999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新型陰離子金屬有機骨架化合物的合成及其對染料的吸附性能

2024-01-01 00:00:00蘇婭男郭獻敏

摘要: 以5,5′|(5,5|二氧化二苯并噻吩|3,7|二基)二間苯二甲酸 (H4DTPA) 為有機配體, 通過溶劑熱合成方法構(gòu)建一個結(jié)構(gòu)新型的金屬有機骨架化合物xsolvent. 該化合物為1個{4,8}|連接的陰離子型的新型拓撲網(wǎng)狀結(jié)構(gòu), 具有良好的化學(xué)穩(wěn)定性和熱穩(wěn)定性, 并且對有機染料亞甲基藍 (MB) 具有良好的選擇性吸附性能.

關(guān)鍵詞:" 金屬有機骨架化合物; 陰離子骨架; 染料吸附

中圖分類號: O614" 文獻標志碼: A" 文章編號: 1671-5489(2024)04-0992-07

Synthesis" of Novel Anionic Metal|Organic Framework Compound and Its Adsorption Performance for Dyes

SU Yanan," GUO Xianmin(College of Chemistry, Changchun Normal University, Changchun 130032," China)

Abstract:"" Using" 5,5′|(5,5|half dioxide "thiophene|3,7|digroup) diphthalic acid (H4DTPA) as an organic ligand," we constructed a new metal|organic framework compound xsolvent" through solvothermal synthesis method. This compound is a novel topological network structure with a" {4,8}|connected anionic framework, with good chemical and thermal stability, and good selective" adsorption performance for organic dye methylene blue (MB).

Keywords: metal|organic framework; anionic framework; dye adsorption

目前, 化工、 紡織、 造紙和噴涂等工業(yè)排放的污水導(dǎo)致有機染料在環(huán)境中不斷堆積, 并且通過食物鏈傳遞, 對人體產(chǎn)生致癌和誘發(fā)過敏等潛在風險. 因此, 從廢水中除去這些有機染料至關(guān)重要." 用于從水溶液中分離有機染料的各種物理化學(xué)技術(shù)已被廣泛研究, 包括吸附、 氧化、 膜過濾、 化學(xué)混凝和絮凝等, 其中吸附法因其高效、 經(jīng)濟可行和操作簡便等優(yōu)點被廣泛應(yīng)用于污水中有機染料的去除中.

由于金屬有機框架材料 (metal organic frame materials," MOFs) 具有比表面積大、 孔道和孔徑易于調(diào)控等優(yōu)點, 因此在氣體吸附、 熒光探針、 氣體儲存和催化等領(lǐng)域具有良好的應(yīng)用前景. 其中, 陰離子型MOF材料由于主客體之間的靜電相互作用," 因此能有效增強對一些金屬離子以及陽離子型染料的吸附作用. 本文通過設(shè)計合成砜基團修飾的5,5′|(5,5|二氧化二苯并噻吩|3,7|二基)二間苯二甲酸 (H4DTPA)作為有機配體, 成功制備1個新的陰離子型MOF(xsolvent, 化合物1). 該化合物具有良好的熱穩(wěn)定性和水穩(wěn)定性," 并對陽離子型染料具有優(yōu)異的選擇性吸附.

1 實 驗

1.1 試劑與儀器

3,7|二溴二苯并噻吩5,5|二氧化物、 3,5|雙(甲氧羰基)苯硼酸片吶醇酯、 HCl、 NaOH和四(三苯基膦)鈀(Pd(PPh3)4)" (分析純, 上海安耐吉化學(xué)有限公司);" K2CO3 (分析純, 天津市致遠化學(xué)試劑有限公司); 1,4|二氧六環(huán) (分析純, 天津天泰化學(xué)品有限公司). 用德國Bruker公司生產(chǎn)的Bruker D2 Phaser型X射線多晶衍射儀對樣品進行粉末X射線衍射(PXRD)測試; 用美國Perkin公司生產(chǎn)的Perkin|Elmer TG|7型元素分析儀對樣品元素進行理論分析; 用美國TA公司生產(chǎn)的TGA Q500型熱重分析儀在氮氣氛圍下進行熱重分析, 升溫速率為10 ℃/min;" 用美國Perkin公司生產(chǎn)的Perkin|Elmer 580B型紅外光譜儀測試樣品的Fourier變換紅外光譜(FT|IR);" 用日本島津公司生產(chǎn)的UV|3101 PC型分光光度計測試樣品的紫外光譜(UV|Vis)," 測試范圍為350~800 nm-1; 用德國Bruker公司生產(chǎn)的Bruker 500 MHz型核磁共振譜儀測試樣品的核磁共振氫譜(1H NMR).

1.2 H4DTPA的合成

在氮氣氛圍下, 將3,7|二溴二苯并噻吩5,5|二氧化物(3.74 g," 10 mmol), 3,5|雙(甲氧羰基)苯硼酸片吶醇酯(6.72 g," 21 mmol), Pd(PPh3)4(0.575 g," 0.5 mmol), K2CO3(5.52 g," 40 mmol), H2O(5 mL) 加入60 mL 1,4|二氧六環(huán)中, 于80 ℃反應(yīng)3 d. 反應(yīng)結(jié)束后冷卻至室溫, 蒸出1,4|二氧六環(huán), 先用氯仿與水的混合提取溶液提取后, 再用適量無水硫酸鎂干燥2" h, 過濾, 將得到的混合溶液濃縮后通過柱層析, 用V(氯仿)∶V(甲醇)=100∶1的混合溶劑進行提純, 旋干溶劑, 將得到的白色固體置于250 mL單頸瓶中, 加入30 mL NaOH溶液 (3 mol/L)和10 mL甲醇, 于100 ℃反應(yīng)回流1 d. 冷卻至室溫后用3 mol/L的HCl溶液反滴至pH=3~4, 抽濾, 將得到的白色固體在真空干燥箱中烘干, 即為H4DTPA(3.84 g, 7.2 mmol), 其合成路線如圖1所示. 元素分析(理論值, %):" C 61.75(61.77);" H 2.93(2.96);" S 5.87(5.89). 對H4DTPA進行核磁表征, 結(jié)果如圖2所示.

1H NMR (500 MHz," DMSO|d, δ): 13.63(s," 4H)," 8.53(d," J=1.4 Hz," 2H)," 8.51(d," J=1.4 Hz," 4H)," 8.48(d," J=1.4 Hz," 2H)," 8.38(d," J=8.1 Hz," 2H)," 8.22 (dd," J=8.1, 1.5 Hz," 2H).

1.3 化合物1的制備

將Zn(NO3)26H2O (0.05 mmol," 0.015 4 g), H4DTPA (0.05 mmol," 0.034 6 g), DMF(3 mL)和水(1 mL)置于反應(yīng)釜中超聲10 min," 于80 ℃恒溫反應(yīng)2 d后以10 ℃/h冷卻至室溫, 得到白色晶體. 將所得晶體用DMF和無水甲醇洗滌并晾干, 得到xsolvent , 命名為化合物1, 產(chǎn)率為64%.

1.4 化合物1的晶體結(jié)構(gòu)測試與描述

在液氮條件下, 通過Bruker Smart ApexⅡ衍射儀, 選取石墨單色器單色化的Mo Kα輻射為光源(λ=0.071 073 nm)收集化合物1的晶胞數(shù)據(jù), 并進行多項掃描對吸收進行修正. 通過Olex2程序?qū)衔?的結(jié)構(gòu)進行解析, 并采用SHELX|2018 通過全矩陣最小二乘法對晶體結(jié)構(gòu)進行精修, 所有非氫原子用各向異性溫度參數(shù)進行精修, 所有有機成分的氫原子均通過理論加氫得到. 孔道中無序的溶劑分子利用PLATON程序中的Squeeze命令進行刪除. 化合物1的分子式、 結(jié)構(gòu)細化參數(shù)、 晶體學(xué)數(shù)據(jù)以及部分鍵長和鍵角分別列于表1~表3.

2 結(jié)果與討論

2.1 化合物1的晶體結(jié)構(gòu)

X射線單晶衍射實驗結(jié)果表明, 化合物1結(jié)晶于正交晶系Pca21空間群. 化合物1的晶體結(jié)構(gòu)如圖3所示. 由圖3(A)可見, 在不對稱結(jié)構(gòu)單元中, 化合物1存在3種晶體學(xué)獨立的Zn(Ⅱ)離子和2個DTPA4-陰離子, 每個Zn(Ⅱ)離子都與羧基上的6個氧原子配位, 且采用變形八面體的配位模式, 所有鍵長和鍵角均在合理范圍內(nèi)(表2). DTPA4-陰離子采取相同的配位方式, 通過1個螯合單位配位的羧基, 1個順,反|雙配位的羧基和2個順,順|雙配位的羧基與7個金屬Zn(Ⅱ)離子進行配位. 3個Zn(Ⅱ)離子通過羧基僑聯(lián)形成三核金屬簇, 這些三核金屬簇通過DTPA4-陰離子橋聯(lián)形成1個三維的陰離子骨架 (圖3(D)). 若將三核金屬簇簡化為1個8|連接的節(jié)點 (圖3(B)), DTPA4-陰離子簡化為1個4|連接的網(wǎng)絡(luò)節(jié)點 (圖3(C)), 則該化合物根據(jù)拓撲學(xué)原理可簡化為{4,8}|連接的網(wǎng)絡(luò)節(jié)點(圖3(E)). 在b軸方向, 存在一維孔道, 其窗口呈梯狀, 孔道對角線長度約為0.85 nm. 未配位的二甲胺基陽離子作為抗衡離子游離其中. 通過PLATON 計算發(fā)現(xiàn)客體所能接近的孔容為38.4%.

2.2 化合物1的基本表征

為進一步檢驗化合物1的純度以及骨架穩(wěn)定性, 對其進行PXRD實驗、 熱重分析和FT|IR分析," 結(jié)果如圖4所示." 由圖4(A)可見, 化合物1模擬與實驗的X射線衍射峰位置一致, 表明化合物1的晶體純度較高, 實驗回收與浸泡在水中7 d后的PXRD變化較小, 表明化合物1具有良好的水穩(wěn)定性. 由圖4(B)可見, 化合物1在25~280 ℃失去孔道中游離的溶劑分子, 280 ℃后晶體骨架開始坍塌, 可見化合物1具有良好的熱穩(wěn)定性 . 由圖4(C)可見, 化合物1吸附亞甲基藍(MB)前后的FT|IR 譜的特征吸收峰完全一致, 表明該化合物反應(yīng)前后的結(jié)構(gòu)一致.

2.3 化合物1對MB的選擇性吸附

化合物1是陰離子骨架并且在水溶液中具有良好的穩(wěn)定性, 基于此, 本文考察了化合物1對有機染料的吸附能力. 在吸附實驗前, 將樣品浸泡在甲醇中3 d, 過濾, 50 ℃真空干燥過夜進行活化. 選取3種不同電荷、 不同粒徑大小的有機染料:" 陰離子染料甲基橙 (MO)、 陽離子染料亞甲基藍 (MB)和羅丹明B (RhB). 分別將5 mg活化后的化合物1浸沒到MO,MB和RhB的水溶液中(5.0×10-5 mol/L), 取不同時間段的樣品2 mL溶液過濾后進行紫外光譜檢測, 結(jié)果如圖5所示." 由圖5可見, MB溶液的紫外光譜對應(yīng)的特征吸收峰逐漸降低, 其溶液顏色由藍色逐漸褪去至無色. 而MO和RhB的溶液顏色變化較小, 其對應(yīng)的紫外特征吸收峰值也進一步驗證了化合物1對MO和RhB的吸附效果較差.

有機染料的混合吸附實驗表明, 化合物1對MB具有良好的選擇性吸附. 將活化后的化合物1加入MO,MB與RhB的混合溶液中攪拌120 min. 由圖5(D)可見, 在混合溶液吸附前后的紫外吸收譜中, MB的特征吸收峰消失, RhB的特征吸收峰強度降低, MO的特征吸收峰強度基本保持不變. 這可歸因于化合物1為陰離子骨架, 對有機陽離子染料MB具有很好的靜電吸引力; RhB作為陽離子染料, 由于粒子半徑過大很難進入孔道, 因此吸附能力一般; 而MO為陰離子染料, 與同為陰離子骨架的化合物1會產(chǎn)生靜電排斥導(dǎo)致吸附效果較差.

綜上所述, 本文利用砜基修飾的的有機配體5,5′|(5,5|二氧化二苯并噻吩|3,7|二基)二間苯二甲酸合成了一種陰離子型多孔有機框架化合物. 該陰離子型化合物對亞甲基藍具有高效且良好的選擇性吸附性, 為有效分離離子型有機染料提供了新思路, 同時該化合物的設(shè)計與合成也為合成離子型金屬有機框架材料提供了一種可行方法.

參考文獻

[1] WEN T," WANG J," YU S J," et al. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V)," Cr(VI)," Humic Acid," and Dyes . ACS Sustainable Chemistry amp; Engineering," 2017," 5(5):" 4371|4380.

[2] VASSEGHIAN Y," DRAGOI E N," ALMOMANI F," et al. A Comprehensive Review on MXenes as New Nanomaterials for Degradation of Hazardous Pollutants:" Deployment as Heterogeneous Sonocatalysis . Chemosphere," 2022," 287(4):" 132387|1|132387|10.

[3] LUI H T," LUI Z P," SUN S K," et al. An Evaluation Model for the Effect of Adsorption Boundary on Pollutant Degradation in Water Areas . Water Supply," 2019," 19(3):" 771|777.

[4] ZHANG X," WANG J," DONG X X," et al. Functionalized Metal|Organic Frameworks for Photocatalytic Degradation of Organic Pollutants in Environment . Chemosphere," 2020," 242(7):" 125144|1|125144|15.

[5] ALI N," BABAK D," SAMIRA N," et al. An Overview Report on the Application of Heteropoly Acids on Supporting Materials in the Photocatalytic Degradation of Organic Pollutants from Aqueous Solutions . Environmental Science," 2018," 6(5):" e5001|1|e5001|20.

[6] CHU Q Q," ZHANG B," ZHOU H F,nbsp; et al. Effective C2H2 Separation and Nitrofurazone Detection in a Stable Indium|Organic Framework . Inorganic Chemistry," 2020," 59(5):" 2853|2860.

[7] KALINGARAYANPALAYAM M A K," ELUMALAI A K," WANG T J," et al. SERS|Active Silver Nanoprisms Deposited on Cuprous Oxide Microspheres for Detection of Nitrofurazone . ACS Applied Nano Materials," 2023," 6(13):" 11966|11975.

[8] HOU S L," DONG J," JIANG X J," et al. Interpenetration|Dependent Luminescent Probe in Indium|Organic Frameworks for Selectively Detecting Nitrofurazone in Water . Analytical Chemistry," 2018," 90(3):" 1516|1519.

[9] RAJORSHI M," KUMAR B. Photochemical "Polymerization of Metal|Organic Gels of a Rigid and Angular Diene with Silver|Salts of Diverse Anions:" Selective Dye|Sorption and Luminescence by Xerogels . Dalton Transactions," 2020, "49(39):" 13744|13752.

[10] 王世怡," 李一鳴. LED光源作用下的光催化染料降解研究 . 應(yīng)用技術(shù)學(xué)報," 2023," 23(3):" 200|207. (WANG S Y," LI Y M. Research on the Application of LED Light Source in Photocatalytic Wastewater Treatment Technology . Journal of Technology," 2023," 23(3):" 200|207.)

[11] ZHENG J J," MA J X," WANG Z W," et al. Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration:" Mechanisms and Implications . Environmental Science amp; Technology," 2017," 51(5):" 2757|2765.

[12] DIVER D," NHAPI I," RUZIWA W R. The Potential and Constraints of Replacing Conventional Chemical Coagulants with Natural Plant Extracts in Water and Wastewater Treatment . Environmental Advances," 2023," 13(13):" 100421|1|100421|17.

[13] LI H F," LIU J," JIA C Q," et al. Role of Extracellular Polymeric Substance in Flocculation of Chlorococcum Sphacosum Cultivated with Different Initial Inoculum Concentrations in Municipal Wastewater . Algal Research," 2023," 70(3):" 102966|1|102966|8.

[14] SULTANA H," USMAN M. Surfactant|Assisted Flocculation for the Efficient Removal of Aqueous Dyestuff:" A Sustainable Approach . Journal of Molecular Liquids," 2023," 370(15):" 120988|1|120988|9.

[15] NGUYEN" X C," NGUYEN T T H, NGUYEN T H C," et al. Sustainable Carbonaceous Biochar Adsorbents Derived from Agro|Wastes and Invasive Plants for Cation Dye Adsorption from Water . Chemosphere," 2021," 282(3):" 131009|1|131009|11.

[16] PEI Y," QIN J X," WANG J," et al. Fe|Based Metal Organic Framework Derivative with Enhanced Lewis Acidity and Hierarchical Pores for Excellent Adsorption of Oxygenated Volatile Organic Compounds . Science of the Total Environment, "2021," 790(5):" 148132|1|148132|11.

[17] HENKELIS S E," JUDGE P T, HAYES S E," et al. Preferential SOx Adsorption in Mg|MOF|74 from a Humid Acid Gas Stream . ACS Applied Materials amp; Interfaces," 2021," 13(6):" 7278|7284.

[18] SUTTIPAT D K," BUTCHA S," ASSAVAPANUMAT S," et al. Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation . ACS Applied Materials amp; Interfaces," 2020," 12(32):" 36548|36557.

[19] YU Q," JIN R R," ZHAO L P," et al. MOF|Derived Mesoporous and Hierarchical Hollow|Structured In2O3|NiO Composites for Enhanced Triethylamine Sensing . ACS Sensors," 2021," 6(9):" 3451|3461.

[20] ZHANG F," HE Y D," HUANG J S," et al. Multicomponent Gas Storage in Organic Cage Molecules . The Journal of Physical Chemistry C," 2017," 121(22):" 12426|12433.

[21] ZHANG S P," ZHUO Y F," EZUGWU C I," et al. Synergetic Molecular Oxygen Activation and Catalytic Oxidation of Formaldehyde over Defective MIL|88B(Fe) Nanorods at Room Temperature . Environmental Science amp; Technology," 2021," 55(12):" 8341|8350.

[22] 胡長朝, 蔡露, 李鈺, 等. NH2|UiO|66/BiOBr/Bi2S3光催化劑的合成及其光催化性能 . 西華大學(xué)學(xué)報(自然科學(xué)版), 2022, 41(4): 1|10. (HU C C, CAI L, LI Y, et al. Study on Synthesis and Photocatalytic Performance of NH2|UiO|66/BiOBr/Bi2S3 Photocatalyst . Journal of Xihua University (Natural Science Edition), 2022, 41(4): 1|10.)

[23] 許汐龍, 方嘉, 衣程程, 等. 金屬有機骨架材料吸附CO2的研究進展 . 西華大學(xué)學(xué)報(自然科學(xué)版), 2024, 43(2): 39|49. (XU X L, FANG J, YI C C, et al. Research Progress of CO2 Adsorption Technology of Metal|Organic Frameworks Materials . Journal of Xihua University (Natural Science Edition), 2024, 43(2): 39|49.)

[24] 宋志強, 王玉高, 張宇姝, 等." 活性炭/金屬有機骨架復(fù)合吸附材料的制備及其CH4/N2吸附分離性能研究 . 低碳化學(xué)與化工, 2023, 48(5): 163|175. (SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on Preparation of Activated Carbon/Metal|Organic Frameworks Composite Adsorbent Materials and Their CH4/N2 Adsorption and Separation Performance . Low|Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163|175.)

[25] LOU Z N," XIAO X," HUANG M N," et al. Acrylic Acid|Functionalized Metal|Organic Frameworks for Sc(Ⅲ) Selective Adsorption . ACS Applied Materials amp; Interfaces," 2019," 11(12):" 11772|11781.

[26] SHELDRICK G M. Crystal Structure Refinement with SHELXL . Acta Crystallographica Section C:" Structural Chemistry," 2015," 71(1):" 3|8.

[27] SPEK A L. Structure Validation in Chemical Crystallography . Acta Crystallographica Section D:" Biological Crystallography," 2009," 65(2):" 148|155.

[28] GUO H D," SUN Y Y," ZHANG F," et al. An Unusual Self|catenated Cationic Metal|Organic Framework for the Selective Adsorption of Anionic Dyes ." Inorganic Chemistry Communications," 2019," 107:" 107492|1|107492|4.

[29] GUO M M," LIU S Y," GUO H D," et al. The Mixed|Ligand Strategy to Assemble a Microporous Anionic Metal|Organic Framework:" Ln3+ Post|Functionalization," Sensors and Selective Adsorption of Dyes ." Dalton Transactions," 2017," 46(43): 14988|14994.

(責任編輯: 單 凝)

主站蜘蛛池模板: 色哟哟国产精品一区二区| 亚洲精品无码抽插日韩| 免费jizz在线播放| 久久五月天国产自| 爱色欧美亚洲综合图区| 亚洲综合片| 国产真实乱子伦视频播放| 久久亚洲中文字幕精品一区 | 狠狠色丁婷婷综合久久| 成人精品亚洲| 国产视频只有无码精品| 亚洲色图欧美一区| 亚洲国产精品VA在线看黑人| 91久久国产综合精品女同我| 国产福利在线观看精品| 国产视频资源在线观看| 一本久道热中字伊人| 国产黄色爱视频| 欧美福利在线| 刘亦菲一区二区在线观看| 波多野结衣在线一区二区| 福利在线不卡| 国产女人在线| 高清无码一本到东京热| 国产在线精品香蕉麻豆| 99中文字幕亚洲一区二区| 2021国产v亚洲v天堂无码| 国产精品自在线天天看片| 国产91无码福利在线| 亚洲成人免费在线| 久久久久久久久亚洲精品| 久久人人97超碰人人澡爱香蕉| 亚洲第一视频免费在线| 国产人成午夜免费看| 欧类av怡春院| 国产乱人视频免费观看| 人妻少妇乱子伦精品无码专区毛片| 综合色亚洲| 在线观看视频99| 一本一本大道香蕉久在线播放| 欧美性天天| www中文字幕在线观看| 国产日韩欧美在线视频免费观看| 成年人视频一区二区| 在线看片中文字幕| 国产特级毛片| 欧美无遮挡国产欧美另类| AV熟女乱| 国产成本人片免费a∨短片| 久久婷婷五月综合色一区二区| 欧美成人日韩| 国产精品自在自线免费观看| 久久青草免费91线频观看不卡| 欧美精品啪啪| 国产a网站| 色视频久久| 国产91色| 国产99在线观看| 99久久国产自偷自偷免费一区| 中文字幕在线视频免费| 在线免费看片a| 色精品视频| 91免费在线看| AV无码一区二区三区四区| jizz亚洲高清在线观看| 国产精品美人久久久久久AV| 色噜噜久久| 色欲综合久久中文字幕网| 欧美日韩国产系列在线观看| 一区二区三区成人| 国产又爽又黄无遮挡免费观看| 中文字幕亚洲电影| 国产一区二区三区精品久久呦| 国产精品福利社| 亚洲一区免费看| 久操线在视频在线观看| 国产91高清视频| 亚洲综合极品香蕉久久网| 白浆视频在线观看| 国产浮力第一页永久地址| 伊人久久青草青青综合| 日韩精品成人网页视频在线|