摘要:5-羥色胺(5-HT)是腦-腸軸途徑中一種重要的神經遞質,其分泌與腸道菌群、腸道免疫、腸道動力等方面密切相關。5-HT代謝途徑異常參與腸易激綜合征、炎癥性腸病、慢性便秘、功能性消化不良等胃腸道疾病的發生、發展。就5-HT在不同胃腸道疾病中的作用機制研究進行綜述,以期為臨床治療開拓新思路。
關鍵詞:血清素;5-羥色胺;胃腸道疾病;腸道菌群;腸道動力;腸道免疫
中圖分類號:R574 文獻標志碼:A DOI:10.11958/20231309
Research progress on the role and mechanism of 5-hydroxytryptamine in"gastrointestinal diseases
SHAN Zihong1, HU Xiaoqing2, LI Feng3, HUANG Yongkun1
1 Department of Pediatrics, the 1st Affiliated Hospital of Kunming Medical University, Kunming 650000, China; 2 Department of Geriatrics, the 1st People's Hospital of Jiashan; 3 Department of Pediatrics, Kunming Children's Hospital
Corresponding Author E-mail: hykkmyncnwd@163.com
Abstract: 5-hydroxytryptamine (5-HT) is an important neurotransmitter in brain-gut axis pathway, and its secretion is closely related to intestinal flora, intestinal immunity and intestinal motility. Abnormal metabolic pathway of 5-HT is involved in the occurrence and development of gastrointestinal diseases, such as irritable bowel syndrome, inflammatory bowel disease, chronic constipation and functional dyspepsia. This article reviews the mechanism of 5-HT in different gastrointestinal diseases in order to explore new ideas for clinical treatment.
Key words: serotonin; 5-hydroxytryptamine; gastrointestinal diseases; intestinal flora; intestinal motility; intestinal immunity
5-羥色胺(5-hydroxytryptamine,5-HT)又稱血清素,屬單胺類抑制性神經遞質,90%分布于腸黏膜嗜鉻細胞(enterochromaffin cells,ECs)內,是胃腸道蠕動及感知功能調節的重要信號分子[1]。其對應的5-羥色胺受體(5-hydroxytryptamine receptor,5-HTR)分為5-HTR1—5-HTR7,除5-HTR3為配體門控離子通道外,其余均為G蛋白偶聯受體。ECs基底細胞顆粒通過感知腸道菌群代謝物的變化,促使5-HT釋放,參與調控胃腸分泌、蠕動及維持腸道穩態等多種生理活動[2]。5-HT在中樞、外周神經系統及腸道內均廣泛表達[3-4],而胃腸道5-HT代謝紊亂可能參與腸易激綜合征(Irritablebowel syndrome,IBS)、炎癥性腸病(Inflammatory bowel disease,IBD)、慢性便秘(Chronic constipation,CC)、功能性消化不良(Functional dyspepsia,FD)等多種胃腸道疾病的發生、發展。為了臨床更科學地理解5-HT與胃腸道疾病間的關系,本文在5-HT的合成代謝及與腸道菌群、腸道動力、腸道免疫聯系的基礎上,進一步歸納總結5-HT在胃腸道疾病進展中作用機制,以期為胃腸道疾病的治療提供新思路。
1 5-HT的合成代謝
5-HT的前體為5-羥基色氨酸,由色氨酸羥化酶(Tryptophan hydroxylase,Tph)催化色氨酸而成,在芳香氨基酸脫羧酶作用下轉化為5-HT。Tph是5-HT合成過程中的一種關鍵限速酶,分為Tph1、Tph2兩種形式,而Tph1、Tph2分別產生于ECs及中樞神經系統、腸神經元,故外周及中樞神經5-HT合成主要受Tph1、Tph2調控。ECs充當腸腔、腸神經系統中介,可促進5-HT分泌,刺激腸道神經系統傳導,引發腸腔反應,從而誘導腸道蠕動[5]。有報道指出,5-HT通過結合效應細胞或組織上的5-HTR1、5-HTR2、5-HTR3、5-HTR4及5-HTR7等不同受體,刺激腸黏膜外源性神經,提高乙酰膽堿釋放量,興奮腸道平滑肌,誘導腸道蠕動與分泌反射,改變內臟敏感性[6]。但當機體無需5-HT時,可直接從腸道細胞間隙中移除。移除機制則是通過將5-HT隔離至腸上皮細胞或轉運至循環系統實現的。一方面,腸黏膜上的血清素轉運體(serotonin transporter,SERT)攝取部分5-HT,經單胺氧化酶(monoamine oxidase,MAO)降解生成5-羥基吲哚醛,通過醛脫氫酶進而代謝為5羥基吲哚乙酸;另一方面,5-HT也可經芳基烷基胺N-乙酰轉移酶促進N-乙酰-5-HT代謝,再經羥吲哚甲基轉移酶代謝為褪黑素。此外,5-HT還可經吲哚胺-2,3-雙加氧酶代謝,在尿氨酸途徑中發揮重要作用。因此,5-HT的合成代謝與色氨酸水平及Tph、MAO、吲哚胺-2,3-雙加氧酶等酶活性均存在關系。
2 5-HT與腸道菌群
“腦-腸-微生物軸”概念的提出是在“腦-腸軸”的基礎上,強調腸道微生物在大腦與腸道雙向信息交流中的作用。腸道與微生物之間關系緊密。一方面,腸道為微生物的生長繁殖提供了有利環境;另一方面,腸道微生物的有利繁殖促進營養物質的消化吸收,兩者互為互利,形成“超級生物體”[7-8]。多項研究顯示,腸道菌群通過神經、內分泌、免疫等方式與大腦中樞、腸道保持聯系[9-10]。酪蛋白分解肽酶B(caseinolytic peptidase B,ClpB)是腸道菌群的產物,可直接作用于下丘腦阿片黑素促皮質素原神經元,誘發神經元放電,增加飽腹感。同時,腸道菌群調節腸道主要通過神經、內分泌、腸細胞串擾或改變腸道內環境等多種途徑實現。既往研究指出,腸道菌群是在調節ECs細胞分泌5-HT中起重要作用的主要因素。腸道菌群代謝物戊酸通過阻斷核小體重塑與組蛋白去乙酰化酶(nucleosome remodeling and deacetylase,NuRD)復合物募集Tph2啟動子,促進腸道血清素能神經元中Tph2表達,5-HT合成釋放增加,通過結合5-HTR2A激活前列腺素(prostaglandine,PG)E2巨噬細胞亞群,釋放PGE3,且PGE2還可結合前列腺素受體(prostaglandin receptor,EP)1/4,通過無翅(wingless,Wg)/β-連環蛋白信號通路促進腸道干細胞的自我更新[11]。另有報道指出,腸道菌群代謝產物通過刺激ECs促使5-HT釋放[12-13]。有研究指出,天然產芽孢細菌可誘導結腸嗜鉻細胞合成釋放5-HT,從而增加結腸、血液中5-HT含量[14]。Ma等[15]研究顯示,5-HT通過調節腸道菌群紊亂減輕慢性應激誘導的小鼠認知功能障礙。Kwon等[16]通過深度測序研究Tph1與小鼠腸道菌群發現,5-HT在體外直接刺激并抑制共生菌生長,且表現出濃度依賴性與物種特異性作用,表明腸道衍生的5-HT在塑造與結腸炎易感性相關的腸道菌群組成方面具有一定作用,5-HT-微生物軸可成為治療腸道炎癥性疾病的潛在靶點。另有研究顯示,腸道菌群可通過調控5-HT代謝影響腦-腸軸、增加內臟敏感性、改變胃腸動力,參與IBS發生、發展[17]。
3 5-HT與腸道動力
5-HT參與興奮性、抑制性腸運動神經元上受體的調控,調節胃腸道運動、內臟感覺、黏膜分泌[18-19]。同時,5-HT作為腸神經系統生長因子,可與5-HTR2B/C結合,調節腸神經元發育,加快神經嵴衍生前體分離,促進腸黏膜上皮生長、轉運[20]。另外,腸道ECs表面廣泛分布著多種神經遞質受體,結腸內壓力升高時,ECs功能活躍,促進5-HT分泌,可直接作用于相應受體,并將信號傳導至腸肌間神經叢,促進腸蠕動反射。ECs可誘導黏膜下傳入神經纖維,經腸神經系統對局部興奮、抑制進行相應調控。有研究發現,結腸運動中促腎上腺皮質激素釋放因子與5-HT通路相互調控、相互作用。中樞注射促腎上腺皮質激素釋放因子可調控膽堿能神經,增強結腸壁張力,促使ECs分泌5-HT,進而激活內在初級傳入神經元,誘導其在肌間神經叢中與上下行中間神經元形成突觸,從而調控局部興奮與抑制,促進腸道動力[21]。Ye等[22]通過體內實時測量斑馬魚的ECs和神經系統活性發現,遲鈍愛德華氏菌通過受體瞬時電位通道A1激活ECs,直接刺激腸道與迷走神經通路,并通過分泌神經遞質5-HT激活膽堿能腸神經元,調節腸蠕動。另外,5-HT對腸神經元、肌細胞等效應器亦可發揮直接作用,通過提高神經效應接頭處膽堿類遞質含量,引起結腸收縮。5-HTR3作為5-HT受體之一,與腸道感覺、運動密切相關,可同時調控興奮性及抑制性神經傳導物質的傳導,且與5-HT結合時可誘導細胞內Ca2+分泌,增強中樞及外周神經元興奮性,提高神經遞質含量[23]。Hagbom等[24]研究發現,5-HTR3敲除輪狀病毒腸炎小鼠的腸蠕動能力減弱,并且迷走神經興奮性明顯增強,表明5-HTR3通過影響腸道蠕動參與輪狀病毒腸炎性腹瀉的過程。
4 5-HT與腸道免疫
胃腸道不僅是消化系統的主要器官,而且在免疫方面也有著不可忽視的作用。其中,免疫機制分為特異性免疫和非特異性免疫。當各種原因引起的胃腸道黏膜屏障破壞,免疫細胞功能降低,誘導腫瘤壞死因子α(tumor necrosis factor,TNF-α)、白細胞介素(interleukin,IL)-33等炎性因子大量分泌,加重腸黏膜損害,從而引起腹痛、腹瀉等癥狀[25]。5-HT除了作為神經遞質外,還作用于免疫細胞,先天免疫細胞中的5-HT與5-HTR結合后可增加T細胞數量,強化促炎T細胞反應,活化T細胞,增加5-HTR1B、5-HTR2A含量,參與輔助性T細胞增殖與分化,調控樹突狀細胞中細胞因子含量,促進Th2細胞生成,從而在腸道炎癥過程中進一步調節T細胞介導的免疫應答。有研究指出,5-HT在腸道炎癥條件下可通過與不同的受體結合發揮抗炎與促炎作用[26]。Kanova等[27]研究亦指出,5-HT對免疫功能有著重要影響,可調節大部分免疫細胞響應的炎癥反應。另外,5-HT不僅是調控腸道動力的關鍵遞質,還是肥大細胞、巨噬細胞等各種免疫細胞的趨化因子。ECs通過腦-腸回路可直接與神經元建立突觸連接,調節胃腸道營養物質消化吸收,調控腸道免疫。
5 5-HT與胃腸道疾病
研究認為,5-HT引發胃腸道疾病的機制可能與腸道菌群紊亂、腸道動力障礙、腸道免疫異常等多種因素有關[28-29]。故研究5-HT與胃腸道疾病間的關系對臨床治療具有重要指導意義。
5.1 5-HT與IBS IBS是臨床較為常見的功能性腸病,全球發病率可達12%[30],其主要分為腹瀉型(IBS-D)、便秘型(IBS-C)、混合型(IBS-M)及不定型(IBS-U)4種亞型,而我國多以IBS-D為主。目前IBS的發病機制尚未完全明確,有相關研究顯示,腦-腸軸調節異常、腸道免疫異常、腸道運動障礙、腸道菌群紊亂與其發生具有一定聯系。5-HT是腦-腸軸中重要的神經遞質,通過調控其分泌可影響腸道動力,調節內臟敏感性,改變宿主腸道狀態。歐陽勇文等[31]通過蛋白質印跡法檢測大鼠結腸組織和腦組織中5-HTR3、5-HTR4蛋白的表達,結果顯示造模后IBS-D模型大鼠腦組織和血清5-HT、P物質表達水平明顯升高,結腸組織、腦組織SERT、5-HTR4蛋白表達水平顯著降低,Tph1、5-HTR3蛋白表達水平顯著提升,可見大鼠IBS-D的發生可能與腦-腸軸中5-HT信號通路有關。有文獻報道,對內臟高敏性IBS小鼠予以天灸法干預,可調節小鼠內臟高敏狀態,可能與5-HT信號通路介導的腦-腸軸調節有關[32]。SERT作為一種跨膜轉運蛋白,是5-HT信號系統中主要成員之一,對5-HT具有高親和力。當SERT受抑制時,可快速影響5-HT再攝取及活力,在一定程度上促進腸道蠕動,但隨著5-HTR敏感度的下降,腸道蠕動能力逐漸下降。因此,SERT表達異常影響平滑肌細胞收縮及腸道間質細胞激活,是IBS腸道動力障礙發生、發展的重要一環。Gao等[33]通過在小鼠結腸內輸注IBS-D結腸糞便上清液發現,糞便脂多糖與胰蛋白酶協同作用,刺激黏膜肥大細胞釋放PGE2、PGE5,下調黏膜SERT,導致黏膜5-HT增加、結腸蠕動增強、糞便含水量增高、結直腸擴張及內臟活動反應增強,這可能是導致IBS腹瀉、腹痛的主要原因之一。同時,腸道免疫異常也可能參與IBS腸道動力障礙,表現為T細胞、肥大細胞等黏膜免疫細胞浸潤及促炎細胞因子水平升高。IL-33作為腸道信號傳遞因子,當腸道內環境壓力異常時,其通過非典型信號通路引起鈣內流,增加5-HT分泌,刺激腸神經,調控腸道動力、腸道免疫[34]。另外,IBS患者腸道內大腸桿菌水平顯著升高,而雙歧桿菌、乳桿菌、類桿菌、擬桿菌水平顯著降低,可見IBS患者存在腸道菌群失調[35]。腸道菌群紊亂可刺激背根神經節中初級傷害性神經元,直接增強內臟疼痛敏感性,或通過激活腸道免疫反應間接增強內臟疼痛敏感性。腸道菌群紊亂會引起腸道代謝產物的改變,腸黏膜SERT表達下調,影響5-HT再攝取,破壞腸道黏膜屏障,刺激腸道免疫系統,誘導免疫介質分泌,增強內臟疼痛敏感性,進而誘發IBS。有報道指出,腸道菌群-膽汁酸代謝軸失調可經G蛋白偶聯膽汁酸受體1(G protein-coupled bile acid receptor 1,GPBAR1)/5-HT/5-HTR3和GPBAR1-c-Jun氨基末端激酶引起內臟高敏感性,破壞腸道黏膜屏障,導致腦-腸互動異常[36]。因此,調節5-HT代謝可改善腸道菌群紊亂、腸道動力障礙及腦-腸軸調節異常,是IBS治療的靶點。
5.2 5-HT與IBD IBD是一種非特異性且易復發的慢性復發性腸道炎癥性疾病,分為潰瘍性結腸炎和克羅恩病,可引起腹瀉、腹痛等癥狀。近年來,IBD的全球患病率呈逐漸升高的趨勢[37]。迄今為止,臨床尚未完全明確IBD發病機制,分析其可能與遺傳、免疫、腸道菌群紊亂等因素密切相關。有研究顯示,IBD患者色氨酸水平低下導致其相應代謝產物缺乏,厚壁菌門、擬桿菌門等主要有益菌種類豐度降低,而變形菌門、腸桿菌科等致病菌種類豐度顯著上升,導致腸毒素水平上升,進一步刺激腸黏膜上皮,上皮細胞通透性增加,屏障功能受損,觸發腸黏膜免疫反應,從而引起結腸黏膜炎癥與潰瘍[38]。鑒于色氨酸代謝異常與IBD密切聯系,而5-HT作為色氨酸的代謝產物之一,推測其可能影響IBD的發生發展。此外,腸道菌群可直接或間接調節腸道中色氨酸及5-HT。當腸道5-HT信號轉導元件受損時,腸道分泌、感覺及蠕動等生理功能將受到影響,引發腹痛、腹瀉等癥狀。崔燦等[39]研究指出,5-HT與腸道炎癥的發生、發展相關。故5-HT可能是IBD治療的潛在靶點。
5.3 5-HT與CC CC是常見的腸道動力性疾病,主要有排便次數減少、糞便干硬、排便困難等癥狀,持續時間≥6個月,好發于老年人。有數據表明,CC的全球發病率達12%~17%[40];我國的總體發病率約為8.2%,以老年患者居多[41]。腸道菌群紊亂與CC發生發展有關,提示探討CC患者腸道菌群結構特征可能會為CC發病機制研究及治療提供新方向。丁雨等[42]通過16S rRNA測序法測定腸道菌群物種及豐度,發現CC患者糞菌辛普森指數、擬桿菌門豐度明顯低于健康者,香農指數、厚壁菌門及放線菌門豐度明顯高于健康者,表明CC患者存在腸道菌群紊亂。劉啟鴻等[43]基于“腦-腸-菌軸”的研究發現,理氣通便方可顯著改善氣滯證慢傳輸型便秘患者癥狀,增加每周自發完全排便次數,分析其機制可能與腦腸肽分泌的調節、腸道菌群豐度及多樣性的改變等因素有關。上述研究提示腸道菌群紊亂在CC的發生、發展中有重要意義。腸道菌群可刺激ECs分泌5-HT,5-HT反之促使厚壁菌門與擬桿菌門比例等腸道菌群結構、組成改變,導致腸道菌群紊亂,腸蠕動減弱,繼而引發便秘。其次,腦-腸軸異常是導致CC的重要因素。腦-腸之間通過交感神經、副交感神經及腸神經系統進行雙向信息傳遞,影響內臟感覺及運動。5-HT作為腸道重要的神經遞質及旁分泌信號分子,參與腦-腸信息傳遞。另外,胃腸動力和腸分泌也是導致CC的重要因素之一。5-HT通過結合5-HT3R或5-HT4R調控胃腸動力和腸分泌[44]。5-HT通過影響腸道菌群、腦-腸軸、胃腸動力及腸分泌介導CC發生、發展。
5.4 5-HT與FD FD是消化系統中發病率較高的一種功能性胃腸病。有研究表明,其發生可能與機體胃腸道動力障礙、腦-腸軸調節異常等因素相關[45]。5-HT在腦-腸軸調控路徑中發揮著重要作用,在胃內主要經黏膜下神經叢、肌間神經叢與其受體5-HTR3結合,引起細胞去極化,鈣離子內流,提高中樞及外周神經元興奮性,調節平滑肌收縮與舒張,從而參與胃內消化過程,促進胃平滑肌蠕動。另有學者對碘乙酰胺管飼和鉗尾誘導的FD大鼠采用痹通舒丸治療,發現痹通舒丸可通過5-羥色胺能突觸途徑減少5-HT分泌,降低內臟高敏感性,緩解FD癥狀[46]。由此可見,研究5-HT的代謝對于FD的治療有著一定意義。
6 小結
5-HT在胃腸道疾病的發生、發展中起重要作用。在病理情況下,腸道受到刺激,ECs激活,釋放5-HT與其相應受體結合,誘導腸道分泌神經遞質,引起平滑肌細胞反應,影響腸道蠕動,改變腸道菌群結構、組成,介導腸道免疫。因此,鑒于5-HT在胃腸道疾病發生、發展中的意義,為IBS、IBD、CC、FD等胃腸道疾病的臨床治療提供多元化選擇。然而,關于5-HTR亞型表達異常的產生機制及是否與其他胃腸道神經遞質相互影響參與胃腸道疾病的發生尚待進一步研究。
參考文獻
[1] ORLANDO A,CHIMIENTI G,NOTARNICOLA M,et al. The ketogenic diet improves gut-brain axis in a rat model of irritable bowel syndrome:impact on 5-HT and BDNF systems [J]. Int J Mol Sci,2022,23(3):1098. doi:10.3390/ijms23031098.
[2] LUO M,ZHUANG X,TIAN Z,et al. Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome:a systematic review and meta-analysis [J]. BMC Gastroenterol,2021,21(1):14. doi:10.1186/s12876-020-01577-5.
[3] CHANG W Y,YANG Y T,SHE M P,et al. 5-HT7 receptor-dependent intestinal neurite outgrowth contributes to visceral hypersensitivity in irritable bowel syndrome [J]. Lab Invest,2022,102(9):1023-1037. doi:10.1038/s41374-022-00800-z.
[4] LI X,LIU Q,YU J,et al. Costunolide ameliorates intestinal dysfunction and depressive behaviour in mice with stress-induced irritable bowel syndrome via colonic mast cell activation and central 5-hydroxytryptamine metabolism [J]. Food Funct,2021,12(9):4142-4151. doi:10.1039/d0fo03340e.
[5] MUJAGIC Z,KASAPI M,JONKERS D M,et al. Integrated fecal microbiome-metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome [J]. Gut Microbes,2022,14(1):2063016. doi:10.1080/19490976.2022.2063016.
[6] GAO R,WU C,ZHU Y,et al. Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites [J]. Gastroenterology,2022,163(4):1024-1037,e9. doi:10.1053/j.gastro.2022.06.069.
[7] YAKLAI K,PATTANAKUHAR S,CHATTIPAKORN N,et al. The role of acupuncture on the gut-brain-microbiota axis in irritable bowel syndrome [J]. Am J Chin Med,2021,49(2):285-314. doi:10.1142/S0192415X21500154.
[8] ANCONA A,PETITO C,IAVARONE I,et al. The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease [J]. Dig Liver Dis,2021,53(3):298-305. doi:10.1016/j.dld.2020.11.026.
[9] HILLESTAD E M R,VAN DER MEEREN A,NAGARAJA B H,et al. Gut bless you:the microbiota-gut-brain axis in irritable bowel syndrome [J]. World J Gastroenterol,2022,28(4):412-431. doi:10.3748/wjg.v28.i4.412.
[10] ALTOMARE A,DI ROSA C,IMPERIA E,et al. Diarrhea predominant-irritable bowel syndrome (IBS-D):effects of different nutritional patterns on intestinal dysbiosis and symptoms [J]. Nutrients,2021,13(5):1506. doi:10.3390/nu13051506.
[11] ZHU P,LU T,CHEN Z,et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis [J]. Neuron,2022,110(14):2268-2282,e4. doi:10.1016/j.neuron.2022.04.024.
[12] 俞蕾敏,吳嬋妮,葉蔚,等. 基于腸道菌群及色氨酸代謝探討臍針對腹瀉型腸易激綜合征患者的治療機制 [J]. 中國中西醫結合消化雜志,2022,30(3):211-216. YU L M,WU C N,YE W,et al. Study on the efficacy and mechanism of umbilicus acupuncture on diarrhea-type irritable bowel syndrome based on gut microbiota and tryptophan metabolism [J]. Chin J Integr Trad West Med Dig,2022,30(3):211-216. doi:10.3969/j.issn.1671-038X.2022.03.07.
[13] 胡曉敏,葉佳美,王麗群,等. 基于腸道菌群探討運動改善慢性便秘的可能機制 [J]. 中國全科醫學,2021,24(15):1984-1988. HU X M,YE J M,WANG L Q,et al. Possible mechanism of chronic constipation improvement via exercise-induced changes in gut microbiota composition and metabolites [J]. Chinese General Practice,2021,24(15):1984-1988. doi:10.12114/j.issn.1007-9572.2021.00.044.
[14] GU Y,QIN X,ZHOU G,et al. Lactobacillus rhamnosus GG supernatant promotes intestinal mucin production through regulating 5-HT4R and gut microbiota [J]. Food Funct,2022,13(23):12144-12155. doi:10.1039/d2fo01900k.
[15] MA J,WANG R,CHEN Y,et al. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption [J]. J Neuroinflammation,2023,20(1):23. doi:10.1186/s12974-023-02693-1.
[16] KWON Y H,WANG H,DENOU E,et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis [J]. Cell Mol Gastroenterol Hepatol,2019,7(4):709-728. doi:10.1016/j.jcmgh.2019.01.004.
[17] 王永雙,李慧,許笑梅,等. 基于腸道菌群探討腹瀉型腸易激綜合征的中西醫治療進展 [J]. 現代中西醫結合雜志,2023,32(5):725-730. WANG Y S,LI H,XU X M,et al. Discussion on the progress of treatment of diarrhea-predominant irritable bowel syndrome with traditional Chinese and western medicine based on intestinal flora [J]. Modern Journal of Integrated Traditional Chinese and Western Medicine,2023,32(5):725-730. doi:10.3969/j.issn.1008-8849.2023.05.029.
[18] WANG R,LU X,ZHAO L,et al. Houpo paiqi mixture promotes intestinal motility in constipated rats by modulating gut microbiota and activating 5-HT-cAMP-PKA signal pathway [J]. J Appl Microbiol,2023,134(8):lxad153. doi:10.1093/jambio/lxad153.
[19] PAN R,WANG L,XU X,et al. Crosstalk between the gut microbiome and colonic motility in chronic constipation:potential mechanisms and microbiota modulation [J]. Nutrients,2022,14(18):3704. doi:10.3390/nu14183704.
[20] WEI L,SINGH R,HA S E,et al. Serotonin deficiency is associated with delayed gastric emptying [J]. Gastroenterology,2021,160(7):2451-2466.e19. doi:10.1053/j.gastro.2021.02.060.
[21] MARGOLIS K G,CRYAN J F,MAYER E A. The microbiota-gut-brain Axis:from motility to mood [J]. Gastroenterology,2021,160(5):1486-1501. doi:10.1053/j.gastro.2020.10.066.
[22] YE L,BAE M,CASSILLY C D,et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways [J]. Cell Host Microbe,2021,29(2):179-196.e9. doi:10.1016/j.chom.2020.11.011.
[23] FRITZ N,BERENS S,DONG Y,et al. The serotonin receptor 3E variant is a risk factor for female IBS-D [J]. J Mol Med(Berl),2022,100(11):1617-1627. doi:10.1007/s00109-022-02244-w.
[24] HAGBOM M,HELLYSAZ A,ISTRATE C,et al. The 5-HT3 receptor affects rotavirus-induced motility [J]. J Virol,2021,95(15):e0075121. doi:10.1128/JVI.00751-21.
[25] FU Q,SONG T,MA X,et al. Research progress on the relationship between intestinal microecology and intestinal bowel disease [J]. Animal Model Exp Med,2022,5(4):297-310. doi:10.1002/ame2.12262.
[26] LIU N,SUN S,WANG P,et al. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine [J]. Int J Mol Sci,2021,22(15):7931. doi:10.3390/ijms22157931.
[27] KANOVA M,KOHOUT P. Serotonin-its synthesis and roles in the healthy and the critically Ill [J]. Int J Mol Sci,2021,22(9):4837. doi:10.3390/ijms22094837.
[28] CHOJNACKI C,KONRAD P,KACZKA A,et al. The role of serotonin in pathogenesis of unclassified irritable bowel syndrome [J]. Pol Merkur Lekarski,2022,50(299):277-281.
[29] TRUYENS M,LOBATóN T,FERRANTE M,et al. Effect of 5-hydroxytryptophan on fatigue in quiescent inflammatory bowel disease:a randomized controlled trial [J]. Gastroenterology,2022,163(5):1294-1305,e3. doi:10.1053/j.gastro.2022.07.052.
[30] CAMILLERI M,BOECKXSTAENS G. Irritable bowel syndrome:treatment based on pathophysiology and biomarkers [J]. Gut,2023,72(3):590-599. doi:10.1136/gutjnl-2022-328515.
[31] 歐陽勇文,李兆滔,呂晉,等. 糞菌移植對腹瀉型腸易激綜合征模型大鼠腦-腸軸中5-HT信號通路的影響 [J]. 國際檢驗醫學雜志,2022,43(16):1994-1999. OUYANG Y W ,LI Z T ,LYU J,et al. Effect of fecal bacteria transplantation on 5-HT signal pathway in model rats brain-gut axis of diarrhea-type irritable bowel syndrome [J]. Int J Lab Med,2022,43(16):1994-1999. doi:10.3969/j.issn.1673-4130.2022.16.016.
[32] 鄭雪,智沐君,趙俐黎,等. 基于5-HT通道探討天灸法治療內臟高敏性腸易激綜合征小鼠的機制 [J]. 中國針灸,2022,42(7):773-778. ZHENG X,ZHI M J,ZHAO L L,et al. Effect mechanism of blistering moxibustion on visceral hypersensitivity of irritable bowel syndrome in mice based on 5-HT signal pathway [J]. Chinese Acupuncture amp; Moxibustion,2022,42(7):773-778. doi:10.13703/j.0255-2930.20210524-k0001.
[33] GAO J,XIONG T,GRABAUSKAS G,et al. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell-prostaglandin E2 [J]. Gastroenterology,2022,162(7):1962-1974.e6. doi:10.1053/j.gastro.2022.02.016.
[34] CHEN Z,LUO J,LI J,et al. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis [J]. Immunity,2021,54(1):151-163.e6. doi:10.1016/j.immuni. 2020.10.014.
[35] 徐菁,劉坤,馬竹芳. IBS患者神經內分泌軸功能與腸道菌群、炎癥反應及胃腸癥狀的相關性 [J]. 臨床和實驗醫學雜志,2023,22(4):360-364. XU J,LIU K,MA Z F. Correlation of neuroendocrine axis function with intestinal flora,inflammatory reaction and gastrointestinal symptoms in patients with IBS [J]. Journal of Clinical and Experimental Medicine,2023,22(4):360-364. doi:10.3969/j.issn.1671-4695.2023.04.007.
[36] 吳皓萌,鄭歡,秦書敏,等. 從腸道菌群-膽汁酸代謝軸失調探討腹瀉型腸易激綜合征肝郁脾虛的機制 [J]. 中華中醫藥雜志,2022,37(6):3123-3127. WU H M,ZHENG H,QIN S M,et al. Mechanism of the liver spleen deficiency syndrome of diarrhea-predominant irritable bowel caused by intestinal flora-bile acid metabolism axis imbalance [J]. China Journal of Traditional Chinese Medicine and Pharmacy,2022,37(6):3123-3127.
[37] AGRAWAL M,ALLIN K H,PETRALIA F,et al. Multiomics to elucidate inflammatory bowel disease risk factors and pathways [J]. Nat Rev Gastroenterol Hepatol,2022,19(6):399-409. doi:10.1038/s41575-022-00593-y.
[38] 陳文軒,張哲,周川,等. 色氨酸及其衍生物在炎癥性腸病中的研究進展 [J].胃腸病學和肝病學雜志,2022,31(12):1424-1427. CHEN W X, ZHANG Z, ZHOU C,et al. Research progress of tryptophan and its derivatives in inflammatory bowel disease [J]. Chin J Gastroenterol Hepatol,2022,31(12):1424-1427. doi:10.3969/j.issn.1006-5709.2022.12.021.
[39] 崔燦,李盈,楊豪杰,等. 色氨酸代謝與炎性腸病相關研究進展 [J]. 醫學綜述,2021,27(14):2726-2730. CUI C,LI Y,YANG H J,et al. Research progress of tryptophan metabolism and inflammatory bowel disease [J]. Medical Recapitulate,2021,27(14):2726-2730. doi:10.3969/j.issn.1006-2084.2021.14.005.
[40] TAKEDA T,ASAOKA D,NOJIRI S,et al. Usefulness of bifidobacterium longum BB536 in elderly individuals with chronic constipation:a randomized controlled trial [J]. Am J Gastroenterol,2023,118(3):561-568. doi:10.14309/ajg.0000000000002028.
[41] 孫曉紅. 慢性便秘診治面臨的挑戰 [J]. 中國中西醫結合消化雜志,2023,31(6): 418-420. SUN X H. Challenges in the diagnosis and treatment of chronic constipation [J]. Chin J Integr Tradit West Med Dig,2023,31(6):418-420. doi:10.3969/j.issn.1671-038X.2023.06.04.
[42] 丁雨,王艷,林琳,等. 慢性便秘患者的腸道菌群分析 [J]. 中國醫師雜志,2022,24(7):1066-1068. DING Y,WANG Y,LIN L,et al. Analysis of intestinal flora in patients with chronic constipation [J]. Journal of Chinese Physician,2022,24(7):1066-1068. doi:10.3760/cma.j.cn431274-20210729-00823.
[43] 劉啟鴻,柯曉,駱云豐,等. 基于\"腦-腸-菌\"軸觀察理氣通便方對氣滯證慢傳輸型便秘患者的影響 [J]. 中華中醫藥雜志,2021,36(6):3324-3328. LIU Q H,KE X,LUO Y F,et al. Observation of liqi tongbian decoction on patients with qi stagnation syndrome slow transit constipation based on the“brain-intestine-bacteria”axis [J]. China Journal of Traditional Chinese Medicine and Pharmacy,2021,36(6):3324-3328.
[44] BHARUCHA A E,LACY B E. Mechanisms,evaluation,and management of chronic constipation [J]. Gastroenterology,2020,158(15):1232-1249.e3. doi:10.1053/j.gastro.2019.12.034.
[45] GWEE K A,LEE Y Y,SUZUKI H,et al. Asia-pacific guidelines for managing functional dyspepsia overlapping with other gastrointestinal symptoms [J]. J Gastroenterol Hepatol,2023,38(2):197-209. doi:10.1111/jgh.16046.
[46] CHEN S H,ZHU L J,ZHI Y H,et al. Pitongshu alleviates the adverse symptoms in rats with functional dyspepsia through regulating visceral hypersensitivity caused by 5-HT overexpression [J]. Comb Chem High Throughput Screen,2023,26(7):1424-1436. doi:10.2174/1386207325666220827152654.
基金項目:國家自然科學基金資助項目(81960102)
作者單位:1昆明醫科大學第一附屬醫院兒科(郵編650000);2嘉善縣第一人民醫院老年科;3昆明市兒童醫院兒科
作者簡介:單子鴻(1994),男,博士在讀,主要從事消化系統疾病方面研究。E-mail:shanzihong1994@163.com
通信作者 E-mail:hykkmyncnwd@163.com
(本文編輯 陳麗潔)