摘要 采用簡單的水熱法制備m-Bi2O4,并利用XRD、XPS、SEM、TEM、UV-vis DRS、PFM等表征手段對樣品結構、形貌、表面價態(tài)以及壓電光催化性能進行分析.以磺胺甲基嘧啶(SM)為模擬污染物,測試了材料的壓電光催化活性.結果表明,與BaTiO3和BiOCl相比,m-Bi2O4表現(xiàn)出了較高的催化性能.在壓電光協(xié)同作用60 min后,對SM的降解效率高達96.46%.通過改變光的波長條件,證實m-Bi2O4在光能減弱條件下仍具有較高的催化活性.此外,通過活性自由基捕獲實驗證實反應體系中產生了高氧化活性的超氧自由基以及少量羥基自由基和單線態(tài)氧,并提出了一種可能的壓電光催化機理.
關鍵詞m-Bi2O4;磺胺甲基嘧啶;壓電光催化;光催化
中圖分類號TB332;O643.36
文獻標志碼A
0引言
近年來,抗生素濫用造成的水污染問題引起了全世界的廣泛關注.磺胺甲基嘧啶(SM)是養(yǎng)殖和畜牧用量最大的抗生素[1-2].大部分磺胺類抗生素在動物體內不能被完全吸收,未吸收的部分通過排泄的方式直接進入生態(tài)系統(tǒng),對生態(tài)系統(tǒng)造成潛在威脅.
1實驗部分
1.1試劑和儀器
1.2樣品的制備及表征
1.2.1四氧化二鉍的制備
1.2.2材料表征方法
采用X射線衍射(XRD)分析晶體結構;采用掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)分析樣品形貌;采用X射線光電子能譜(XPS)分析催化劑官能團結構和元素組成;采用紫外-可見分光光度計(UV-vis)分析光吸收性能;采用壓電響應力顯微鏡(PFM)分析樣品壓電特性;Mott-Schottky圖由電化學工作站(CHI660E)測定,其中Ag/AgCl和Pt片分別作為參比電極和對電極.
1.2.3壓電光催化活性實驗
2結果和討論
2.1樣品的XPS與XRD分析
2.2樣品的形貌分析
2.3樣品的PFM分析
2.4樣品的光學性能分析
2.5壓電光催化降解SM
2.6光的波長對降解SM的影響
2.7壓電光催化降解機理討論
3結論
參考文獻
References
[1]BaranW,Adamek E,Ziemian'ska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].Journal of Hazardous Materials,2011,196:1-15
[2]WangL L,Jiang S F,Huang J,et al.Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway[J].Journal of Environmental Chemical Engineering,2022,10(6):108537
[3]馬瑞霄,周浩,張燕輝.RGO-ZnO光催化降解抗生素及還原Cr(Ⅵ)的研究[J].工業(yè)水處理,2021,41(3):53-56MA Ruixiao,ZHOU Hao,ZHANG Yanhui.RGO-ZnO photocatalytic antibiotics degradation and Cr (Ⅵ) reduction[J].Industrial Water Treatment,2021,41(3):53-56
[4]蔡博華,鄒偉,朱雪梅,等.PVA/SiO2@BiOBr納米纖維的制備及其光催化性能[J].工業(yè)水處理,2022,42(6):140-145CAI Bohua,ZOU Wei,ZHU Xuemei,et al.Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J].Industrial Water Treatment,2022,42(6):140-145
[5]GaoC M,Wei T,Zhang Y Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):e1806596
[6]Chen Y,Deng X M,Wen J Y,et al.Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,258:118024
[7]WangZ L.Piezopotential gated nanowire devices:piezotronics and piezo-phototronics[J].Nano Today,2010,5(6):540-552
[8]Yin X,Wu W,Zhang F S,et al.Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2020,400:112661
[9]Tang Q,Wu J,Chen X Z,et al.Tuning oxygen vacancies in Bi4Ti3O12nanosheets to boost piezo-photocatalytic activity[J].Nano Energy,2023,108:108202
[10]Gao H C,Zhang Y G,Xia H Y,et al.In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,663:131030
[11]Chen P,Zhang Q X,Zheng X S,et al.Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide:mechanism,reactive species,and reactive sites[J].Journal of Hazardous Materials,2020,384:121443
[12]Liu M M,Liu G,Liu X M,et al.One-pot synthesis of m-Bi2O4/Bi2O4-x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,643:128772
[13]Cheng D,Teng M Q,Chen Y F,et al.In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation[J].Journal of Physics and Chemistry of Solids,2021,152:109947
[14]LyuY,Xu Z L,Nakane K,et al.A nanocrystalline oxygen-deficient bismuth oxide as an efficient adsorbent for effective visible-light-driven photocatalytic performance toward organic pollutant degradation[J].Journal of Colloid and Interface Science,2018,531:463-472
[15]Wang W J,Chen X Q,Liu G,et al.Monoclinic dibismuth tetraoxide:a new visible-light-driven photocatalyst for environmental remediation[J].Applied Catalysis B:Environmental,2015,176/177:444-453
[16]Zhou X F,Sun Q W,Zhai D,et al.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect[J].Nano Energy,2021,84:105936
[17]YangY,Hoffmann M R.Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J].Environmental Science & Technology,2016,50(21):11888-11894
[18]Lu S S,Liu F L,Qiu P X,et al.Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization:towards practical application[J].Chemical Engineering Journal,2020,379:122382
[19]Wang Y J,Bai X J,Pan C S,et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J].Journal of Materials Chemistry,2012,22(23):11568-11573
[20]SubramanianV,Wolf E E,Kamat P V.Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the Fermi level equilibration[J].Journal of the American Chemical Society,2004,126(15):4943-4950
[21]ZhangM,Bai X J,Liu D,et al.Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J].Applied Catalysis B:Environmental,2015,164:77-81
[22]Li X,Wu Q,Hussain M,et al.Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity[J].RSC Advances,2022,12(24):15378-15384
[23]WangY B,Jiang Y,Zhao Y X,et al.Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review[J].Chemical Engineering Journal,2023,451:138710
[24]Xie K F,Xu S Y,Xu K,et al.BiOCl heterojunction photocatalyst:construction,photocatalytic performance,and applications[J].Chemosphere,2023,317:137823
[25]Lyu L,Yu G F,Zhang L L,et al.4-phenoxyphenol-functionalized reduced graphene oxide nanosheets:a metal-free Fenton-like catalyst for pollutant destruction[J].Environmental Science & Technology,2018,52(2):747-756
[26]Xia D H,Shen Z R,Huang G C,et al.Red phosphorus:an earth-abundant elemental photocatalyst for green bacterial inactivation under visible light[J].Environmental Science & Technology,2015,49(10):6264-6273
[27]Xia D H,Lo I M C.Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J].Water Research,2016,100:393-404
[28]Feng Y W,Li H,Ling L L,et al.Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J].Environmental Science & Technology,2018,52(14):7842-7848
Catalytic degradation of sulfamethazine by m-Bi2O4 via synergistic piezoelectric-light effect
ZHU Jiawei1CHEN Haoxuan1LIU Fengling1GUO Zhaobing1QIU Pengxiang1
1School of Environmental Science and Engineering/Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control/Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science & Technology,Nanjing 210044,China
AbstractIn this paper,we prepare m-Bi2O4 via a simple hydrothermal method,and analyze its structure,morphology,surface valence and piezoelectric photocatalytic performance using characterization methods such as XRD,XPS,SEM,TEM,UV-vis DRS and PFM.Furthermore,we test the piezoelectric photocatalytic activity of the material using sulfamethazine (SM) as a simulated pollutant.The results show that m-Bi2O4 outperforms BaTiO3 and BiOCl in catalytic performance,indicated by its high SM degradation efficiency (96.46%) after 60 min of synergistic piezoelectric-light action,and m-Bi2O4 still holds high catalytic activity under weakening light energy.In addition,superoxide radicals with high oxidation activity and a small amount of hydroxyl radicals and singlet oxygen have been captured in the reaction system.We also propose a possible mechanism of piezoelectric photocatalysis.
Key wordsm-Bi2O4;sulfamethazine (SM);piezoelectric photocatalysis;photocatalysis