










摘要 通過水熱法合成Ni2P/g-C3N4/ZnIn2S4三元復合材料(CNZ),并通過光還原CO2性能測試來評價其催化性能.采用XRD、SEM、TEM、XPS、UV-vis、EIS、PL等表征手段對所有復合比例樣品的形貌、晶體結構、表面元素化學態、能帶結構和光電性能進行分析,結果表明,通過晶面工程成功構建了界面緊密接觸的異質結結構,同時,Ni2P和g-C3N4的引入可有效改善復合材料的能帶結構,縮短電荷傳輸距離并有效抑制光生載流子的復合率.因此,相較于g-C3N4和g-C3N4/ZnIn2S4復合材料(CZ),三元CNZ復合材料呈現出更高的催化性能,其中,CNZ5(Ni2P∶g-C3N4∶ZnIn2S4=1∶5∶7)具有最佳的光催化還原CO2活性,其甲烷、甲醇和甲酸的產率分別達到114.72、17.38和20.15 μmol·h-1·g-1.此外,采用in-situ DRIFTS測試推導出光還原CO2機理,反應過程中的還原中間體為HCO-3與HCOOH.
關鍵詞CO2還原;光催化;異質結
中圖分類號TB333
文獻標志碼A
0引言
1實驗
1.1試劑與儀器
1.2催化劑的制備
1.3光還原CO2性能測試
2結果與討論
2.1催化劑的晶型結構
2.2催化劑的形貌分析和孔結構分析
2.3催化劑的表面元素化學態
2.4催化劑的光還原CO2性能
2.5催化劑的帶隙結構
3結論
References
[1]AbuelgasimS,Wang W J,Abdalazeez A.A brief review for chemical looping combustion as a promising CO2 capture technology:fundamentals and progress[J].Science of the Total Environment,2021,764:142892
[2]Sun M Y,Zhao B H,Chen F P,et al.Thermally-assisted photocatalytic CO2 reduction to fuels[J].Chemical Engineering Journal,2021,408:127280
[3]Zhang T,Zhang W C,Yang R Z,et al.CO2 capture and storage monitoring based on remote sensing techniques:a review[J].Journal of Cleaner Production,2021,281:124409
[4]Xu C B,Yang J J,He L,et al.Carbon capture and storage as a strategic reserve against Chinas CO2 emissions[J].Environmental Development,2021,37:100608
[5]Jakobsen J B,Rnne M H,Daasbjerg K,et al.Are amines the holy grail for facilitating CO2 reduction?[J].Angewandte Chemie (International Edition),2021,60(17):9174-9179
[6]Wang J J,Lin S,Tian N,et al.Nanostructured metal sulfides:classification,modification strategy,and solar-driven CO2 reduction application[J].Advanced Functional Materials,2021,31(9):2008008
[7]Price C A H,Reina T R,Liu J.Engineering heterogenous catalysts for chemical CO2 utilization:lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors[J].Journal of Energy Chemistry,2021,57:304-324
[8]MussattoS I,Yamakawa C K,Lucas V D M,et al.New trends in bioprocesses for lignocellulosic biomass and CO2 utilization[J].Renewable and Sustainable Energy Reviews,2021,152:111620
[9]Wang Y Y,Zhou Q X,Zhu Y F,et al.High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9[J].Applied Catalysis B:Environmental,2021,294:120236
[10]Hiromu K,Yusuke T,Osamu I.Photocatalytic systems for CO2 reduction:metal-complex photocatalysts and their hybrids with photofunctional solid materials[J].Accounts of Chemical Research,2022,55(7):978-990
[11]Kumar A,Raizada P,Thakur V K,et al.An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction:strategically manoeuvring solar to fuel conversion efficiency[J].Chemical Engineering Science,2021,230:116219
[12]HanX X,Lu B J,Huang X,et al.Novel p-and n-type S-schemeheterojunction photocatalyst for boosted CO2 photoreduction activity[J].Applied Catalysis B:Environmental,2022,316:121587
[13]ZengD Q,Zhou T,Ong W J,et al.Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4for precious-metal-free photocatalytic hydrogen evolutionunder visible light[J].ACS Applied Materials & Interfaces,2019,11(6):5651-5660
[14]Wu K L,Wu P C,Zhu J F,et al.Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB[J].Chemical Engineering Journal,2019,360:221-230
[15]Wang X,Li Y,Li T,et al.Synergistic effect of bimetallic sulfide enhances the performance of CdS photocatalytic hydrogen evolution[J].Advanced Sustainable Systems,2023,7(1):2200139
[16]Li X L,Wang X J,Zhu J Y,et al.Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution[J].Chemical Engineering Journal,2018,353:15-24
[17]Zhang T X,Wang T,Meng F L,et al.Recent advances in ZnIn2S4-based materials towards photocatalytic purification,solar fuel production and organic transformations[J].Journal of Materials Chemistry C,2022,10(14):5400-5424
[18]Gao W,Wang L,Gao C,et al.Exquisite design of porous carbon microtubule-scaffolding hierarchical In2O3-ZnIn2S4 heterostructures toward efficient photocatalytic conversion of CO2 into CO[J].Nanoscale,2020,12(27):14676-14681
[19]HanQ T,Li L,Gao W,et al.Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction[J].ACS Applied Materials & Interfaces,2021,13(13):15092-15100
[20]Chu J Y,Han X J,Yu Z,et al.Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J].ACS Applied Materials & Interfaces,2018,10(24):20404-20411
[21]Gao Z Q,Chen K Y,Wang L,et al.Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation[J].Applied Catalysis B:Environmental,2020,268:118462
[22]Cai W,Yu X,Cao Y,et al.Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2[J].Journal of Environmental Chemical Engineering,2022,10(3):107461
[23]NiT J,Yang Z B,Cao Y F,et al.Rational design of MoS2/g-C3N4/ZnIn2S4 hierarchical heterostructures with efficient charge transfer for significantly enhanced photocatalytic H2 production[J].Ceramics International,2021,47(16):22985-22993
[24]Nan Y B,Wang X T,Xing S H,et al.Designed hollow Ni2P/TiO2 S-scheme heterojunction for remarkably enhanced photoelectric effect for solar energy harvesting and conversion[J].Journal of Materials Chemistry C,2023.DOI:10.1039/D3TC00013C
[25]Kong L Q,Ji Y J,Dang Z Z,et al.g-C3 N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light[J].Advanced Functional Materials,2018,28(22):1800668
[26]Wang L B,Cheng B,Zhang L Y,et al.In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J].Small (Weinheim an Der Bergstrasse,Germany),2021,17(41):e2103447
[27]ChenR,Wang P F,Chen J,et al.Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation[J].Applied Surface Science,2019,473:11-19
[28]Xu J C,Li Q R,Sui D J,et al.In situ photodeposition of cobalt phosphate (CoHxPOy) on CdIn2S4 photocatalyst for accelerated hole extraction and improved hydrogen evolution[J].Nanomaterials,2023,13(3):420
[29]CaiW,Tang J Y,Shi Y P,et al.Improved in situ synthesis of heterostructured 2D/2D BiOCl/g-C3N4 with enhanced dye photodegradation under visible-light illumination[J].ACS Omega,2019,4(26):22187-22196
Construction of Ni2P/g-C3N4/ZnIn2S4 photocatalysts and
their boosted photocatalytic reduction of CO2
WANG Yi1ZHAO Yunxia1CAI Wei1
1School of Environmental Science and Engineering/Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology/Jiangsu Key Laboratory of Atmospheric Environment Monitoring &
Pollution Control,Nanjing University of Information Science & Technology,Nanjing 210044,China
AbstractTernary composites of Ni2P/g-C3N4/ZnIn2S4 were synthesized via a hydrothermal approach,and their catalytic performance were evaluated by photoreduction of CO2.Kinds of characterizations (XRD,SEM,TEM,XPS,UV-vis,EIS,and PL) were applied to investigate the morphology,crystal structure,surface chemical states,band structure and photoelectric property of the composites.The results showed that the heterostructure with intense contact was constructed successfully via the facet engineering.Besides,the introduction of Ni2P and g-C3N4 could improve the band structure of photocatalysts,shorten the transmission distance of electrons and inhibit the recombination of photo-induced carriers effectively.Therefore,ternary composites of Ni2P/g-C3N4/ZnIn2S4 exhibited higher catalytic activity compared with pure g-C3N4 and binary composites of g-C3N4/ZnIn2S4.Among Ni2P/g-C3N4/ZnIn2S4 composites,CNZ5 (Ni2P∶g-C3N4∶ZnIn2S4=1∶5∶7) revealed the optimal CO2 photoreduction efficiency,in which the yields of CH4,CH3OH,and HCOOH were 114.72 μmol·h-1·g-1,17.38 μmol·h-1·g-1,and 20.15 μmol·h-1·g-1,respectively.Furthermore,the CO2 photoreduction mechanism was obtained by in-situ DRIFTS,and the intermediates of HCO-3 and HCOOH were found during the reaction process.
Key wordsCO2 reduction;photocatalysis;heterostructure