





摘要:設f(z)為全模群SL(2,Z)上權為偶數k的Hecke特征形式,L(s,sym2f)為其對應的對稱冪平方L-函數,λsym2f(n)為對稱冪平方L-函數L(s,sym2f)的Fourier展開式中第n個正規化Fourier系數.本文借助Newton和Thorne近期關于函數Symjf的重要工作以及自守L-函數的亞凸界和均值估計結果,研究了λsym2f(n)在四個整數平方和序列上的三次均值估計和四次均值估計,得到了均值估計的漸近公式,改進了之前的結果.
關鍵詞:Hecke特征形式;對稱冪平方L-函數;Fourier系數;四個整數平方和序列
中圖分類號:O156.4 文獻標志碼:A
Mean Value Estimates for Higher Momentsof Fourier Coefficients of Symmetric Square L-functions
WANG Pan
(School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
Abstract:Let f(z) be a Hecke eigenform of even weight k for the full modular group SL(2,Z),L(s,sym2f) is the symmetric square L-function associated of f. Denote by
λsym2f(n) the nth normalized Fourier coefficient of the Fourier expansion of symmetric square L-function L(s,sym2f). In this paper, we establish asymptotic formulas for the third moment of
λsym2f(n) and the fourth moment of λsym2f(n) over a sequence of sum of squares of four integers. We improve previous results and our improvement benefit from the recent work of Newton and Thorne in function Symjf and subconvex bounds and mean value estimates of the automorphic L-function.
Key words:Hecke eigenform; symmetric square L-function; Fourier coefficient; sequence of sum of squares of four integers
0 引言
1 基本引理
2 主要定理的證明
3 結語
在現代解析數論中,對自守尖形式的Fourier系數的均值估計已經受到許多數學家和學者的關注,成為了一個重要的研究課題.目前,已有大量論文從各個方面對自守尖形式的Fourier系數做了研究,本文研究的是四個整數平方和序列上對稱冪平方L-函數L(s,sym2f)Fourier系數的均值估計.本文對定理結果的改進一方面得益于Newton和Thorne對symjf做出的突破性進展,這使得我們可以研究更高階的對稱冪L-函數,從而對Dirichlet級數重新進行分解,另一方面得益于GL(3)上L-函數L(s,sym2f)更好的亞凸界結果.尖形式是數論中一個重要且有趣的課題,值得更多學者研究.
參考文獻:
[1] DELIGNEE P.La Conjecture de Weil Ⅰ[J].Inst Hautes tudes Sci Publ Math,1974,43(1):273-307.
[2] FOMENKO O M.Identities involving the coefficients of automorphic L-functions [J].Math Sci,2006,133(1):1749-1755.
[3] ICHIHARA Y.Estimates of a certain sum involving the coefficients of cusp forms in weight and levelaspects [J].Lith Math,2008,48(2):188-202.
[4] TANG H C.A note on the Fourier coefficients of Hecke-Maass forms [J].Number Theory,2013,133(4):1156-1167.
[5] JIANG Y,Lü G S.Uniform estimates for sums of coefficients of symmetric square L-functions [J].Number Theory,2015,148(29):220-234.
[6] FOMENKO O M.Mean value theorems for automorphic L-functions [J].St Petersburg Math,2008,19(1):853-866.
[7] TANG H C.Estimates for the Fourier coefficients of symmetric square L-functions [J].Arch Math (Basel),2013,100(1):123-130.
[8] HE X.Integral power sums of Fourier coefficients of symmetric square L-functions [J].Proc Am Math Soc,2019,147(1):2847-2856.
[9] LIU H.The Average Behavior of Fourier Coefficients of Symmetric Power L-Functions [J].Bulletin of the Malaysian Mathematical Sciences Society,2023,46(1):1-15.
[10] ZHAI S.Average behavior of Fourier coefficients of cusps forms over sum of two squares [J].Number Theory,2013,133(11):3862-3876.
[11] SHARMA A,SANKARANARAYANAN A.Discrete mean aquare of the coefficients of symmetric square L-functions on certain sequence of positive numbers [J].Res Number Theory,2022,8(1):1-13.
[12] SHARMA A,SANKARANARAYANAN A.On the average behavior of the Fourier coefficients of jth symmetric power L-function over certain sequences of positive integers [J].Czech Math,2023,73(3):885-901.
[13] HUA G D.The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers [J].Res Number Theory,2022,8(95):1-20.
[14] SHARMA A,SANKARANARAYANAN A.Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence [J].Rend Circ Mat Palermo Series II,2023,72(1):1399–1416.
[15] NEWTON J,THORNE J A.Symmetric power functoriality for holomorphic modular forms [J].Publ Math IHES,2021,134(1):1-116.
[16] BOURGAIN G.Decoupling,exponential sums and the Riemann zeta function [J].Am Math Soc,2017,30(1):205-224.
[17] LIN Y,NUNES R,QI Z.Strong Subconvexity for Self-Dual GL(3) L-Functions [J].International Mathematics Research Notices ,2023,13(1):11453-11470.
[18] PERELLI A.General L-functions [J].Ann Mat Pura Appl,1982,130(1):287-306.
[19] JIANG Y,LV G S.On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms [J].Acta Arithmetica,2014,3(166):231-252.
[20] ANATOLIJ A K,MELVYN B N.Basic Analytic Number Theory [M].Berlin:Springer-Verlag,1993:64.
[責任編輯:趙慧霞]