



摘""""" 要: 隨著人類生活質量的提高,膽固醇的檢測成為一個重要的研究課題。電化學方法具有選擇性強、檢測速度快等優點。綜述了近年來利用電化學方法在有酶和無酶的條件下測定膽固醇含量的電化學原理和最新進展,并對用電化學方法檢測膽固醇進行了展望。
關" 鍵" 詞:膽固醇;有酶;無酶;電化學傳感器
中圖分類號:O657.1"""" 文獻標識碼: A"""" 文章編號: 1004-0935(2023)08-1193-04
膽固醇是一種化學式為C27H46O的環戊烷多氫菲的衍生物。膽固醇是人體內最普遍存在的化合物,主要存在于大腦的中樞神經組織,另外還存在于腎臟、脾臟、皮膚以及膽汁。膽固醇能經由多種途徑進入身體。高膽固醇會引起慢性心臟病、高血壓、腦血栓等致命的心腦血管病[1-2]。目前,膽固醇的檢測方法有高效液相色譜法[3-4],比色法[5-6]和光譜法[7-8]等,這些檢測方法一般存在檢測周期長、靈敏度低、選擇性、儀器標準化、樣品預處理要求高等缺點。另一方面,電化學方法[9-10]由于具有選擇性強、制備方法簡單、儀器簡單、成本低、操作方便、檢測速度快等特點,受到研究者的廣泛關注[11]。電化學檢測膽固醇的方法包括包括差分脈沖伏安法(DPV)[12]、安培法[13-14,15-17]、電荷轉移(CT)[18]、循環伏安法(CV)[19-22]、線性掃描伏安法""""" (LSV)[23-24]、電化學發光法(ECL)[25]和電化學阻抗譜(EIS)[26]。在這些方法中,電流測量法是許多研究中最常用和最敏感的方法[27]。隨著技術的發展,基于各種材料制備出的膽固醇電化學傳感器成為研究熱點之一。
1" 電化學方法檢測膽固醇的原理
1.1" 基于膽固醇氧化酶電化學檢測膽固醇的原理
膽固醇氧化酶(ChOx)是一種含有黃素腺嘌呤二核苷酸(FAD)的葉黃素酶,在氧氣存在下催化膽固醇,生成膽固醇-4-烯-3-酮和H2O2[28]。基于ChOx電化學檢測膽固醇的原理主有3類,如圖1所示。
第一類:氧氣作為電子傳輸介質,用氧電極或H2O2電極測量氧消耗或氧化產物H2O2濃度來檢測膽固醇含量。
第二類:使用電子介體,如二茂鐵及其衍生" 物[29-30]、鐵氰化物[31]、染料分子[32-33]和苯酚[34]等,替代氧氣和H2O2在電極表面和ChOx活性中心之間(FAD)有效傳遞電子,通過檢測電子介體在電極表面氧化還原得失電子數檢測膽固醇的含量。
第三類:隨著各種新型電極材料的研制,基于電極與ChOx之間的直接電子轉移(DET)的電化學檢測膽固醇方法也隨之產生,膽固醇的含量可以通過酶在電極表面的直接氧化還原得失電子數來測定。
1.2" 無酶電化學檢測膽固醇的原理
為了克服酶在使用過程中受到儲存和分析條件的限制,近年發展了無酶電化學檢測膽固醇的方法。無酶電化學測定是通過直接在電極表面電化學催化膽固醇或通過氧化還原劑電子介質來傳導膽固醇與電極表面電子進行間接檢測,如圖2所示。
2" 電化學檢測膽固醇研究進展
2.1 "基于膽固醇氧化酶電化學檢測膽固醇的進展
基于ChOx的膽固醇電化學檢測是通過固化附著在工作電極表層上的ChOx 特異性識別和催化膽固醇,利用天然化學物質如氧氣為主要電子傳遞介質,來測定氧氣消耗及ChOx氧化產物含量的傳感器。其主要機理是ChOx催化游離膽固醇在O2存在下生成膽固醇-4-烯-3-酮和H2O2,然后用氧電極或H2O2電極測定膽固醇含量。夏天子[35]等利用一類新型的二維過渡金屬碳化物、氮化物(MXene)和殼聚糖(Chit)的有益特性設計成了膽固醇傳感器,如圖3所示。Chit和Ti3C2Tx作為支撐ChOx的底物,并在提高電導率方面發揮作用。修飾電極對H2O2電化學響應與膽固醇濃度在0.3~4.5 nmol·L-1之間有良好的線性關系,它的檢測限為0.11 nmol·L-1,靈敏度為132.66 μA·(nmol·L-1)-1·cm-2。
薛中華[36]等研制出具有類似于過氧化物酶的特性MoS2@PBNCS,對3,3',5,5'-四甲基聯苯胺(TMB)與H2O2 反應起到催化作用。在最佳實驗條件下,膽固醇的濃度與TMB的還原電流在0.3~100 μmol·L-1成良好的線性關系,檢出限為12 nmol·L-1。SALAZAR等開發了一種利用鎳氧化物(NiO)修飾電極的膽固醇電化學傳感器[37]。他們發現,在中性環境下,NiO改性電極可以有效地探測H2O2,將NiO修飾電極與ChOx組裝成膽固醇電化學生物傳感器,靈敏度達到7.8 μA·(mmol·L-1)-1·cm-2,檢測線為""" 20 μmol·L-1。總體上,這種檢測方法借助ChOx氧化產物濃度來測量膽固醇,使用這種方法會存在很多干擾物質,反應時需要借助游離氧的催化作用,可能會造成實驗結果不準確。
基于電子介質和ChOx的電化學檢測膽固醇是利用電子介質作為電極和ChOx電活性中心之間的電子傳遞通道,透過測量小分子電子介質的電化學信號的改變來測量膽固醇含量。HALDER等將二茂鐵作為電子介質,利用高支化多聚物基質將ChOx和石墨烯納米片連接制修飾電極,對膽固醇的檢測限為0.5 μmol·L-1,線性響應范圍為2.5~25μmol·L-1,靈敏度380 mA·(mol·L-1)-1·cm-2[37]。此方法可以使用的電子介質有限,需要進一步的探索。介質仍然會與血液中的干擾物質發生反應,影響準確性和效率,同時很難在電極和酶表面附近保持介質的存在。
利用酶與電極表面的直接電子傳遞來檢測膽固醇。范佳琳等將泡沫介孔硅(MCF)修飾的還原氧化石墨烯復合材料(McF@rGo)作為修飾電極,MCF的多孔給固定酶提供了很好的場所,在MCFs@rGO的輔助下,可以在固定化ChOx和電極之間實現有效的DET[38]。碳材料由于比表面積大"" (3 000 m2·0-1)、無毒、來源豐富、成本低廉、導電性好、綠色環保以及良好的化學穩定性等優點而被廣泛應用[39]。另外,導電聚合物、金屬納米材料、復合材料等材料也可以實現固定化ChOx和電極之間實現的DET[40-46]。WU[47]等利用分層組裝(LBL)技術開發了一種膽固醇電化學傳感器,它由水溶性聚乙烯亞胺還原氧化石墨烯復合材料和ChOx組成的。在優化條件下,所制備的電極的膽固醇濃度呈較寬的線性范圍1×10-5~9.331×10-3mol·L-1,檢測限為0.021 μmol·L-1。這種檢測過程不受電活性物質的干擾,不受溶解氧的影響,大大減少了溶解氧與電極之間競爭再生酶的干擾效應。
2.2" 無酶膽固醇電化學傳感器研究進展
非酶膽固醇傳感器主要是借助金屬納米材料使膽固醇在電極表面直接電化學氧化。AKSHAYA[22]等通過包覆聚吡啶的磷酸釕納米團簇促進膽固醇的電化學氧化來測量膽固醇,如圖4所示。分散在聚吡咯中的聚吡咯納米團簇促進膽固醇的電化學氧化,發生負電位轉移,膽固醇的OH基團被氧化為—C=O基團。電化學線性響應范圍為"nbsp;" 0.16~20.0 nmol0電-1,檢測限為5.4×10-9 mol·L-1。 KHALIQ[14]等研究了一種基于Cu2O-TiO2雜化納米結構的新型安培非酶促膽固醇電化學傳感器。通過鈦(Ti)箔的陽極氧化反應合成了二氧化鈦納米管(TNTs),表面通過化學浴沉積(CBD)方法負載上氧化銅納米顆粒(NPs"),制備得到的樣品具有較好的形貌。這種材料具有良好的電化學活性、穩定性以及較好的抗靜電性等特點。"在添加膽固醇后,與原始的低檢測限(0.05 μmol·L-1)和快速響應時間(3 s)相比,混合電極的靈敏度增加了5倍。THAKUR[12]等開發了一種基于聚(離子液體)-鈷聚氧金屬酸鹽的新型電化學傳感器,該新型復合材料對膽固醇的非酶電化學檢測限最低為 1 fmol·L-1 (1×10-15 mol·L-1),響應時間為5 s,靈敏度為""" "64 μA·(μmol·L-1)-1·cm-2。非酶基膽固醇傳感器最大的優點是易于實現長期穩定的目標檢測,克服了生物酶對環境溫度、pH值等因素的脆弱性,為快速電子遷移提供了優化界面,并支持高性能連續監控應用場景。
3" 結 論
酶的使用受到儲存和分析條件的限制,成本很高。由于這些限制,研究者們正在努力開發新的無酶膽固醇電化傳感器。無酶膽固醇電化學傳感器作為新一代的膽固醇傳感器,比酶基膽固醇電化學傳感器具有更好的性能和研究前景。目前,膽固醇直接電化學氧化的機理尚不清楚,需要進一步研究。 大多數用于人體膽固醇含量檢測的新型電極有待開發。隨著技術的進一步發展和推廣,高性能膽固醇電化學檢測儀器將為高血壓和心血管疾病患者帶來福音。
參考文獻:
[1] IKONEN E.Mechanisms \"https://journals.physiologynsport: defects and human disease[J].Phys Rev,2006,86(4) : 60-63.
[2] AHARONIAN F, AN Q, AXIKEGU, et al. Construction and on-site performance of the LHAASO WFCTA camera [J]. The European Physical Journal C, 2021, 81(7):1041-1049.
[3] GRUN C H, BESSEAU S. Normal-phase liquid chromatography- atmospheric-pressure photoionization-mass spectrometry analysis of cholesterol and phytosterol oxidation products [J]. J Chromatogr A, 2016, 1439: 74-81.
[4] ZHAO H T, YANG Y, CHIN L K, et al. Correction: Optofluidic lens with low spherical and low field curvature aberrations [J]. Lab Chip, 2016, 16(11): 2135-2143.
[5] 馬麗娜,葛慶聯,陳大偉,等. 酶比色法測定禽蛋中的膽固醇含量[J]. 食品安全質量檢測學報,2017(8):2880-2884.
[6] NIRALA N R, SAXENA P S, SRIVASTAVA A. Colorimetric detection of cholesterol based onenzyme modified gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 190:506-512.
[7] ODO J, INOGUCHI M, OHIRA S, et al. Spectrophotometric determination of hydrogen peroxide, glucose, uric acid, and cholesterol using peroxidase-like activity of an Fe(III) complex othiacalix[4]arenetetrasulfonate attached to an anion-exchanger Takayama A[J].Anal Sci,2013,29( 11) :1041.
[8] LOTFY H M, HEGAZY M A M.Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods[J]. Spectrochim Acta A,2013,113: 107-114.
[9] MARTíN M,SALAZAR P,LVAREZ R,et al.Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition[J]. Sens Actuators B,2017,240: 37-45.
[10] 張秀花,萬凱,梁振興,等. 基于聚吡咯的膽固醇電化學生物傳感器的制備及性能研究[J]. 現代食品科技,2015(4):170-174.
[11] ZHANG Y H,WANG E K.Chin J Anal Lab,1993,12( 5) : 1617-1624.
[12] THAKUR N,KUMAR M, DAS A S, et al. PVIM-Co(5)POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol [J]. Chem Commun (Camb), 2019, 55(34): 5021-5024.
[13] LATA K, DHULL V, HOODA V. Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in serum [J]. Biochem Res Int, 2016, 2016: 1545206-1545217.
[14] KHALIQ N, RASHEED M A, CHA G, et al. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles [J]. Sensors and Actuators B: Chemical, 2020, 302-340.
[15] SHUKLA S K,TURNER A P,TIWARI A. Cholesterol oxidase functionalised polyaniline/carbon nanotube hybrids for an amperometric biosensor [J]. J Nanosci Nanotechnol, 2015, 15(5): 3373-3380.
[16] SHRESTHA B K, AHMAD R, SHRESTHA S, et al. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application [J]. Biosens Bioelectron, 2017, 94: 686-789.
[17] PHETSANG S, JAKMUEE J, MUNGKORNASWAKUL P, et al. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly (3-aminobenzoic acid) film-modified screen-printed carbon electrode [J]. Bioelectrochemistry, 2019, 127: 125-160.
[18] XU H, ZHOU S, JIANG D, et al. Cholesterol oxidase/triton X-100 parked microelectrodes for the detection of cholesterol in plasma membrane at single cells [J]. Anal Chem, 2018, 90(2): 1054-1062.
[19]ANTUCH M, MATOS-PERLTA Y, LLANES D, et al. Bimetallic Co2+ and Mn2+ hexacyanoferrate for hydrogen peroxide electrooxidation and its application in a highly sensitive cholesterol biosensor [J]. ChemElectroChem, 2019, 6(5): 1567-1640.
[20] WU S, CHEN J, LIU D, et al. A biocompatible cerasome based platform for direct electrochemistry of cholesterol oxidase and cholesterol sensing [J]. RSC Advances, 2016, 6(75): 70781-71881.
[21] LIU X, NAN Z, QIU Y, et al. Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol [J]. Electrochimica Acta, 2013, 90: 203-212.
[22] AKSHAYA" K, VARGHESE A, NIDHIN M, et al. Amorphous Ru-Pi nanoclusters coated on polypyrrole modified carbon fiber paper for non-enzymatic electrochemical determination of cholesterol [J]. Journal of The Electrochemical Society, 2019, 166(12): B1016-B1027.
[23] HUANG Y, TAN J, CUI L, et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol [J]. Biosens Bioelectron, 2018, 102: 560-567.
[24] ZHU J,YE Z,FAN X, et al.Lotus sprout-templated porous cobalt-doped borate bioglass with antibacterial properties and multiple-layered osteogenic promotion[J].Int. J Nanomed, 2019, 14, 835-850.
[25] YUAN Z. The photoacoustic spectral reconstruction method [J]. Journal of Biosensors amp; Bioelectronics, 2012, 03(01):288-292.
[26] LEE Y J, EOM K S, SHIN K S, et al. Enzyme-loaded paper combined impedimetric sensor for the determination of the low-level of cholesterol in saliva [J]. Sensors and Actuators B: Chemical, 2018, 271: 73-81.
[27] UMAR A, RAHMAN M M, AL-HAJRY A, et al. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures [J]. Talanta, 2009, 78(1): 284-293.
[28] ARYA S K, DATTA M, MALHOTRA B D. Recent advances in cholesterol biosensor [J]. Biosens Bioelectron, 2008, 23(7): 1083-1183.
[29] ZHENG L, SUN J, XIONG L, et al. Improving the performance of platinum nanocrystal catalysts by square-wave potential electrochemical pretreatment [J]. Fuel Cells, 2010, 10(3): 384-393.
[30] NIRALA N R, SAXENA P S, SRIVASTAVA A. Colorimetric detection of cholesterol based onenzyme modified gold nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 190:506-512.
[31] XU C X,HUANG K J, LU L,et al." A novel electro- chemicalnovel electrot construction based on layered CuS-graphene composite and Au nanoparticles[J]. Anal. Bioanal.Chem,2014,406,6943-6951.
[32] YUAN B, XU C, ZHANG D, et al. Electrografting of amino-TEMPO on graphene oxide and electrochemically reduced graphene oxide for electrocatalytic applications[J].Electrochemistry Communications, 2017, 81:18-23.
[33] PERIRA A C, AGUIAR M R, KISNER A, et al. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube [J]. Sensors and Actuators B: Chemical, 2007, 124(1): 269-345.
[34] ABDUL-HAMEAD A "A, OTHMAN F M, FAKHRI M "A."" FAKHRI MD A: 269-MnO2 nanocomposite particles for cholesterol sensors[J]. Journal of Materials Science: Materials in Electronics, 2021,32(11):15523-15532.
[35] XIA T, LIU G, WANG J, et al. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol [J]. Biosens Bioelectron, 2021, 183: 113243-113250.
[36] 薛中華,彭昊,薛新,等.二硫化鉬-普魯士藍納米酶的制備及其對膽固醇的電化學傳感[J].西北師范大學學報(自然科學版),2019,55(3):59-65.
[37] SHRESTHA B K,AHMAD R,SHRESTHA S,et al.In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application[J]. Biosens. Bioelectron, 2017, 94:686-693.
[38]CUI L, LU M, LI Y, et al. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine[J]. Biosensors amp; Bioelectronics, 2018, 102:87-93.
[39] 李紅霞,吳杰,茍小峰,等.MOFs的制備及電化學性能的研究[J].當代化工,2022,51(5):1103-1107.
[40] WANG H, TENG F, ZHANG L, et al. Meso-cellular silicate foam-modified reduced graphene oxide with a sandwich structure for enzymatic immobilization and bioelectrocatalysis [J]. ACS Appl Mater Interfaces, 2019, 11(33): 29522-29558.
[41] SHARMA D, LEE J, SEO J, et al.RapidRLINK \"https://www.sciencedirect.com/science/article/pi2 quantum dots fluorescence turn-off[J].Sensors,2017,17( 9) : 824-827.
[42] WANG K, LI Z, WANG C, et al.Assembled cationic dipeptide-gold nanoparticle hybrid microspheres for electrochemical biosensors with enhanced sensitivity[J]. Colloid Interface Sci,2019,557: 628-633.
[43] XIA T, LIU G, WANG J, et al. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol [J]. Biosens Bioelectron, 2021, 183: 113243-113258.
[44] PHERSANG S, JAKMUNEE J, MUNGKORNAWAKUL P, et al. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3- aminobenzoic acid) film-modified screen-printed carbon electrode [J]. Bioelectrochemistry, 2019, 127: 125-160.
[45] ZHU J, YE Z, FAN X, et al. A highly sensitive biosensor based on Au NPs/rGO-PAMAM-Fc nanomaterials for detection of cholesterol [J]. Int J Nanomedicine, 2019, 14: 835-884.
[46] KAARIZ D G A,DARABI E,ELAHI S M.Electrochemical sensing of cholesterol based on MWCNTs loaded nanoparticles[J].Theor Appl Phys,2020,14: 339-349.
[47] WU S,HAO J,YANG S,et al.Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing[J].Sens Actuators B,2019,298: 126856-126865.
Research Progress in Electrochemical Methods for Cholesterol Detection
LYU Long-yang, GU Ting-ting, SHANG Shuai, LIN Chang-rui
(School of Chemical Engineering, University of Science and Technology Liaoning, Anshan Liaoning 114051, China)
Abstract: With the improvement of human life quality, measuring cholesterol has become an important research topic. Electrochemical detection of cholesterol has the advantages of high selectivity and high speed. In this paper, the electrochemistry principle and the latest progress in the determination of cholesterol by electrochemical methods in the presence and absence of enzymes were reviewed, and the prospect of electrochemical methods for the determination of cholesterol was also discussed.
Key words:" Cholesterol; Enzymes; Enzyme-free; Electrochemical sensors