






摘要 針對永磁同步電機(jī)(PMSM)調(diào)速系統(tǒng)中,存在的建模誤差和負(fù)載突變等內(nèi)外擾動影響轉(zhuǎn)速穩(wěn)定的問題,提出一種基于負(fù)載估計的復(fù)合自抗擾調(diào)速策略.首先,在速度環(huán)采用自抗擾控制器替代PI控制器,以改善系統(tǒng)轉(zhuǎn)速與超調(diào)之間的矛盾.其次,設(shè)計一個負(fù)載轉(zhuǎn)矩觀測器,通過轉(zhuǎn)速和電流信號直接對負(fù)載轉(zhuǎn)矩進(jìn)行實時的估計和補(bǔ)償,來解決擴(kuò)張狀態(tài)觀測器(ESO)對負(fù)載突變響應(yīng)較慢的問題.最后,基于Matlab/Simulink環(huán)境搭建了復(fù)合自抗擾調(diào)速系統(tǒng)的半實物實驗平臺,并與傳統(tǒng)PI控制和線性自抗擾控制進(jìn)行對比驗證.仿真和實驗結(jié)果表明,所提出的基于負(fù)載估計的復(fù)合自抗擾控制策略相較于傳統(tǒng)控制方法在負(fù)載突變時轉(zhuǎn)速變化量減少了30%以上,具有較優(yōu)越的抗干擾能力和調(diào)速性能.關(guān)鍵詞永磁同步電機(jī);速度環(huán)控制;自抗擾控制;負(fù)載轉(zhuǎn)矩觀測器
中圖分類號TM351;TP273
文獻(xiàn)標(biāo)志碼A
0引言
永磁同步電機(jī)(Permanent Magnet Synchronous Motor,PMSM)由于其體積小、性能優(yōu)異、結(jié)構(gòu)簡單、效率高等特點(diǎn),在工業(yè)領(lǐng)域尤其是航空航天等領(lǐng)域得到廣泛的應(yīng)用[1-2].但是在實際工程應(yīng)用中,PMSM容易受建模誤差、未知動力學(xué)因素以及負(fù)載突變的影響,導(dǎo)致整個系統(tǒng)調(diào)速控制的性能在總擾動的影響下產(chǎn)生明顯的下降,且擾動的類型和來源往往復(fù)雜而多樣,很難獲得總擾動的具體模型[3-4].傳統(tǒng)PID控制器容易受內(nèi)外擾動的影響,很難在PMSM的調(diào)速控制中獲得較滿意的性能,因此,對速度控制性能更優(yōu)異的PMSM控制算法的研究逐漸成為幾十年來工業(yè)上面臨的主要問題之一[5].目前很多更先進(jìn)的控制算法已經(jīng)應(yīng)用于PMSM調(diào)速控制中,如滑模變結(jié)構(gòu)控制[6-7]、神經(jīng)網(wǎng)絡(luò)控制[8]、模型預(yù)測控制[9]等.
對于系統(tǒng)的建模誤差以及內(nèi)外擾動問題,Han[10]在經(jīng)典PID控制的思想上提出一種新型的不依賴被控對象具體模型且能夠有效抑制系統(tǒng)擾動的控制方法,即自抗擾控制(Active Disturbance Rejection Control,ADRC).在現(xiàn)有的眾多控制方法中,自抗擾控制被認(rèn)為是一種具有強(qiáng)抗擾性和無模型特性的最優(yōu)控制方案[11-13],因而一些學(xué)者將這種不依賴模型且具有優(yōu)異動靜態(tài)性能的控制方法應(yīng)用在永磁同步電機(jī)的控制領(lǐng)域.文獻(xiàn)[14]將PMSM的內(nèi)部建模誤差、未知動力學(xué)因素以及外部負(fù)載突變等擾動歸為系統(tǒng)的總擾動,將其擴(kuò)張成系統(tǒng)的一個狀態(tài)量,并利用擴(kuò)張狀態(tài)觀測器(Extended State Observer,ESO)通過系統(tǒng)的速度狀態(tài)量估計出系統(tǒng)的總擾動并加以補(bǔ)償.針對非線性ADRC控制器參數(shù)較多的問題,文獻(xiàn)[15]提出了速度環(huán)一階線性ADRC控制器,文獻(xiàn)[16]利用極點(diǎn)配置的方法將二階ESO的兩個增益整定為一個增益,在確保系統(tǒng)穩(wěn)定的情況下減小了調(diào)參難度.而文獻(xiàn)[17]則提出一種PMSM模型辨識與補(bǔ)償?shù)淖钥箶_控制器,通過對電機(jī)轉(zhuǎn)動慣量和阻尼系數(shù)的辨識補(bǔ)償一部分可知擾動,減小了ESO所要估計的擾動幅值以及估計負(fù)擔(dān),并且提高了估計的精度以及系統(tǒng)的穩(wěn)定性.但是,該方法中ESO所要估計的擾動項依然較多,且對外部負(fù)載轉(zhuǎn)矩變化產(chǎn)生的擾動的估計依賴于轉(zhuǎn)速誤差,經(jīng)過速度環(huán)ADRC才能夠得到估計和補(bǔ)償,因此控制系統(tǒng)對負(fù)載突變的響應(yīng)要滯后于轉(zhuǎn)速變化,導(dǎo)致負(fù)載突變時轉(zhuǎn)速波動較大,且并不能及時地恢復(fù)至給定轉(zhuǎn)速[18].
針對上述問題,本文提出一種基于負(fù)載估計的PMSM復(fù)合自抗擾控制器,利用系統(tǒng)狀態(tài)量,通過搭建一個負(fù)載轉(zhuǎn)矩觀測器,實時地估計外部擾動中的負(fù)載轉(zhuǎn)矩并補(bǔ)償給電機(jī),而除負(fù)載轉(zhuǎn)矩以外的總擾動則利用ESO來估計并補(bǔ)償.這樣將控制器的輸出分為兩個部分,進(jìn)一步減小ESO的估計負(fù)擔(dān),提高系統(tǒng)的穩(wěn)定性,同時得到快速性更好的控制量.最后,通過仿真與實驗對基于負(fù)載估計的PMSM復(fù)合自抗擾控制方法進(jìn)行調(diào)速性能的驗證.
1永磁同步電機(jī)的數(shù)學(xué)模型
2復(fù)合自抗擾控制器的設(shè)計
文獻(xiàn)[18]指出,在負(fù)載突變時速度環(huán)ESO基于轉(zhuǎn)速誤差的方法并不能及時有效地估計總擾動.因此設(shè)計一個負(fù)載轉(zhuǎn)矩觀測器,將ESO較難估計和補(bǔ)償?shù)耐蛔冐?fù)載擾動利用負(fù)載轉(zhuǎn)矩觀測器來估計和補(bǔ)償.這樣,得到基于負(fù)載估計的PMSM復(fù)合ADRC的原理框圖如圖1所示.
2.1負(fù)載轉(zhuǎn)矩觀測器的設(shè)計
2.2復(fù)合自抗擾控制器的設(shè)計
對于除外部負(fù)載突變以外的所有擾動,本文通過ESO來估計并加以補(bǔ)償.自抗擾控制器主要由跟蹤微分器(Tracking Differentiator,TD)、擴(kuò)張狀態(tài)觀測器(ESO)和非線性狀態(tài)誤差反饋控制規(guī)律(Nonlinear States Error Feed-Back,NLSEF)三部分組成.在ADRC中,TD環(huán)節(jié)主要用來安排輸入信號的過渡過程并且提取其微分信號,而對于一階轉(zhuǎn)速環(huán)對象,二階ESO的輸出為轉(zhuǎn)速信號和對擾動項的觀測信號,因此本文采用省略了TD模塊的一階線性自抗擾控制器,利用直接誤差代替ESO和NLSEF中的非線性函數(shù)來簡化系統(tǒng)結(jié)構(gòu).
3仿真與實驗驗證
3.1Simulink仿真
為了驗證所設(shè)計的控制器對電機(jī)轉(zhuǎn)速的控制效果,在Matlab/Simulink環(huán)境下搭建了控制系統(tǒng)的仿真模型并進(jìn)行了實驗.仿真中采用與實驗平臺PMSM相同的參數(shù)如表1所示.
3.2調(diào)速系統(tǒng)實驗平臺驗證
為了驗證所提出的基于負(fù)載估計的復(fù)合自抗擾調(diào)速控制設(shè)計的優(yōu)越性,在線仿真完成后,將Matlab/Simulink中的模型代碼下載至DSP(型號:TMS320F28335),并通過DSP采集和處理所需要的PMSM(型號:SM060R20B30MNAD)的轉(zhuǎn)子信息,最
在抗干擾實驗中,采用磁粉測功機(jī)進(jìn)行加載,由圖7b可見,外部負(fù)載突變時,基于負(fù)載估計的復(fù)合ADRC輸出控制量iq的快速性優(yōu)于ADRC和PI控制.由圖7a可見,達(dá)到穩(wěn)定轉(zhuǎn)速500 r/min后,突加負(fù)載時復(fù)合ADRC的輸出轉(zhuǎn)速動態(tài)速降為25 r/min,轉(zhuǎn)速恢復(fù)至給定值所需的調(diào)節(jié)時間為0.57 s,而線性ADRC和PI控制的轉(zhuǎn)速動態(tài)速降分別為36、90 r/min,調(diào)節(jié)時間分別為0.73、0.88 s;當(dāng)轉(zhuǎn)速到達(dá)1 000r/min并穩(wěn)定后,在進(jìn)行相同加載的情況下,復(fù)合ADRC的輸出轉(zhuǎn)速動態(tài)速降為30 r/min,調(diào)節(jié)時間為0.42 s,而線性ADRC和PI控制的轉(zhuǎn)速動態(tài)速降分別為44、100 r/min,調(diào)節(jié)時間分別為0.59、0.81 s,所提出的控制策略相較于上述兩種控制算法轉(zhuǎn)速變化均減小30%.根據(jù)得到的輸出轉(zhuǎn)速和電流曲線可知,所提出的控制方法在負(fù)載突變時的速度變化更小,可以更快速地恢復(fù)至給定速度,與線性ADRC和PI控制相比,表現(xiàn)出了較好的抗擾性能和快速性.
4結(jié)論
針對傳統(tǒng)PMSM調(diào)速系統(tǒng)中,負(fù)載突變、建模誤差等內(nèi)外擾動影響速度控制性能的問題,在速度環(huán)采用自抗擾控制策略,并在此基礎(chǔ)上利用負(fù)載估計的方法設(shè)計了復(fù)合自抗擾控制器.仿真和結(jié)果表明:文中設(shè)計的基于負(fù)載估計的復(fù)合ADRC與線性ADRC和PI控制器相比,在同樣加15%負(fù)載的情況下,轉(zhuǎn)速變化量減小了30%以上,可以有效抑制干擾,并提高調(diào)速系統(tǒng)的轉(zhuǎn)速跟蹤性能和快速性.
參考文獻(xiàn)
References
[1]HaoZ J,Yang Y,Gong Y M,et al.Linear/nonlinear active disturbance rejection switching control for permanent magnet synchronous motors[J].IEEE Transactions on Power Electronics,2021,36(8):9334-9347
[2]邱建琪,留若宸.永磁同步電機(jī)位置伺服系統(tǒng)改進(jìn)自抗擾控制[J].電機(jī)與控制學(xué)報,2019,23(11):42-50QIU Jianqi,LIU Ruochen.Improved active disturbance rejection control for permanent magnet synchronous motor position servo system[J].Electric Machines and Control,2019,23(11):42-50
[3]孫斌,王海霞,蘇濤,等.永磁同步電機(jī)調(diào)速系統(tǒng)非線性自抗擾控制器設(shè)計與參數(shù)整定[J].中國電機(jī)工程學(xué)報,2020,40(20):6715-6726SUN Bin,WANG Haixia,SU Tao,et al.Nonlinear active disturbance rejection controller design and tuning for permanent magnet synchronous motor speed control system[J].Proceedings of the CSEE,2020,40(20):6715-6726
[4]Wang B,Tian M H,Yu Y,et al.Enhanced ADRC with quasi-resonant control for PMSM speed regulation considering aperiodic and periodic disturbances[J].IEEE Transactions on Transportation Electrification,2022,8(3):3568-3577
[5]Ye S C,Yao X X.A modified flux sliding-mode observer for the sensorless control of PMSMs with online stator resistance and inductance estimation[J].IEEE Transactions on Power Electronics,2020,35(8):8652-8662
[6]Huang Y W,Huang W C,Chen S B,et al.Complementary sliding mode control with adaptive switching gain for PMSM[J].Transactions of the Institute of Measurement and Control,2019,41(11):3199-3205
[7]李政,胡廣大,崔家瑞,等.永磁同步電機(jī)調(diào)速系統(tǒng)的積分型滑模變結(jié)構(gòu)控制[J].中國電機(jī)工程學(xué)報,2014,34(3):431-437LI Zheng,HU Guangda,CUI Jiarui,et al.Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J].Proceedings of the CSEE,2014,34(3):431-437
[8]LiuD,Li M G.Adaptive predictive control system with disturbance compensation based on self-recurrent wavelet neural network[J].International Journal of Advancements in Computing Technology,2011,3(10):330-338
[9]Hang J,Zhang J B,Xia M J,et al.Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform[J].IEEE Transactions on Power Electronics,2020,35(6):6405-6418
[10]Han J Q.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics,2009,56(3):900-906
[11]焦姣姣,張興華.永磁同步電機(jī)調(diào)速系統(tǒng)的自抗擾控制器設(shè)計[J].微電機(jī),2015,48(11):77-80JIAO Jiaojiao,ZHANG Xinghua.Design of ADRC in PMSM speed control system[J].Micromotors,2015,48(11):77-80
[12]Liu C Q,Luo G Z,Chen Z,et al.A linear ADRC-based robust high-dynamic double-loop servo system for aircraft electro-mechanical actuators[J].Chinese Journal of Aeronautics,2019,32(9):2174-2187
[13]Tian M H,Wang B,Yu Y,et al.Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives[J].IEEE Transactions on Industrial Informatics,2022,18(5):3138-3149
[14]Wu Z L,Li D H,Liu Y H,et al.Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control[J].IEEE Transactions on Industrial Electronics,2023,70(6):6180-6190
[15]ZhuK K,Ruan L.Dual active disturbance rejection control of permanent magnet synchronous wind generators[J].Journal of Power Electronics,2023,23(7):1086-1097
[16]LuH,Li S Q,F(xiàn)eng B,et al.An enhanced sensorless control based on active disturbance rejection controller for a PMSM system:design and hardware implementation[J].Assembly Automation,2022,42(4):445-457
[17]劉志剛,李世華.基于永磁同步電機(jī)模型辨識與補(bǔ)償?shù)淖钥箶_控制器[J].中國電機(jī)工程學(xué)報,2008,28(24):118-123LIU Zhigang,LI Shihua.Active disturbance rejection controller based on permanent magnetic synchronous motor model identification and compensation[J].Proceedings of the CSEE,2008,28(24):118-123
[18]Li S H,Zong K,Liu H X.A composite speed controller based on a second-order model of permanent magnet synchronous motor system[J].Transactions of the Institute of Measurement and Control,2011,33(5):522-541
Design of composite ADRC based on load estimation for PMSM speed regulation
LI Peikang LU Hao1LI Juan LI Shengquan
1College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou 225127,China
AbstractTo address the internal and external disturbances in Permanent Magnet Synchronous Motor (PMSM) such as modeling errors and sudden load variation,a load estimation-based composite Active Disturbance Rejection Control (ADRC) approach is proposed for PMSM speed regulation.ADRC is adopted to replace the PI controller in the speed loop to improve the performance of control system and solve the contradiction between system rapidity and overshooting.A load torque observer is designed to correct the slow response of ESO to sudden load variation by directly estimating and compensating the load torque in real time via speed and current signals.Additionally,a semi-physical experimental platform of composite ADRC for speed regulation is constructed in Matlab/Simulink environment,and the proposed composite ADRC is compared with traditional PI control and linear ADRC.The results illustrate that the proposed approach outperforms conventional controller by reducing the speed variation by more than 30% under abrupt load variation,and has superior disturbance rejection ability and speed regulation performance.
Key wordspermanent magnet synchronous motor (PMSM);speed loop control;active disturbance rejection control (ADRC);load torque observer