








摘要:考慮到單值直覺中智集能更加準(zhǔn)確描述不確定性、不一致性、不連續(xù)性信息,基于熵權(quán)TODIM和TOPSIS融合方法,建立了單值直覺中智集環(huán)境下的熵權(quán)TODIM和TOPSIS融合模型,并且將其應(yīng)用于解決多屬性決策問題.通過兩個(gè)實(shí)際案例分析了該方法的可行性和有效性,并將該方法與常用的方法進(jìn)行對比.結(jié)果表明,單值直覺中智集環(huán)境下的熵權(quán)多屬性決策方法能夠給出合理可行的決策方案,并且更加貼切地處理不確定信息,有助于人們進(jìn)行決策.
關(guān)鍵詞:信息熵;單值直覺中智集;TODIM;TOPSIS;多屬性決策
中圖分類號(hào):O159 文獻(xiàn)標(biāo)志碼:A
Multi-attribute Decision Making of Single-valued IntuitionisticNeutrosophic Sets Based on Entropy Weight and Its Application
TIAN Sha-sha,JIN Jian-hua
(School of Sciences, Southwest Petroleum University, Chengdu 610500, China)
Abstract:Considering that single-valued intuitionistic neutrosophic sets could describe uncertainty, inconsistency and discontinuity information more accurately, based on entropy weight TODIM and TOPSIS fusion method, the fusion model of entropy-weighted TODIM and TOPSIS under single-valued intuitionistic neutrosophic sets’ environment is established, and it is applied to solve multi-attribute decision-making problems. The feasibility and effectiveness of this approach is analyzed through two practical cases including teacher recruitment and project investment of alternative companies, and the approach is compared with the commonly used methods. The results show that the multi-attribute decision-making method with entropy weight can give reasonable and feasible decision scheme and deal with uncertain information more appropriately, which is helpful for people to make decisions.
Key words:information entropy; single-valued intuitionistic neutrosophic set; TODIM; TOPSIS; multi-attribute decision making
在多屬性決策中,大多數(shù)決策信息具有模糊性和不確定性,由于決策者思維的模糊性和認(rèn)知局限性,難以用數(shù)值精確地表達(dá).為此,Zadeh[1]提出了模糊集概念.隨后模糊集理論得到了迅速發(fā)展和廣泛應(yīng)用.由于模糊集僅用隸屬度函數(shù)表示模糊信息,不能表示模糊信息的非隸屬度.Atanassov[2]引入了非隸屬度函數(shù),提出直覺模糊集概念.考慮到隸屬度和非隸屬度不一定由數(shù)值來刻畫,可能用區(qū)間來表達(dá)信息更準(zhǔn)確.因此,Atanassov 和 Gargov[3]提出區(qū)間直覺模糊集,用區(qū)間數(shù)表達(dá)信息的隸屬度和非隸屬度.盡管直覺模糊集和區(qū)間直覺模糊集能有效處理不完整的信息,但是它們不能處理不確定和不一致信息.于是,Smarandache[4]在直覺模糊集的基礎(chǔ)上添加了一個(gè)獨(dú)立的不確定隸屬度,提出了中智集概念.為了便于實(shí)際應(yīng)用,單值中智集及其集結(jié)算子性質(zhì)相繼被研究[5].考慮到單個(gè)數(shù)值有時(shí)不能準(zhǔn)確描述事物的隸屬度、不確定度和非隸屬度,因此,區(qū)間中智集被提出[6].Ye[7]定義了基于歐氏距離和海明距離的區(qū)間中智集之間的相似度量,并且給出了基于相似度的多屬性決策方法.為了簡化計(jì)算,一種基于聚合算子的簡化中智集多屬性決策方法也被提出[8].直覺模糊集[9-11]和中智集[12-16]的應(yīng)用研究非常豐富.作為直覺梯形模糊數(shù)的擴(kuò)展形式,單值梯形中智數(shù)被提出[17],并且在認(rèn)知計(jì)算中提高了描述不確定和不一致信息的能力.
近年來,在解決決策問題的過程中,越來越多的決策者使用信息熵來確定屬性的權(quán)重,這是為了避免過多考慮決策者的主觀因素,從而結(jié)果更加符合實(shí)際.目前有許多方法可以解決多屬性決策問題,并且這些方法都與熵權(quán)法相結(jié)合,例如熵權(quán)法與TOPSIS方法結(jié)合應(yīng)用于供應(yīng)鏈選擇[18]、研究生復(fù)試排名[19]、提高利用率[20]、風(fēng)險(xiǎn)評估[21-22]以及醫(yī)療診斷[23]等方面.Arya[24]利用熵權(quán)法與TODIM和VIKOR方法結(jié)合解決多屬性決策問題,Yang等[25]提出了基于TODIM和指數(shù)概率猶豫模糊熵的概念來解決多屬性決策問題,此外,該方法還被應(yīng)用于解決選址[26]和風(fēng)險(xiǎn)評估[27]等領(lǐng)域.TOPSIS方法和TODIM方法在解決多屬性問題中各有優(yōu)劣,為了揚(yáng)長避短,本文引用改進(jìn)的TOPSIS和TODIM方法[28],提出一種單值直覺中智集環(huán)境下的多屬性決策方法,既簡化了原始方法的計(jì)算復(fù)雜性,又考慮了決策者在決策過程中的主觀意愿,使得決策結(jié)果更加真實(shí).
4.3 結(jié)果分析
為了驗(yàn)證所提出方法的可行性和有效性,本文將以上兩個(gè)案例分別與常用的方法進(jìn)行比較.
4.3.1 案例一分析
案例一中的數(shù)據(jù)來源于文獻(xiàn)[31],對數(shù)據(jù)做了處理后,將單值直覺中智集退化為單值中智集.在以往的文獻(xiàn)中,有很多解決單值中智集的決策方法.例如,文獻(xiàn)[31]提出的SVNDPWA和SVNDPWG方法,文獻(xiàn)[32]提出的SVNDWWA和SVNDWGA.將本文提出的新方法與常用的方法進(jìn)行比較,結(jié)果如表7所列.
通過表7的比較結(jié)果可以發(fā)現(xiàn),最優(yōu)方案均為A2,次優(yōu)方案均為A4,其他備選方案的排序稍微有所差別,這是因?yàn)樾路椒紤]了決策者在決策過程中的主觀意愿,并且由于新方法與其他四種方法在具體思想上有區(qū)別,因此排序存在差異.通過以上比較可以發(fā)現(xiàn),本文所提出的新方法是可行的.
4.3.2 案例二分析
案例二的數(shù)據(jù)是來源于文獻(xiàn)[30],文獻(xiàn)[30]使用余弦度量方法解決該單值直覺中智集環(huán)境下的多屬性決策問題,將該方法與新提出的方法進(jìn)行比較,如表8所列.
通過表8可以發(fā)現(xiàn),所有方法的最優(yōu)方案均為A4,次優(yōu)方案均為A2,新方法與另一種方法相比,最優(yōu)方案和次優(yōu)方案是相同的,最后兩個(gè)方案的排序結(jié)果有差異,這是由于這兩種方法的思想不同,并且新提出的方法既考慮了決策者的主觀意愿,又使得各備選方案所占的權(quán)重更加客觀,更加真實(shí).
5 結(jié)語
作為直覺模糊集和中智集的推廣形式,單值直覺中智集能更廣泛地描述不確定信息.本文給出了單值直覺中智值之間的相似度量和信息熵,在此基礎(chǔ)上提出了一種單值直覺中智集環(huán)境下的多屬性決策方法.基于信息熵的改進(jìn),TODIM方法和TOPSIS融合方法既考慮決策者的主觀意愿,又簡化了多屬性決策的計(jì)算過程.
參考文獻(xiàn):
[1] ZADEH L A.Fuzzy sets[J].Information amp; Control,1965,8(3):338-353.
[2] ATANASSOV K T.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
[3] ATANNASSOV K T,GARGOV G.Interval valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1989,31(3):343-349.
[4] SMARANDACHE F.Neutrosophic set—a generalization of the intuitionistic fuzzy set[C]// 2006 IEEE International Conference on Granular Computing,Atlanta:IEEE,2006:38-42.
[5] SMARANDACHE F.A unifying field in logics:neutrosophic logic[J].Mulitiple Ralued Logic,2002,8(3):1-141.
[6] WANG H B,SMARANDACHE F,ZHANG Y Q,et al.Interval neutrosophic sets and logic theory and applications in computing Hexis[J].Computer Science,2005(5):5-39.
[7] YE J.Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making[J].Journal of Intelligent amp; Fuzzy Systems,2014,26(1):165-172.
[8] YE J.Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making[J].International Journal of Fuzzy Systems,2014,16(2):204-211.
[9] WANG F,GENG Y S,ZHANG H Y.An improved fuzzy C-means clustering algorithm based on intuitionistic fuzzy sets[C]//Proceedings of the 9th International Conference on Computer Engineering and Networks. Singapore:Springer,2021:333-345.
[10] WAN S P,DONG J Y.Decision making theories and methods based on interval-valued intuitionistic fuzzy sets[M].Singapore:Springer,2020:1-312.
[11] HAO Z N,XU Z S,ZHAO H.Several intuitionistic fuzzy multi-attribute decision making methods and their applications[M].Singapore:Springer,2020:1-117.
[12] JAIN A N,NANDI B P,GUPTA C,et al.A hybrid framework based on PSO and neutrosophic set for document level sentiment analysis[J].Studies in Computational Intelligence,2020,863:372-379.
[13] THAO N X,SON L H,CUONG B C,et al.Fuzzy equivalence on standard and rough neutrosophic sets and applications to clustering analysis[J].Information Systems Design and Intelligent Applications,2018,672:831-843.
[14] AYBER S,ERGINEL N.New product development methodology with using sustainability driven QFD and neutrosophic sets:a case study of the aircraft stabilizer[J].Lecture Notes in Networks and Systems,2023,759:575-583.
[15] YE J.Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses:suggested modifications[J].Artificial Intelligence in Medicine,2015,63(3):171-179.
[16] HAKTANIR E,KAHRAMAN C.Failure mode and effect analysis using interval valued neutrosophic sets[J].Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making,2020,1029:1085-1093.
[17] YE J.Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method[J].Informatica,2017,28(2):387-402.
[18] LI Z Y,WANG X,ZHENG N.An evaluation model for synchronized supply chain based on entropy weight and TOPSIS II[J].Software Engineering and Knowledge Engineering:Theory and Practice,2012,115:795-800.
[19] WANG H L .The comprehensive evaluation of the graduate school’s teaching quality based on entropy-weight and TOPSIS methods[J].High Performance Networking, Computing,and Communication Systems,2011,163:401-406.
[20] BANADKOUKI M R Z.Selection of strategies to improve energy efficiency in industry:A hybrid approach using entropy weight method and fuzzy TOPSIS[J].Energy,2023,279:128070.
[21] LI J M,CHEN Y Y,YAO X H,et al.Risk management priority assessment of heritage sites in china based on entropy weight and TOPSIS[J].Journal of Cultural Heritage,2021,49:10-18.
[22] LI X X,WANG K S,LIU L W,et al.Application of the entropy weight and TOPSIS method in safety evaluation of coal mines[J].Procedia Engineering,2011,26:2085-2091.
[23] MAHMOOD T,ALI Z ,GARG H,et al.Correlation coefficient and entropy measures based on complex dual type-2 hesitant fuzzy sets and their applications[J].Journal of Mathematics,2021,2021:2568391.
[24] ARYA V,KUMAR S.Extended VIKOR-TODIM approach based on entropy weight for intuitionistic fuzzy sets[J].Advances in Intetcigent Systems and Computing,2021,1169:95-108.
[25] YANG G F,REN M,HAO X M.Multi-criteria decision-making problem based on the novel probabilistic hesitant fuzzy entropy and TODIM method[J].Alexandria Engineering Journal,2023,68:437-451.
[26] WU Y N,LIAO M J,HU M Y,et al.A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective:A case in China[J].Energy,2020,213:119014.
[27] YUAN J H,LI X Y,XU C,et al.Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method[J].Energy,2019,176:623-640.
[28] XU D S,PENG L J.An improved method based on TODIM and TOPSIS for multi-attribute decision-making with multi-valued neutrosophic sets[J].Cmes-Computer Modeling in Engineering amp; Sciences,2021,129(2):907-926.
[29] LIANG M S,MI J S,F(xiàn)ENG T.Optimal granulation selection for similarity measure-based multigranulation intuitionistic fuzzy decision-theoretic rough sets.[J].Journal of Intelligent amp; Fuzzy Systems,2019,36(3):2495-2509.
[30] BAEK J I,HAN S H,MOSTAFA S M,et al.Correlation coefficient between intuitionistic single-valued neutrosophic sets and its applications[J].Annals of Fuzzy Mathematics and Informatics,2022,23(1):81-105.
[31] WEI G,WEI Y.Some single-valued neutrosophic dombi prioritized weighted aggregation operators in multiple attribute decision making[J].Journal of Intelligent amp; Fuzzy Systems,2018,35(2):2001-2013.
[32] CHEN J Q,YE J.Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision-making[J].Symmetry,2017,9(6):82.
[責(zé)任編輯:趙慧霞]