999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Ni2P/g-C3N4/ZnIn2S4復合材料的制備及其光還原CO2性能研究

2024-01-01 00:00:00王一趙云霞蔡煒
南京信息工程大學學報 2024年4期
關鍵詞:復合材料催化劑結構

摘要 通過水熱法合成Ni2P/g-C3N4/ZnIn2S4三元復合材料(CNZ),并通過光還原CO2性能測試來評價其催化性能.采用XRD、SEM、TEM、XPS、UV-vis、EIS、PL等表征手段對所有復合比例樣品的形貌、晶體結構、表面元素化學態、能帶結構和光電性能進行分析,結果表明,通過晶面工程成功構建了界面緊密接觸的異質結結構,同時,Ni2P和g-C3N4的引入可有效改善復合材料的能帶結構,縮短電荷傳輸距離并有效抑制光生載流子的復合率.因此,相較于g-C3N4和g-C3N4/ZnIn2S4復合材料(CZ),三元CNZ復合材料呈現出更高的催化性能,其中,CNZ5(Ni2P∶g-C3N4∶ZnIn2S4=1∶5∶7)具有最佳的光催化還原CO2活性,其甲烷、甲醇和甲酸的產率分別達到114.72、17.38和20.15 μmol·h-1·g-1.此外,采用in-situ DRIFTS測試推導出光還原CO2機理,反應過程中的還原中間體為HCO-3與HCOOH.

關鍵詞CO2還原;光催化;異質結

中圖分類號TB333

文獻標志碼A

0引言

1實驗

1.1試劑與儀器

1.2催化劑的制備

1.3光還原CO2性能測試

2結果與討論

2.1催化劑的晶型結構

2.2催化劑的形貌分析和孔結構分析

2.3催化劑的表面元素化學態

2.4催化劑的光還原CO2性能

2.5催化劑的帶隙結構

3結論

References

[1]AbuelgasimS,Wang W J,Abdalazeez A.A brief review for chemical looping combustion as a promising CO2 capture technology:fundamentals and progress[J].Science of the Total Environment,2021,764:142892

[2]Sun M Y,Zhao B H,Chen F P,et al.Thermally-assisted photocatalytic CO2 reduction to fuels[J].Chemical Engineering Journal,2021,408:127280

[3]Zhang T,Zhang W C,Yang R Z,et al.CO2 capture and storage monitoring based on remote sensing techniques:a review[J].Journal of Cleaner Production,2021,281:124409

[4]Xu C B,Yang J J,He L,et al.Carbon capture and storage as a strategic reserve against Chinas CO2 emissions[J].Environmental Development,2021,37:100608

[5]Jakobsen J B,Rnne M H,Daasbjerg K,et al.Are amines the holy grail for facilitating CO2 reduction?[J].Angewandte Chemie (International Edition),2021,60(17):9174-9179

[6]Wang J J,Lin S,Tian N,et al.Nanostructured metal sulfides:classification,modification strategy,and solar-driven CO2 reduction application[J].Advanced Functional Materials,2021,31(9):2008008

[7]Price C A H,Reina T R,Liu J.Engineering heterogenous catalysts for chemical CO2 utilization:lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors[J].Journal of Energy Chemistry,2021,57:304-324

[8]MussattoS I,Yamakawa C K,Lucas V D M,et al.New trends in bioprocesses for lignocellulosic biomass and CO2 utilization[J].Renewable and Sustainable Energy Reviews,2021,152:111620

[9]Wang Y Y,Zhou Q X,Zhu Y F,et al.High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9[J].Applied Catalysis B:Environmental,2021,294:120236

[10]Hiromu K,Yusuke T,Osamu I.Photocatalytic systems for CO2 reduction:metal-complex photocatalysts and their hybrids with photofunctional solid materials[J].Accounts of Chemical Research,2022,55(7):978-990

[11]Kumar A,Raizada P,Thakur V K,et al.An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction:strategically manoeuvring solar to fuel conversion efficiency[J].Chemical Engineering Science,2021,230:116219

[12]HanX X,Lu B J,Huang X,et al.Novel p-and n-type S-schemeheterojunction photocatalyst for boosted CO2 photoreduction activity[J].Applied Catalysis B:Environmental,2022,316:121587

[13]ZengD Q,Zhou T,Ong W J,et al.Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4for precious-metal-free photocatalytic hydrogen evolutionunder visible light[J].ACS Applied Materials & Interfaces,2019,11(6):5651-5660

[14]Wu K L,Wu P C,Zhu J F,et al.Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB[J].Chemical Engineering Journal,2019,360:221-230

[15]Wang X,Li Y,Li T,et al.Synergistic effect of bimetallic sulfide enhances the performance of CdS photocatalytic hydrogen evolution[J].Advanced Sustainable Systems,2023,7(1):2200139

[16]Li X L,Wang X J,Zhu J Y,et al.Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution[J].Chemical Engineering Journal,2018,353:15-24

[17]Zhang T X,Wang T,Meng F L,et al.Recent advances in ZnIn2S4-based materials towards photocatalytic purification,solar fuel production and organic transformations[J].Journal of Materials Chemistry C,2022,10(14):5400-5424

[18]Gao W,Wang L,Gao C,et al.Exquisite design of porous carbon microtubule-scaffolding hierarchical In2O3-ZnIn2S4 heterostructures toward efficient photocatalytic conversion of CO2 into CO[J].Nanoscale,2020,12(27):14676-14681

[19]HanQ T,Li L,Gao W,et al.Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction[J].ACS Applied Materials & Interfaces,2021,13(13):15092-15100

[20]Chu J Y,Han X J,Yu Z,et al.Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J].ACS Applied Materials & Interfaces,2018,10(24):20404-20411

[21]Gao Z Q,Chen K Y,Wang L,et al.Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation[J].Applied Catalysis B:Environmental,2020,268:118462

[22]Cai W,Yu X,Cao Y,et al.Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2[J].Journal of Environmental Chemical Engineering,2022,10(3):107461

[23]NiT J,Yang Z B,Cao Y F,et al.Rational design of MoS2/g-C3N4/ZnIn2S4 hierarchical heterostructures with efficient charge transfer for significantly enhanced photocatalytic H2 production[J].Ceramics International,2021,47(16):22985-22993

[24]Nan Y B,Wang X T,Xing S H,et al.Designed hollow Ni2P/TiO2 S-scheme heterojunction for remarkably enhanced photoelectric effect for solar energy harvesting and conversion[J].Journal of Materials Chemistry C,2023.DOI:10.1039/D3TC00013C

[25]Kong L Q,Ji Y J,Dang Z Z,et al.g-C3 N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light[J].Advanced Functional Materials,2018,28(22):1800668

[26]Wang L B,Cheng B,Zhang L Y,et al.In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J].Small (Weinheim an Der Bergstrasse,Germany),2021,17(41):e2103447

[27]ChenR,Wang P F,Chen J,et al.Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation[J].Applied Surface Science,2019,473:11-19

[28]Xu J C,Li Q R,Sui D J,et al.In situ photodeposition of cobalt phosphate (CoHxPOy) on CdIn2S4 photocatalyst for accelerated hole extraction and improved hydrogen evolution[J].Nanomaterials,2023,13(3):420

[29]CaiW,Tang J Y,Shi Y P,et al.Improved in situ synthesis of heterostructured 2D/2D BiOCl/g-C3N4 with enhanced dye photodegradation under visible-light illumination[J].ACS Omega,2019,4(26):22187-22196

Construction of Ni2P/g-C3N4/ZnIn2S4 photocatalysts and

their boosted photocatalytic reduction of CO2

WANG Yi1ZHAO Yunxia1CAI Wei1

1School of Environmental Science and Engineering/Collaborative Innovation Center of Atmospheric

Environment and Equipment Technology/Jiangsu Key Laboratory of Atmospheric Environment Monitoring &

Pollution Control,Nanjing University of Information Science & Technology,Nanjing 210044,China

AbstractTernary composites of Ni2P/g-C3N4/ZnIn2S4 were synthesized via a hydrothermal approach,and their catalytic performance were evaluated by photoreduction of CO2.Kinds of characterizations (XRD,SEM,TEM,XPS,UV-vis,EIS,and PL) were applied to investigate the morphology,crystal structure,surface chemical states,band structure and photoelectric property of the composites.The results showed that the heterostructure with intense contact was constructed successfully via the facet engineering.Besides,the introduction of Ni2P and g-C3N4 could improve the band structure of photocatalysts,shorten the transmission distance of electrons and inhibit the recombination of photo-induced carriers effectively.Therefore,ternary composites of Ni2P/g-C3N4/ZnIn2S4 exhibited higher catalytic activity compared with pure g-C3N4 and binary composites of g-C3N4/ZnIn2S4.Among Ni2P/g-C3N4/ZnIn2S4 composites,CNZ5 (Ni2P∶g-C3N4∶ZnIn2S4=1∶5∶7) revealed the optimal CO2 photoreduction efficiency,in which the yields of CH4,CH3OH,and HCOOH were 114.72 μmol·h-1·g-1,17.38 μmol·h-1·g-1,and 20.15 μmol·h-1·g-1,respectively.Furthermore,the CO2 photoreduction mechanism was obtained by in-situ DRIFTS,and the intermediates of HCO-3 and HCOOH were found during the reaction process.

Key wordsCO2 reduction;photocatalysis;heterostructure

猜你喜歡
復合材料催化劑結構
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
直接轉化CO2和H2為甲醇的新催化劑
民機復合材料的適航鑒定
復合材料無損檢測探討
電子測試(2017年11期)2017-12-15 08:57:13
論《日出》的結構
新型釩基催化劑催化降解氣相二噁英
掌握情欲催化劑
Coco薇(2016年2期)2016-03-22 02:45:06
V2O5-WO3/TiO2脫硝催化劑回收研究進展
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
主站蜘蛛池模板: 国产清纯在线一区二区WWW| 午夜国产大片免费观看| 一本一道波多野结衣av黑人在线| 欧美精品亚洲二区| 精品伊人久久久香线蕉 | av无码久久精品| 亚洲第一页在线观看| 黄色网址手机国内免费在线观看| 国产肉感大码AV无码| 58av国产精品| 国产欧美高清| 国产91精选在线观看| 91久久国产成人免费观看| 日韩中文无码av超清| 亚洲va在线∨a天堂va欧美va| 高清久久精品亚洲日韩Av| 少妇人妻无码首页| 国产精品福利尤物youwu | 99久久精品免费视频| 亚洲国产系列| 国产精品性| 一级香蕉人体视频| 国禁国产you女视频网站| 99这里只有精品在线| 97人妻精品专区久久久久| 狠狠做深爱婷婷综合一区| 国产成人高清精品免费| 色色中文字幕| 在线观看无码a∨| 亚洲天堂网在线播放| 亚洲欧洲自拍拍偷午夜色无码| 成人欧美日韩| 欧美亚洲另类在线观看| 国产精品55夜色66夜色| 亚洲成人福利网站| 久草青青在线视频| 精品人妻系列无码专区久久| 国产免费高清无需播放器| 亚洲av成人无码网站在线观看| 精品91在线| 亚洲男人的天堂久久精品| P尤物久久99国产综合精品| 香蕉伊思人视频| 欧美在线黄| 日韩欧美视频第一区在线观看| 国产精品99在线观看| 日本妇乱子伦视频| 成人毛片免费在线观看| 国产自在自线午夜精品视频| 中文字幕无码电影| 欧美激情福利| 久久99国产综合精品女同| 亚洲无码日韩一区| 国产女人综合久久精品视| 亚洲AⅤ无码国产精品| 日本在线免费网站| 中文字幕有乳无码| 婷婷色中文网| 亚洲欧洲日本在线| 亚洲国产日韩欧美在线| 国产精品yjizz视频网一二区| 精品自窥自偷在线看| 国产不卡国语在线| 青青青伊人色综合久久| 思思99思思久久最新精品| 国产女人18毛片水真多1| 国产高清无码麻豆精品| 亚洲欧美日韩中文字幕在线| 18禁黄无遮挡免费动漫网站| 国产91在线|日本| 久久久久人妻一区精品色奶水| 国产网友愉拍精品| 国产精品中文免费福利| 国产SUV精品一区二区6| 国产美女自慰在线观看| 五月激激激综合网色播免费| 欧美精品H在线播放| 日韩免费视频播播| 99精品国产自在现线观看| 制服丝袜 91视频| 国产丝袜一区二区三区视频免下载| 日本五区在线不卡精品|