








[摘要] 目的
探討瞬時受體電位陽離子通道6(TRPC6)對糖尿病腎病(diabetic kidney disease,DKD)小鼠腎小管間質炎癥的影響及其機制。
方法 將6周齡雄性C57BL/6J小鼠36只隨機分為6組,每組6只。對照組(A組)和DKD組(B組)分別腹腔注射0.1 mmol/L檸檬酸鹽緩沖液和10 g/L鏈脲佐菌素(后簡稱給藥);DKD+生理鹽水干預組(C組)和DKD+線粒體自噬激活劑干預組(D組)在B組基礎上分別灌胃生理鹽水和10 mmol/L尿石素A;DKD+陰性對照慢病毒轉染組(E組)和DKD+TRPC6敲降慢病毒轉染組(F組)在B組基礎上分別尾靜脈注射陰性對照慢病毒和TRPC6敲降慢病毒。測定各組小鼠給藥后第12周時的全血空腹血糖(FBG)水平、尿微量白蛋白肌酐比(ACR)和血尿素氮(BUN)水平,PAS染色觀察小鼠腎小管損傷情況并進行評分,實時熒光定量PCR(RT-qPCR)技術檢測小鼠腎組織中炎性因子(IL-1β、MCP-1、TNF-α)mRNA水平,免疫組織化學染色觀察小鼠腎組織中TRPC6蛋白表達水平,蛋白免疫印跡檢測小鼠腎組織中TRPC6、LC3B、P62、PINK1、Parkin相對表達量,透射電鏡觀察小鼠腎小管細胞中線粒體自噬體數量變化。將HK-2細胞分為高糖+TRPC6 siRNA+DMSO干預組(G組,TRPC6 siRNA轉染+35.0 mmol/L葡萄糖+0.06%DMSO)和高糖+TRPC6 siRNA+線粒體自噬抑制劑干預組(H組,TRPC6 siRNA轉染+35.0 mmol/L葡萄糖+12 μmol/L千層紙素A),RT-qPCR技術檢測細胞中炎性因子(IL-1β、MCP-1、TNF-α)mRNA的水平。
結果 給藥后第12周時,B組小鼠全血FBG水平、ACR、BUN水平、腎小管損傷評分、腎組織炎性因子mRNA水平及TRPC6、P62蛋白表達水平均顯著高于A組(t=2.77~13.61,P<0.05),腎組織LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin蛋白表達水平顯著低于A組(t=3.33~14.63,P<0.05),腎小管細胞中線粒體自噬體數量減少;D組小鼠ACR、BUN水平、腎小管損傷評分、腎組織炎性因子mRNA水平及P62蛋白表達水平顯著低于C組(t=2.40~23.50,P<0.05),腎組織LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin蛋白表達水平顯著高于C組(t=5.74~12.50,P<0.05),腎小管細胞中線粒體自噬體數量增多;F組小鼠ACR、BUN水平、腎小管損傷評分、腎組織炎性因子mRNA水平及TRPC6、P62蛋白表達水平均顯著低于E組(t=2.45~7.09,P<0.05),腎組織LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin蛋白表達水平顯著高于E組(t=7.91~13.18,P<0.05),腎小管細胞中線粒體自噬體數量增多;H組細胞的炎性因子mRNA水平顯著高于G組(t=5.40~7.27,P<0.05)。
結論
TRPC6可通過上調自身表達,抑制腎小管細胞線粒體自噬,從而加重DKD小鼠的腎小管間質炎癥。TRPC6抑制藥物有希望用于DKD治療。
[關鍵詞] 糖尿病腎病;TRPC陽離子通道;線粒體自噬;腎炎,間質性;疾病模型,動物;小鼠,近交C57BL
[中圖分類號] R587.24;R692.33
[文獻標志碼] A
Influence of transient receptor potential cation channel 6 on renal tubulointerstitial inflammation in mice with diabetic kidney disease and its mechanism
LIU Congcong, ZHANG Xingjian, DING Lin, ZHANG Yao, ZHANG Dongjie, MA Ruixia
(Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
; [ABSTRACT]\ Objective To investigate the influence of transient receptor potential cation channel 6 (TRPC6) on renal tubulointerstitial inflammation in mice with diabetic kidney disease (DKD) and its mechanism.
Methods A total of 36 male C57/BL6J mice, aged 6 weeks, were randomly divided into control group (group A), DKD model group (group B), DKD+normal saline intervention group (group C), DKD+mitophagy activator intervention group (group D), DKD+negative control lentivirus transfection group (group E), and DKD+TRPC6 knockdown lentivirus transfection group (group F), with 6 mice in each group. The mice in groups A and B were respectively given intraperitoneal injection of 0.1 mmol/L citrate buffer and 10 g/L streptozotocin (hereinafter referred to as administration); the mice in groups C and D were respectively given normal saline and 10 mmol/L urolithin A by gavage in addition to the treatment in group B; the mice in groups
E and F were respectively injected with negative control lentivirus and TRPC6 knockdown lentivirus via the tail vein in addition to the treatment in group B. The levels of fasting blood glucose (FBG), urinary albumin-to-creatinine ratio (ACR), and blood urea nitrogen (BUN) were measured at week 12 after administration; PAS staining was used for the observation and scoring of renal tubular injury; RT-qPCR was used to measure the mRNA expression levels of inflammatory factors [interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α)] in renal tissue; immunohistochemical staining was used to measure the protein expression level of TRPC6 in renal tissue, and Western blotting was used to measure the relative expression levels of TRPC6, LC3B, P62, PINK1, and Parkin in renal tissue; transmission electron microscopy was used to observe the change in the number of mitophagosomes in renal tubular cells of mice. HK-2 cells were divided into high glucose+TRPC6 siRNA transfection+DMSO intervention group (group G, treated with TRPC6 siRNA+35.0 mmol/L glucose+0.06% DMSO) and high glucose+TRPC6 siRNA transfection+mitophagy inhibitor intervention group (group H, treated with TRPC6 siRNA+35.0 mmol/L glucose+12 μmol/L oroxylin A), and then RT-qPCR was used to measure the mRNA expression levels of inflammatory factors (IL-1β, MCP-1, and TNF-α) in cells.
Results At week 12 after administration, compared with group A, group B had significantly higher whole blood FBG, ACR, BUN, renal tubular injury score, mRNA expression levels of inflammatory factors, and protein expression levels of TRPC6 and P62 in renal tissue (t=2.77-13.61,Plt;0.05) and significantly lower protein expression levels of LC3B-Ⅱ/LC3B-Ⅰ, PINK1, and Parkin in renal tissue (t=3.33-14.63,Plt;0.05), with a reduction in the number of mitophagosomes in renal tubular cells. Compared with group C, group D had significantly lower levels of ACR and BUN, renal tubular injury score, mRNA expression levels of inflammatory factors, and protein expression level of P62 in renal tissue (t=2.40-23.50,Plt;0.05) and significantly higher protein expression levels of LC3B-Ⅱ/LC3B-Ⅰ, PINK1, and Parkin in renal tissue (t=5.74-12.50,Plt;0.05), with an increase in the number of mitophagosomes in renal tubular cells. Compared with group E, group F had significantly lower levels of ACR and BUN, renal tubular injury score, mRNA expression levels of inflammatory factors, and protein expression levels of TRPC6 and P62 in renal tissue (t=2.45-7.09,Plt;0.05) and significantly higher protein expression levels of LC3B-Ⅱ/LC3B-Ⅰ, PINK1, and Parkin in renal tissue (t=7.91-13.18,Plt;0.05), with an increase in the number of mitophagosomes in renal tubular cells. Group H had significantly higher mRNA expression levels of inflammatory factors than group G (t=5.40-7.27,Plt;0.05).
Conclusion TRPC6 can aggravate renal tubulointerstitial inflammation by upregula-
ting its expression and inhibiting mitophagy in renal tubular cells. Therefore TRPC6 inhibitors are promising for the treatment of DKD disease.
[KEY WORDS] Diabetic nephropathies; TRPC cation channels; Mitophagy; Nephritis, interstitial; Disease models, auimal; Mice, inbred C57BL
糖尿病腎病(diabetic kidney disease,DKD)是糖尿病(diabetes mellitus,DM)微血管并發癥,是導致終末期腎病的主要原因之一。DKD的發病機制包括腎臟基底膜增厚、足細胞丟失、系膜擴張、腎小管萎縮、間質炎癥和纖維化等[1]。有研究表明,腎小管損傷及其繼發的腎小管間質炎癥是DKD進展的特征性病理改變[2-3]。瞬時受體電位陽離子通道6(TRPC6)是一類Ca2+通透的非選擇性陽離子通道,在各種刺激下介導腎臟細胞中Ca2+水平的增加[4]。據報道,TRPC6在腎小管上皮細胞(TECs)的細胞質中表達[5],并通過抑制TECs中NFAT信號通路促進TECs炎癥和纖維化[6-7]。TRPC6敲降可以通過激活TECs自噬來抑制氧化應激所致的TECs凋亡[8]。TECs作為線粒體最豐富的細胞之一,易受線粒體功能障礙的影響,線粒體自噬功能障礙是導致線粒體穩態紊亂的重要原因之一。線粒體自噬在細胞炎癥的發生發展中發揮關鍵調節作用,線粒體自噬調節基因表達的減少會導致線粒體質量控制缺陷,從而導致細胞炎癥[9]。越來越多的研究結果表明,線粒體自噬對DKD的發生和發展具有顯著促進作用,DKD患者及DKD模型小鼠均存在腎臟細胞線粒體自噬功能障礙情況[10-11]。本研究擬探討TRPC6對DKD小鼠腎小管間質炎癥的影響及其機制,旨在為DKD的治療提供實驗數據參考。
1 材料與方法
1.1 材料來源
6周齡雄性健康C57BL/6J小鼠購自北京維通利華實驗動物有限公司,HK-2細胞由東南大學腎臟病研究所惠贈。鏈脲佐菌素、P62抗體購自美國Sigma-Aldrich公司,慢病毒購買于上海吉瑪制藥技術有限公司,尿石素A、千層紙素A均購買于美國MedChemExpress生物科技公司,肌酐、尿素氮試劑盒購自南京建成生物工程研究所,小鼠尿微量白蛋白酶聯免疫吸附測定試劑盒購自武漢伊萊瑞特生物科技股份有限公司,生理鹽水、DMSO、組織線粒體分離試劑盒購買于上海碧云天生物技術有限公司,TRPC6、PINK1、COX-Ⅳ抗體購自武漢三鷹生物技術有限公司,Parkin抗體購買于美國Santa Cruz生物技術公司,LC3B抗體、辣根過氧化物酶標記的山羊抗小鼠和抗兔IgG購自美國Cell Signaling Technology公司,β-actin抗體購自上海泊灣生物技術有限公司,ECL化學發光液購自北京Biosharp公司,PCR引物購買于上海捷瑞生物工程有限公司,RNA isolater總RNA提取試劑、HiScript Ⅲ RT SuperMix試劑、ChamQ Universal SYBR qPCR Master Mix試劑購自南京諾唯贊生物科技股份有限公司,血糖儀與血糖試紙購自德國貝朗公司,逆轉錄儀購自德國艾本德股份公司,7300 Real-time PCR儀購自美國Applied Biosystems公司。
1.2 小鼠的分組及處理
將36只6周齡雄性C57BL/6J小鼠隨機分為對照組(A組)、DKD組(B組)、DKD+生理鹽水灌胃組(C組)、DKD+線粒體自噬激活劑灌胃組(D組)、DKD+陰性對照慢病毒組(E組)、DKD+TRPC6敲降慢病毒組(F組)共6組,每組6只。B~F組連續5 d每天腹腔注射(后簡稱給藥)10 g/L的鏈脲佐菌素50 mg/kg,A組則連續每天給予等體積檸檬酸鹽緩沖液。給藥后第4周開始,D組每天灌胃濃度為10 mmol/L的尿石素A 50 mg/kg,C組每天灌胃等體積生理鹽水,連續處理8周。給藥后第8周開始,F組每只小鼠每周
通過尾靜脈注射滴度為1×
109的TRPC6敲降慢病毒50 μL,E組每只小鼠每周通過尾靜脈注射等量陰性對照慢病毒,連續4周。所有小鼠均于給藥后第12周脫頸處死。
1.3 人腎皮質近曲小管上皮(HK-2)細胞的分組及處理
將復蘇后的HK-2細胞置于含體積分數0.1的胎牛血清、10 g/L青-鏈霉素混合液的DMEM/F12培養基中,隨機分為高糖+TRPC6 siRNA轉染+線粒體自噬抑制劑干預組(H組)及高糖+TRPC6 siRNA轉染+DMSO干預組(G組)。H組將HK-2細胞轉染TRPC6 siRNA后,置于含35.0 mmol/L葡萄糖及12 μmol/L千層紙素A的DMEM/F12培養基中,G組將HK-2細胞轉染TRPC6 siRNA后,置于含35.0 mmol/L葡萄糖及0.06% DMSO的DMEM/F12培養基中,兩組細胞均置于37 ℃、含體積分數0.05 CO2的培養箱中培養48 h。
1.4 各組小鼠全血空腹血糖(FBG)水平、尿微量白蛋白肌酐比(ACR)和血尿素氮(BUN)水平測定
于給藥后第12周時,檢測各組小鼠全血FBG水平;收集各組小鼠24 h的尿液,按小鼠尿微量白蛋白酶聯免疫吸附測定試劑盒和肌酐試劑盒說明書檢測尿液中微量白蛋白、肌酐水平,并計算ACR;另取各組小鼠眼球血分離血清,按尿素氮測定試劑盒說明書檢測BUN水平。上述檢測均重復3次,結果取均值。
1.5 過碘酸希夫(PAS)染色觀察各組小鼠腎小管損傷情況
所有小鼠均于給藥后第12周時脫頸處死,分離取出雙側腎臟。取各組小鼠部分腎組織標本用4%多聚甲醛固定,石蠟包埋后切片,進行PAS染色之后,置于光學顯微鏡下觀察然后拍照。隨機選取每組小鼠的腎組織切片中20處皮質區域的PAS染色圖像,由觀察者采用盲法對小鼠腎小管損傷情況進行評分[12]。
1.6 免疫組化染色觀察A、B、E、F組小鼠腎組織中胞漿蛋白TRPC6表達
取1.5中A、B、E、F組小鼠腎組織切片,抗原修復后滴加過氧化物酶阻斷劑和正常非免疫動物血清,在4 ℃下與TRPC6一抗(1∶200)孵育過夜。復溫后滴加過氧化物酶標記的鼠/兔IgG二抗,室溫下孵育2 h。將配制的DAB顯色液滴加在組織上,顯微鏡下顯色觀察,蘇木素滴染后使用體積分數0.80、0.85、0.95、1.00的乙醇梯度脫水,二甲苯透明,中性樹膠封片。置于光學顯微鏡下觀察、拍照并保存圖片。
1.7 免疫印跡法檢測小鼠腎組織胞漿蛋白TRPC6及線粒體蛋白相對表達水平
取1.5中A、B、E、F組小鼠腎組織標本,檢測腎組織中胞漿蛋白TRPC6相對表達水平;取所有組小鼠腎組織標本,分離腎組織線粒體,同時檢測腎組織線粒體中各種蛋白[微管相關蛋白1輕鏈3β(LC3B)、泛素結合蛋白P62、PTEN誘導假定激酶1(PINK1)、E3連接酶Parkin]相對表達水平。采用組織線粒體分離試劑盒分離各組小鼠腎組織線粒體,RIPA裂解腎組織及線粒體,并用二喹啉甲酸測定蛋白濃度。在提取的總蛋白中加入上樣緩沖液和雙蒸水,制成等濃度等體積的蛋白樣本,充分混勻,于100 ℃水浴加熱5 min。使用十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳加載處理后的蛋白質,并轉移到聚偏二氟乙烯膜上。然后將膜置于NcmBlot封閉緩沖液中封閉20 min,并在4 ℃下與TRPC6(1∶1 000)、胞漿蛋白內參β-actin(1∶10 000)、LC3B(1∶1 000)、P62(1∶1 000)、PINK1(1∶1 000)、Parkin(1∶1 000)和線粒體蛋白內參COX-Ⅳ(1∶5 000)的一抗孵育過夜。用辣根過氧化物酶標記的山羊抗小鼠或抗兔IgG(1∶3 000)在室溫下孵育1 h后,化學發光增強系統顯影上述蛋白印跡并拍照。使用Image J軟件分析TRPC6、β-actin、LC3B-Ⅱ/LC3B-Ⅰ、P62、PINK1、Parkin、COX-Ⅳ蛋白條帶灰度值,蛋白相對表達量以蛋白灰度值/內參灰度值計算,結果取3次重復實驗的均值。
1.8 RT-qPCR檢測各組小鼠腎組織及各組HK-2細胞中炎性因子(IL-1β、MCP-1、TNF-α)mRNA表達水平
使用RNA isolater總RNA提取試劑提取A~F組小鼠腎組織中以及G、H組HK-2細胞中的總RNA,使用HiScript Ⅲ RT SuperMix試劑在逆轉錄儀當中逆轉錄mRNA,然后用ChamQ Universal SYBR qPCR Master Mix試劑在7300 Real-time PCR儀中檢測IL-1β、MCP-1、TNF-α mRNA表達水平。以β-actin作為內參,采用2-△△CT方法計算
以上各mRNA的相對表達水平。所使用的引物名稱及其序列見表1。
1.9 透射電鏡觀察各組小鼠腎小管細胞中線粒體自噬體數量
取各組小鼠部分腎組織標本,使用2.5%戊二醛固定后浸泡在1%四氧化鋨中,用體積分數0.5、0.7、0.8、0.9的丙酮梯度脫水,包埋后制作超薄(50~70 nm)切片,用醋酸鈾和檸檬酸鉛對其進行染色,最后在透射電鏡下觀察并拍照。
1.10 統計學分析
采用GraphPad Prism 8.0和SPSS 25.0軟件對數據進行統計學分析。符合正態分布的計量資料以x-±s表示,兩組間比較采用獨立樣本t檢驗。以P<0.05為差異具有統計學意義。
2 結" 果
2.1 各組小鼠給藥后第12周時全血FBG、BUN水平及ACR比較
第12周時,B組小鼠給藥后全血FBG、BUN水平以及ACR均顯著高于A組(t=2.77~5.71,P<0.05);D組小鼠ACR及BUN水平顯著低于C組(t=2.40、3.50,P<0.05);F組小鼠ACR及BUN水平顯著低于E組(t=2.45、3.81,P<0.05)。見表2。
2.2 各組小鼠腎組織PAS染色及腎小管損傷情況比較
A~F組腎小管損傷評分分別為(1.10±0.57)、(2.90±0.74)、(3.00±0.67)、(2.00±0.67)、(3.00±0.47)、(2.30±0.67)分。與A組相比,B組小鼠腎小管萎縮、TECs脫落和刷狀緣缺失,腎小管損傷評分值顯著升高(t=6.11,P<0.05);與C組相比,D組小鼠腎小管萎縮、TECs脫落和刷狀緣缺失的情況得到明顯改善,腎小管損傷評分值顯著降低(t=3.35,P<0.05);與E組相比,F組小鼠腎小管萎縮、TECs脫落和刷狀緣缺失的情況得到明顯改善,腎小管損傷評分值顯著降低(t=2.69,P<0.05)。見圖1。
2.3 各組小鼠腎組織中及各組細胞中炎性因子mRNA表達水平比較
RT-qPCR結果顯示,B組小鼠腎組織當中IL-1β、MCP-1、TNF-α的mRNA表達水平顯著高于A組(t=5.49~7.79,P<0.05);D組小鼠腎組織中以上炎性因子mRNA表達水平顯著低于C組(t=4.29~8.80,P<0.05);F組小鼠腎組織中以上炎性因子mRNA表達水平顯著低于E組(t=4.44~6.11,P<0.05);H組細胞中以上炎性因子mRNA表達水平顯著高于G組(t=5.40~7.27,P<0.05)。見表3。
2.4 各組小鼠腎組織胞漿蛋白TRPC6免疫組化染色以及胞漿蛋白TRPC6、線粒體蛋白(LC3B、P62、PINK1、Parkin)表達水平比較
免疫組化染色結合蛋白免疫印跡結果顯示,B組腎組織中胞漿蛋白TRPC6表達水平顯著高于A組(t=13.61,P<0.05),F組小鼠腎組織TRPC6表
達顯著低于E組(t=6.08,P<0.05)。見圖2~3、
表4。蛋白免疫印跡結果顯示,與A組相比,B組小鼠腎組織線粒體蛋白LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin相對表達水平顯著降低,P62相對表達水平顯著升高(t=3.33~14.63,P<0.05);與C組相比,D組小鼠腎組織線粒體蛋白LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin相對表達水平顯著升高,P62相對表達水平顯著降低(t=5.74~23.50,P<0.05);與E組相比,F組小鼠腎組織中線粒體蛋白LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin相對表達水平均顯著升高,P62相對表達水平顯著降低(t=7.09~13.18,P<0.05)。見圖4、表4。
2.5 各組小鼠腎小管細胞透射電鏡觀察結果比較
透射電鏡觀察結果顯示,B組小鼠腎小管細胞中線粒體自噬體數量少于A組,C組小鼠腎小管細胞中線粒體自噬體數量多于D組,E組小鼠腎小管細胞中線粒體自噬體數量多于F組。見圖5。
3 討" 論
DKD是DM患者最嚴重的微血管并發癥之一,是一種慢性進行性疾病。腎小管間質炎癥是DKD的重要病理特征之一,其進展最終導致間質纖維化。既往認為DKD是一種腎小球疾病,腎小管損傷被認為繼發于腎小球損傷。然而,越來越多的證據支持DKD的腎小管間質損傷也可能始于原發性腎小管損傷[13]。本研究結果顯示,給藥后第12周時B組小鼠全血FBG水平、ACR、BUN水平、腎小管損傷評分及腎組織炎性因子mRNA水平均明顯高于A組,提示DKD小鼠出現腎小管損傷,腎小管間質炎癥加重。
腎小管細胞易受線粒體功能障礙的影響。受損的線粒體無法供給足夠的ATP,從而導致腎小管細胞萎縮或去分化[14]。嚴重的線粒體損傷和線粒體清除功能障礙可導致線粒體DNA(mtDNA)泄漏到細胞質中,而腎小管細胞中mtDNA的異常包裝導致其在細胞質中易位,激活環磷酸鳥苷-腺苷磷酸合成酶-干擾素基因刺激因子信號通路,從而導致細胞因子表達和免疫細胞募集[15]。此外,缺陷線粒體不能維持跨越線粒體內膜的質子梯度,因而導致腎小管細胞產生大量活性氧,加重腎小管間質炎癥[16]。本研究結果顯示,與A組相比,B組小鼠腎組織中LC3B-Ⅱ/LC3B-Ⅰ以及PINK1、Parkin蛋白表達減少,P62蛋白表達增加,電鏡下B組小鼠腎小管細胞中線粒體自噬體數量減少,提示DKD小鼠腎小管細胞中PINK1/Parkin通路介導的線粒體自噬受到抑制。使用尿石素A激活線粒體自噬后的D組小鼠腎組織ACR、BUN水平、腎小管損傷評分及腎組織炎性因子mRNA水平均顯著低于C組,提示激活腎小管細胞線粒體自噬可減輕DKD小鼠的腎小管損傷和腎小管間質炎癥,該結果與既往研究報道的結果相似[17]。但目前DKD腎小管線粒體自噬抑制的具體機制尚未完全清楚。
TRPC6是一類廣泛存在于各種腎臟細胞膜上的蛋白質,能夠介導Ca2+內流進入細胞。DKD中TRPC6通道活性受到血管緊張素Ⅱ、ATP、蛋白酶激活受體激動劑和其他內源性因素的調節,刺激磷脂酶C偶聯受體可激活TRPC6,從而誘導Ca2+進入細胞并刺激鈣調磷酸酶[18]。本研究中B組小鼠腎組織TRPC6表達顯著高于A組,F組小鼠腎組織ACR、BUN水平、腎小管損傷分數及腎組織炎性因子mRNA水平均顯著低于E組,提示敲降TRPC6可減輕DKD腎小管損傷和腎小管間質炎癥。同時,與E組相比較,F組小鼠腎組織中LC3B-Ⅱ/LC3B-Ⅰ及PINK1、Parkin蛋白表達增加,P62蛋白表達減少,電鏡下腎小管細胞中線粒體自噬體數量增多,提示TRPC6敲降的DKD小鼠腎小管細胞中PINK1/Parkin通路介導的線粒體自噬抑制得到改善。體外細胞實驗中,在敲降TRPC6的基礎上使用線粒體自噬抑制劑干預后,H組細胞的炎性因子mRNA水平顯著高于G組,說明敲降TRPC6對腎小管間質炎癥的改善作用幾乎被線粒體自噬抑制劑消除,進一步說明TRPC6通過抑制線粒體自噬加重了DKD小鼠腎小管間質炎癥。
綜上所述,TRPC6表達上調可通過抑制線粒體自噬加劇高糖誘導的小鼠腎小管炎性損傷和DKD。本研究首次闡述了DKD中TRPC6與線粒體自噬的相關性,但上述結論還需后續更嚴謹的實驗驗證,且需對TRPC6抑制線粒體自噬的具體機制進行探討。既往研究結果顯示,包括AMPK、NOX4以及Klotho在內的多種信號通路均能夠抑制腎組織當中TRPC6的表達,miR-26a-5p也可以減弱DKD中TRPC6活化,從而改善DKD中腎小球或腎小管間質病變[19-22]。在此背景下,TRPC6抑制藥物有希望用于DKD治療,本研究為延緩DKD腎小管間質炎癥進展提供了治療策略及理論依據。
倫理批準和動物權利聲明:本研究涉及的所有動物實驗均已通過青島大學附屬醫院實驗動物福利倫理委員會的審核批準(文件號QYFYWZLL28812)。所有實驗過程均遵照《實驗動物福利倫理審查指南》的條例進行。
作者聲明:劉叢聰、馬瑞霞、張行健參與了研究設計;劉叢聰、張行健、丁琳、張瑤、張棟杰參與了論文的寫作和修改。所有作者均閱讀并同意發表該論文,且均聲明不存在利益沖突。
[參考文獻]
[1]AHMAD A A, DRAVES S O, ROSCA M. Mitochondria in diabetic kidney disease[J]. Cells, 2021,10(11):2945.
[2]JIANG W J, XU C T, DU C L, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy[J]. Theranostics, 2022,12(1):324-339.
[3]KIM S, KANG S W, JOO J, et al. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions[J]. Cell Death Dis, 2021,12(2):160.
[4]STARUSCHENKO A. TRPC6 in diabetic kidney disease: Good guy or bad guy?[J]. Kidney Int, 2019,95(2):256-258.
[5]MARK L, MANNAA M, HASCHLER T N, et al. Renoprotection: Focus on TRPV1, TRPV4, TRPC6 and TRPM2[J]. Acta Physiol (Oxf), 2017,219(3):589-612.
[6]FU Y Q, WANG C X, ZHANG D M, et al. Increased TRPC6 expression is associated with tubular epithelial cell proliferation and inflammation in diabetic nephropathy[J]. Mol Immunol, 2018,94:75-81.
[7]LIN B L, MATERA D, DOERNER J F, et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease[J]. Proc Natl Acad Sci U S A, 2019,116(20):10156-10161.
[8]HOU X, XIAO H T, ZHANG Y H, et al. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation[J]. Cell Death Dis, 2018,9(10):1015.
[9]GREEN D R, GALLUZZI L, KROEMER G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging[J]. Science, 2011,333(6046):1109-1112.
[10]SAXENA S, MATHUR A, KAKKAR P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy[J]. J Cell Physiol, 2019,234(11):19223-19236.
[11]LI C R, LI L, YANG M, et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy[J]. Diabetes, 2022,71(5):1034-1050.
[12]DONG Y, ZHANG Q Z, WEN J J, et al. Ischemic duration and frequency determines AKI-to-CKD progression monitored by dynamic changes of tubular biomarkers in IRI mice[J]. Front Physiol, 2019,10:153.
[13]CHANG J S, YAN J Y, LI X L, et al. Update on the mechanisms of tubular cell injury in diabetic kidney disease[J]. Front Med, 2021,8:661076.
[14]DOKE T, SUSZTAK K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development[J]. Trends Cell Biol, 2022,32(10):841-853.
[15]CHUNG K W, DHILLON P, HUANG S Z, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019,30(4):784-799.e5.
[16]HAN Y C, XU X X, TANG C Y, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis[J]. Redox Biol, 2018,16:32-46.
[17]LIU L, BAI F, SONG H, et al. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy[J]. Redox Biol, 2022,50:102260.
[18]HALL G, WANG L M, SPURNEY R F. TRPC channels in proteinuric kidney diseases[J]. Cells, 2019,9(1):44.
[19]SZREJDER M, RACHUBIK P, ROGACKA D, et al. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions[J]. Biochim Biophys Acta Mol Basis Dis, 2020,1866(3):165610.
[20]ILATOVSKAYA D V, BLASS G, PALYGIN O, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease[J]. J Am Soc Nephrol, 2018,29(7):1917-1927.
[21]YAO X M, GUO H J, SUN M Y, et al. Klotho ameliorates podocyte injury through targeting TRPC6 channel in diabetic nephropathy[J]. J Diabetes Res, 2022,2022:1329380.
[22]ZHOU Y, LI Z L, DING L, et al. Long noncoding RNA SNHG5 promotes podocyte injury via the microRNA-26a-5p/TRPC6 pathway in diabetic nephropathy[J]. J Biol Chem, 2022,298(12):102605.
(本文編輯 范睿心 厲建強)