CH4吸附特性、滲流特性相似的CO2氣體,來模擬水分對(duì)煤全應(yīng)力-應(yīng)變過程瓦斯?jié)B流特征的影響。實(shí)驗(yàn)氣體壓力為1 MPa,實(shí)驗(yàn)溫度為30 ℃。具體實(shí)驗(yàn)步驟如下:

1)試樣準(zhǔn)備。用游標(biāo)卡尺測量煤樣直徑和高度,并迅速稱量煤樣質(zhì)量。

2)安裝試件。用專用橡膠膜包裹煤樣后,再套上1 層圖測橡膠膜;將包裹好的煤樣安裝到壓桿與底座之間,并用箍筋箍緊上下兩端,再按照順序依次連接各氣體管路及系統(tǒng);最后密封腔體并檢查裝置氣密性(后2 個(gè)煤樣為鏡像,監(jiān)測試件背面的應(yīng)變量)。

3)初始條件設(shè)定。將腔體內(nèi)注滿水后,用伺服液壓控制系統(tǒng)向密封室中施加一定圍壓,將密封室中空氣排空;設(shè)置實(shí)驗(yàn)溫度為30 ℃,以0.5 MPa為梯度對(duì)煤樣交替施加軸壓和圍壓至5 MPa。

4)吸附平衡。達(dá)到實(shí)驗(yàn)溫度后,持續(xù)通入1 MPa氣壓穩(wěn)定的CO2氣體,使煤樣充分吸附24 h。

5)加載實(shí)驗(yàn)。煤樣充分吸附CO2后打開出氣閥,釋放30 min 的氣體,待出口端氣體流量穩(wěn)定后,開始加載軸向應(yīng)力。軸向應(yīng)力采用位移控制,加載速率0.1 mm/min,直至煤樣完全破壞。

6)含水率測試。飽水煤樣實(shí)驗(yàn)結(jié)束后,迅速取出進(jìn)行稱重,再將稱重后的煤樣放入烘干箱在105 ℃溫度下烘干12 h 以上,直至1 h 內(nèi)試件質(zhì)量變化小于0.005 g,取出煤樣再次迅速稱重,烘干前后煤樣質(zhì)量差為水分質(zhì)量,水分質(zhì)量與烘干前煤樣質(zhì)量百分比即為煤樣含水率,實(shí)測飽水煤樣含水率為2.45%。

7)重復(fù)試驗(yàn)。更換試件為干燥煤樣,重復(fù)以上步驟1)~步驟5)。

1.4 滲透率計(jì)算方法

依據(jù)達(dá)西定律可計(jì)算煤樣的滲透率,具體計(jì)算公式為[9,16]:

式中:K為煤樣實(shí)測滲透率,m2;Q0為氣體流量,m3/s;p0為測量點(diǎn)的大氣壓力,MPa;μ為氣體動(dòng)力黏性,MPa?s;L為試樣長度,m;A為試樣橫截面積,m2;p1為進(jìn)口的氣體壓力,MPa;p2為出口的氣體壓力,MPa。

2 實(shí)驗(yàn)結(jié)果

2.1 煤樣全應(yīng)力-應(yīng)變特征

干燥煤樣和飽水煤樣全應(yīng)力-應(yīng)變曲線及階段劃分如圖3。

圖3 干燥煤樣和飽水煤樣全應(yīng)力-應(yīng)變曲線及階段劃分Fig.3 Total stress-strain curves and stage division of dry coal sample and saturated coal sample

從圖3 可以看出,干燥煤樣全應(yīng)力-應(yīng)變曲線具有非線性壓密階段、線彈性變形階段、應(yīng)變強(qiáng)化階段、應(yīng)力跌落階段和應(yīng)變軟化階段5 個(gè)階段[5,17]。在非線性壓密階段,由于是采用位移加載的方式,軸向應(yīng)變逐漸增大,煤樣初始缺陷逐漸閉合,孔隙率降低,煤樣軸向應(yīng)力隨時(shí)間基本不變;在線彈性壓密階段,煤基質(zhì)產(chǎn)生壓縮變形,軸向應(yīng)力和軸向應(yīng)變呈線性關(guān)系;在應(yīng)變強(qiáng)化階段,軸向應(yīng)力進(jìn)一步加大使煤樣內(nèi)部發(fā)生了損傷,并產(chǎn)生越來越多的微裂紋[5];在應(yīng)力跌落階段,煤樣經(jīng)歷峰值應(yīng)力破壞,其損傷由連續(xù)性損傷發(fā)展為局部性損傷[5],軸向應(yīng)力急劇下降;在應(yīng)變軟化階段,由于裂隙進(jìn)一步發(fā)育,軸向應(yīng)力緩慢下降,軸向應(yīng)變持續(xù)增大。

從圖3 還可以看出,飽水煤樣的全應(yīng)力-應(yīng)變曲線僅具有非線性壓密階段、線彈性變形階段、應(yīng)變強(qiáng)化階段和應(yīng)力跌落階段4 個(gè)階段,應(yīng)變軟化階段消失。

煤樣全應(yīng)力-應(yīng)變曲線可以很好地表現(xiàn)煤樣從受力到破壞的全過程,煤樣力學(xué)參數(shù)見表1。

表1 煤樣力學(xué)參數(shù)Table 1 Mechanical parameters of coal samples

由表1 可知:干燥煤樣抗壓強(qiáng)度為9.50 MPa,彈性模量為2.46 GPa,峰值應(yīng)力為34.49 MPa,應(yīng)力跌落后應(yīng)力為25.54 MPa;飽水煤樣抗壓強(qiáng)度為8.65 MPa,彈 性 模 量 為2.25 GPa,峰 值 應(yīng) 力 為34.42 MPa,應(yīng)力跌落后應(yīng)力為19.85 MPa。對(duì)比而言,飽水煤樣彈性模量和峰值應(yīng)力有所下降,其中,抗壓強(qiáng)度下降了8.95%,彈性模量降低了8.54%,峰值應(yīng)力降低了8.90%,這表明了水分對(duì)煤體力學(xué)性質(zhì)的弱化作用[16]。

在應(yīng)力跌落階段,煤樣處于應(yīng)力極限平衡失穩(wěn)的狀態(tài),煤樣損傷發(fā)展為局部性損傷,應(yīng)力在短時(shí)間內(nèi)大幅度跌落。定義煤樣應(yīng)力跌落階段下降的應(yīng)力占峰值應(yīng)力的百分比為應(yīng)力跌落幅度。由表1 計(jì)算得出,干燥煤樣和飽水煤樣的應(yīng)力跌落幅度分別為25.95%和36.82%。顯然,飽水煤樣應(yīng)力跌落幅度更大,比干燥煤樣應(yīng)力跌落幅度大10.87%。這是由于水分對(duì)煤的軟化作用使煤樣塑性增強(qiáng)、力學(xué)強(qiáng)度降低[18-19];同時(shí),水分的存在會(huì)還使氣體運(yùn)移的通道堵塞,造成局部區(qū)域瓦斯壓力上升,促進(jìn)氣體壓力對(duì)煤體結(jié)構(gòu)的損傷,表現(xiàn)出應(yīng)力跌落幅度增大。

2.2 煤樣滲透率與軸向應(yīng)力關(guān)系

2 種煤樣滲透率與軸向應(yīng)力的關(guān)系如圖4。

圖4 2 種煤樣滲透率與軸向應(yīng)力的關(guān)系Fig.4 Relationship between permeability and axial stress of two types of coal samples

從圖4 可以看出:

1)在峰值應(yīng)力前,干燥煤樣滲透率隨軸向應(yīng)力增大緩慢增大,滲透率從1.05×10-17m2增大到1.08×10-17m2,增長了2.86%。而飽水煤樣在達(dá)到峰值應(yīng)力前滲透率基本不變。

2)軸向應(yīng)力達(dá)到峰值應(yīng)力后,煤樣發(fā)生破壞,干燥煤樣軸向應(yīng)力開始下降并逐漸趨于平穩(wěn),滲透率仍處于增大趨勢;飽水煤樣滲透率在峰值應(yīng)力處急劇增大,從0.45×10-18m2增大到2.90×10-18m2,滲透率增加了5.44 倍。峰值應(yīng)力后,由于煤樣局部損傷嚴(yán)重,位移加載下的軸向應(yīng)力急劇下降,直至煤樣完全破壞。

2.3 煤樣滲透率與軸向應(yīng)變的關(guān)系

2 種煤樣滲透率與軸向應(yīng)變的關(guān)系如圖5。

圖5 2 種煤樣滲透率與軸向應(yīng)變的關(guān)系Fig.5 Relationship between permeability and axial strain of two types of coal samples

從圖5 可以看出:

1)干燥煤樣滲透率隨軸向應(yīng)變?cè)龃蠖龃螅w呈線性關(guān)系;干燥煤樣隨著軸向應(yīng)變?cè)龃螅瑵B透率增長緩慢,從初始滲透率1.05×10-17m2增大到1.20×10-17m2,滲透率增長了14.3%。

2)飽水煤樣滲透率和軸向應(yīng)變的關(guān)系有明顯的階段性,可分為穩(wěn)定滲流和快速滲流2 個(gè)階段。①穩(wěn)定滲流階段:當(dāng)煤樣軸向應(yīng)變小于1.4%時(shí),其滲透率基本保持為初始滲透0.45×10-18m2不變;②快速滲流階段:當(dāng)煤樣軸向應(yīng)變大于1.4%時(shí),煤樣達(dá)到峰值強(qiáng)度發(fā)生破壞,滲透率由0.45×10-18m2急劇增大至3.9×10-18m2,較初始滲透率增加了7.67 倍。

從圖5 還可以發(fā)現(xiàn),干燥煤樣初始滲透率為1.05×10-17m2,飽水煤樣初始滲透率為0.45×10-18m2,干燥煤樣初始滲透率比飽水煤樣初始滲透率更大,是飽水煤樣的23.33 倍。在煤樣達(dá)到峰值應(yīng)力前,干燥煤樣的滲透率始終比飽水煤樣的滲透率大,水分的存在使煤樣滲透率顯著降低。這是因?yàn)樗肿邮菢O性分子,并且煤基質(zhì)主要成分也是極性分子,故煤樣表現(xiàn)出很強(qiáng)的親水性。隨煤樣含水率的增加,水分優(yōu)先吸附在煤基質(zhì)表面導(dǎo)致氣體吸附位減少并占據(jù)滲流通道[20],故氣體滲透率隨含水率增大呈減小趨勢。此外,水分具有濕潤性,吸附性氣體的黏滯阻力性會(huì)隨著水分含量的不同而發(fā)生變化。吸附水分過程中煤樣的吸附特性會(huì)發(fā)生改變,吸附特性從單層吸附變成多層吸附[21-22],最終產(chǎn)生毛細(xì)凝聚作用,并占據(jù)瓦斯?jié)B流的通道,降低了煤巖的有效孔隙率,最終導(dǎo)致煤巖滲透率隨著含水率的增大而減小。

3 討 論

綜上所述,水分對(duì)煤力學(xué)性質(zhì)和滲流特征都會(huì)產(chǎn)生較大影響。2 種煤樣應(yīng)力-應(yīng)變各階段的滲透率見表2。其中,線彈性壓密階段與應(yīng)變強(qiáng)化階段的分界點(diǎn)在斜率變化20%處,應(yīng)變強(qiáng)化階段與應(yīng)力跌落階段分界點(diǎn)在峰值應(yīng)力處,應(yīng)力跌落階段與應(yīng)變軟化階段分界點(diǎn)在最大斜率變化80%處。

表2 2 種煤樣應(yīng)力-應(yīng)變各階段的滲透率Table 2 Permeability at each stage of stress-strain for two coal samples

由表2 可知,煤樣力學(xué)特性受水分影響,飽水煤樣各階段對(duì)應(yīng)軸向應(yīng)力比干燥煤樣各階段對(duì)應(yīng)軸向應(yīng)力低8.9%~20.4%,且應(yīng)變軟化階段消失。對(duì)比各階段軸向應(yīng)變和滲透率可以發(fā)現(xiàn),飽水煤樣各階段軸向應(yīng)變比干燥煤樣各階段軸向應(yīng)變低5.5%~29.4%;飽水煤樣各階段滲透率比干燥煤樣各階段滲透率低79.3%~95.2%。全應(yīng)力-應(yīng)變各個(gè)階段飽水煤樣滲透率都遠(yuǎn)低于干燥煤樣,在應(yīng)力跌落階段末段飽水煤樣滲透率仍低于干燥煤樣79.3%。因此,水分的存在不僅使煤樣力學(xué)性能降低,還會(huì)導(dǎo)致煤樣初始滲透率及煤樣全應(yīng)力-應(yīng)變過程滲透率降低。

對(duì)于高瓦斯低滲透煤層而言,現(xiàn)場通常采用開采保護(hù)層、水力壓裂、水力割縫、水力沖孔、CO2相變預(yù)裂及高壓空氣爆破致裂等方式增強(qiáng)煤層透氣性,以提高煤層瓦斯抽采效率。采用水力壓裂、水力割縫及水力沖孔等水力化措施增強(qiáng)煤層透氣性必然導(dǎo)致煤層含水率增大,通常處于飽水狀態(tài),這種情況下,水分的大量存在抑制瓦斯流動(dòng),實(shí)際降低了煤層增透效果。因此,需要及時(shí)對(duì)水力壓裂、水力割縫及水力沖孔等水力化增透措施過程中產(chǎn)生的水進(jìn)行疏排。此外,當(dāng)煤層初始含水率較高時(shí),無論是否采用水力化增透措施,加強(qiáng)煤層排水也有利于提高煤層透氣性。

4 結(jié) 語

1)干燥煤樣和飽水煤樣具有不同的全應(yīng)力-應(yīng)變特征。干燥煤樣全應(yīng)力-應(yīng)變曲線具有非線性壓密階段、線彈性變形階段、應(yīng)變強(qiáng)化階段、應(yīng)力跌落階段和應(yīng)變軟化階段5 個(gè)階段;而飽水煤樣全應(yīng)力-應(yīng)變曲線僅具有4 個(gè)階段,全應(yīng)力-應(yīng)變曲線中應(yīng)變軟化階段消失。

2)水分對(duì)煤體力學(xué)特性有一定的弱化作用。飽水煤樣與干燥煤樣相比,抗壓強(qiáng)度下降了8.95%,彈性模量降低了8.54%,峰值應(yīng)力降低了8.90%,應(yīng)力跌落幅度增大了10.87%。

3)干燥煤樣滲透率隨應(yīng)變?cè)龃蠖龃螅w呈線性關(guān)系;飽水煤樣滲透率和應(yīng)變的關(guān)系有明顯的階段性,可分為穩(wěn)定滲流階段和快速滲流階段。

4)為提高煤層增透效果,應(yīng)加強(qiáng)疏排水力增透措施產(chǎn)生的水;當(dāng)煤層初始含水率較高時(shí),無論是否采用水力化增透措施,加強(qiáng)煤層排水也有利于提高煤層透氣性。

主站蜘蛛池模板: www.日韩三级| 亚洲制服丝袜第一页| 爽爽影院十八禁在线观看| 国产玖玖视频| 久久一本日韩精品中文字幕屁孩| 国产精品露脸视频| 亚洲视频欧美不卡| 久久久久国产精品嫩草影院| 广东一级毛片| 色一情一乱一伦一区二区三区小说| 狠狠综合久久久久综| 色吊丝av中文字幕| 91免费国产在线观看尤物| 成人综合网址| 国产微拍一区二区三区四区| 亚洲天堂在线视频| 国产黄网永久免费| 91小视频在线| 色爽网免费视频| 国产成人永久免费视频| 91成人精品视频| 欧美福利在线播放| 91精品国产一区自在线拍| 中国精品自拍| 久久五月天综合| 国精品91人妻无码一区二区三区| 国产二级毛片| 亚洲中文字幕97久久精品少妇| 精品五夜婷香蕉国产线看观看| 性69交片免费看| 日韩亚洲高清一区二区| 成人自拍视频在线观看| 中文字幕亚洲专区第19页| 夜夜高潮夜夜爽国产伦精品| 亚洲国产AV无码综合原创| 国产又色又刺激高潮免费看| 蜜芽一区二区国产精品| 亚洲丝袜第一页| 99久久免费精品特色大片| 婷婷午夜天| 日韩国产 在线| 国产农村妇女精品一二区| 亚洲欧美日韩成人高清在线一区| 91热爆在线| 蝌蚪国产精品视频第一页| 国产第一页第二页| 小13箩利洗澡无码视频免费网站| 午夜高清国产拍精品| 欧美成人精品一区二区| 欧美怡红院视频一区二区三区| 日本高清免费一本在线观看 | 91精品啪在线观看国产60岁 | 亚洲久悠悠色悠在线播放| 她的性爱视频| 日韩视频福利| 日本福利视频网站| 欧美成人aⅴ| 国产精品三级专区| 欧美爱爱网| 精品无码日韩国产不卡av| 色九九视频| 国产欧美日韩在线一区| 亚洲日本中文综合在线| 二级毛片免费观看全程| 91色在线观看| 亚洲国产成人综合精品2020 | 久久男人视频| 国产毛片不卡| 天天做天天爱夜夜爽毛片毛片| 2021国产v亚洲v天堂无码| 五月激情综合网| 伊人丁香五月天久久综合 | 国产交换配偶在线视频| 亚洲Av激情网五月天| 欧美日韩中文字幕在线| 国产区成人精品视频| 最新国产成人剧情在线播放| lhav亚洲精品| 亚洲一区波多野结衣二区三区| 亚洲二区视频| 色婷婷啪啪| 亚洲三级电影在线播放|