





摘要:花旗松素是一種二氫黃酮類化合物,常見于松科植物和水果蔬菜中。其常見提取方法有乙醇加熱提取法、超聲波輔助提取法以及閃式提取法。檢測花旗松素最常用的方法為高效液相色譜法。體外和動物試驗結果證實花旗松素具有抗氧化、抗癌、抗炎、保護肝臟等多種生物活性。本文對花旗松素提取、檢測方法以及其抗氧化、抗炎、抗癌作用機制進行了綜述,以期為其工業化生產和應用提供參考。
關鍵詞:花旗松素;提取;檢測;生物活性
中圖分類號:TQ464.3文獻標識碼:A文章編號:1000-4440(2024)02-0376-09
Research progress on extraction, detection and function of taxifolin
WANG Yun-fu1,CUI Cai-fang1,SUN Zhao-yue1,SHEN Wei-jun2,WAN Fa-chun2,CHENG An-wei1
(1.School of Food Science and Technology, Hunan Agricultural University/Engineering Center of Rapeseed Oil Nutrition Health and Deep Development of Hunan Province, Changsha 410128, China;2.College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China)
Abstract:Taxifolin is a dihydroflavonoid commonly found in pinaceae, fruits and vegetables. The common extraction methods are ethanol heating extraction, ultrasonic-assisted extraction and flash extraction. The most commonly used test method for detecting taxifolin is high-performance liquid chromatography. The results of in vitro and animal tests confirmed that taxifolin had many biological activities, such as antioxidation, anti-cancer, anti-inflammation, liver protection. In this paper, the methods of extraction and determination, and the mechanisms of antioxidation, anti-inflammation and anti-cancer were summarized to provide reference for its industrial production and application.
Key words:taxifolin;extraction;detection;biological activities
花旗松素(Taxifolin),又名二氫槲皮素、黃衫素、紫杉葉素、紫杉醇,是一種植物黃酮類化合物,在自然界中分布十分廣泛,最早是在落葉松樹皮中發現,常見于落葉松、冷杉等松科類植物樹皮[1]以及葡萄[2]、柑橘類[3]、洋蔥[4]、紫甘藍[5]等果蔬中。花旗松素在植物中以苷元和苷2種形式存在,分子式為C15H12O7,相對分子質量為304.25,結構如圖1所示。其分子結構中有C2和C3兩個手性碳,理論上存在4個對映異構體。花旗松素外觀呈淡黃色或無色針狀結晶,無特殊氣味,熔點為240 ℃,易溶于乙醇、乙酸、沸水等溶劑,微溶于冷水,幾乎不溶于苯。花旗松素具有抗氧化[6]、抗炎[7]、抗癌[8]、抗菌等生物活性和藥理作用,對動脈粥樣硬化、血脂異常、心血管疾病等慢性疾病有一定的療效,主要應用于食品及醫藥領域。本文主要對花旗松素的提取工藝、檢測方法及生物活性進行綜述,以期為花旗松素的生產及應用提供參考。
1花旗松素的提取
花旗松素提取方法主要有乙醇加熱法[9-12]、超聲波輔助提取法[13-15]、閃式提取法[16-17]、超臨界CO2萃取法[18]等。其中落葉松類植物中花旗松素含量最為豐富,為優選其提取工藝,張宇等[17]分析比較了熱水回流、乙醇回流、微波、超聲波輔助、閃式5種提取方法對花旗松素提取率的影響,證實閃式提取法的提取率優于其他4種方法,閃式提取法最優條件為:提取時間79 s,乙醇體積分數81%,料液比1∶10 (g/ml),提取率可達0.47%。采用基于離子液體的勻漿超聲波協同萃取方法提取落葉松木樁的花旗松素,萃取溶劑Br濃度為0.87 mol/L,萃取時間為24 min,液固比14∶1 (ml/g),超聲功率240 W時,提取率可達到(53.09±2.24) mg/g[14]。果蔬中也含有花旗松素,且部位不同含量也不同,以刺葡萄為原料采用超聲波輔助提取花旗松素,經HPLC-MS/MS檢測,刺葡萄果皮中的花旗松素含量為3.63 mg/kg,顯著高于刺葡萄種子(1.74 mg/kg)及果肉(0.35 mg/kg)中的含量[13]。采用乙醇回流法提取刺葡萄[9]、水紅花子[10]、東方蓼[11]、葒草[19]、刺玫薔薇莖[20]等植物中的花旗松素,并測定花旗松素的含量。表1列出了不同來源花旗松素的提取方法。
2花旗松素的檢測方法
花旗松素的檢測方法主要有紫外分光光度法[22-24]、高效液相色譜法(HPLC)[25-26]、熒光法[27]、高效液相-質譜法[28]等。紫外分光光度法操作簡便、快速,但檢測靈敏度不高。劉東等[23]采用紫外分光光度法檢測水紅花子中花旗松素的含量,其平均回收率為99.37%。熒光法檢測靈敏度高,但其準確性和靈敏度易受影響。程家維等[26]制備出具有高熒光產率的碳量子點,在Fe3+存在的情況下,其可以作為熒光探針和共振瑞利散射探針檢測花旗松素,但緩沖溶液及Fe3+溶度都對結果準確性有較大的影響。
HPLC檢測靈敏度高,定性定量準確,是檢測花旗松素中最常用的方法。采用C18色譜柱(4.6 mm×250.0 mm,5 μm),流動相為甲醇∶0.1%磷酸水溶液=32∶68(體積比),流速1.0 ml/min,檢測波長290 nm,中藥穿破石中花旗松素的平均回收率為100.63%[25]。多種方法的聯合或者串聯使用,可以提高花旗松素的檢測限。采用HPLC-電化學法檢測水紅花子中花旗松素,線性范圍為0.040~50.000 mg/L,最低檢測限達到15.0 μg/L[28]。采用超高效液相-質譜串聯法定性定量檢測花旗松素,親水-疏水平衡固相萃取柱固相萃取凈化,SST3色譜柱分離,以乙腈-0.1%甲酸為流動相進行梯度洗脫,電噴霧離子源負離子模式掃描,多反應監測模式進行檢測,檢出限可達到0.040 mg/kg,定量限為0.125 mg/kg[27]。表2列出了不同來源花旗松素的檢測方法。
3花旗松素的生物活性
3.1花旗松素的抗氧化作用
體外抗氧化試驗結果證實花旗松素具有ABTS(2,2′-聯氮-雙-3-乙基苯并噻唑啉-6-磺酸)、DPPH(1,1-二苯基-2-苦基肼)、超氧陰離子自由基清除作用以及鐵離子還原能力[30],能減緩黃油的氧化從而延長保質期,還可有效清除線粒體內產生的自由基,降低氧化酶的活性來發揮抗氧化作用。
進一步用細胞模型研究花旗松素的抗氧化活性作用。花旗松素能顯著降低細胞內活性氧(ROS)水平,顯著提高超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GSH-Px)、過氧化氫酶(CAT)等抗氧化酶活性,從而減輕氧化損傷,該過程是通過激活核因子E2相關因子2(Nuclear factor erythroid 2-related factor 2, Nrf2)所介導的信號通路實現的[31]。在氧化應激狀態下,花旗松素能明顯抑制過氧化氫(H2O2)誘導的細胞凋亡和細胞內ROS生成以及DNA修復酶裂解,使細胞活力明顯上升,同時通過誘導Nrf2轉錄因子移位到細胞核來激活Nrf2基因的表達,以保護人視網膜上皮細胞免受氧化應激誘導的凋亡[32];抗氧化防御機制主要是通過調節炎癥以及刺激主轉錄因子Nrf2及其下游目標Ⅱ期酶[醌氧化還原酶1、血紅素加氧酶1(HO-1)和SOD],從而保護肺免受苯并芘誘導的氧化損傷[33]。
花旗松素的抗氧化效果也在動物試驗中得到了證實,Ahiskali等[34]以甲醇誘導的大鼠為模型,發現花旗松素能促使丙二醛(MDA)、總氧化劑系統、核因子-κB和腫瘤壞死因子-α(TNF-α)水平降低,從而減緩由甲醇誘導發生的氧化應激。此外,花旗松素可增強小鼠肝臟的SOD活性,進而保護肝臟免受脂質過氧化損傷[35]。Liu等[36]通過腹腔注射香煙煙霧提取物建立慢性阻塞性肺疾病小鼠模型,腹腔注射花旗松素后可以抑制氧化應激反應和鐵沉積的發生。發生鎘中毒的雄性大鼠灌胃花旗松素后,MDA和一氧化氮水平降低,Nrf2基因和HO-1基因的表達上調,鎘中毒小鼠腎組織的氧化還原狀態、腎功能得到改善[37]。
由上述體外細胞試驗以及動物試驗結果表明,花旗松素可通過降低活性氧水平,調節抗氧化酶的活性以及細胞因子基因的表達,經由Nrf2/HO-1以及MAPK等信號通路發揮對氧化應激的調節作用(圖2)。
3.2花旗松素的抗癌作用
花旗松素主要是通過抑制癌細胞增殖與分化,降低與癌癥相關的基因表達來促使各類癌細胞發生凋亡。在對人癌細胞(HepG2)的研究發現,花旗松素能夠抑制蛋白激酶B(Akt)磷酸化,從而減少可能觸發致癌的ZEB2信號,在400 μmol/L濃度下抑制率為44.1%[38]。花旗松素也可抑制肝癌細胞的生長和遷移,并在抑制濃度分別為0.15 μmol/L和0.22 μmol/L時誘導HepG2和人肝癌細胞Huh7細胞系凋亡,同時下調在肝癌中過表達缺氧誘導因子1-α基因、血管內皮生長因子基因和Akt基因的表達[39]。同時,花旗松素使參與結直腸癌細胞發生和發展的Wnt/β-連環蛋白基因表達也降低,此外,花旗松素可減少N-鈣黏蛋白(N-Cadherin)基因和波形蛋白基因的表達,增加E-鈣黏素基因的表達[40]。花旗松素通過下調芳香烴受體(AhR)信號通路降低了7,12-二甲基苯并[a]蒽(DMBA)誘導的乳腺癌中細胞色素P450基因(CYP1A1和CYP1B1)的表達從而對抗CYP1A1和CYP1B1介導的癌癥,抑制DMBA誘導的乳腺癌發生[41]。花旗松素還能抑制皮膚疤痕癌細胞的生長,使癌細胞停滯在細胞周期G2/M期,同時通過抑制基質金屬蛋白酶基因MMP-2和MMP-9的表達來降低癌細胞的侵襲能力[42]。
在以細胞為模型研究基礎上,通過各種小鼠模型進一步研究了花旗松素的抗癌效果及作用機制。Xie等[43]以患有胃癌細胞源性腫瘤的BALB/c小鼠為模型的研究結果證實,花旗松素通過AhR/CYP1A1信號通路顯著抑制胃癌細胞的活性、增殖、遷移和侵襲;而添加AhR激動劑SB203580后部分消除了花旗松素對胃癌細胞活性、增殖、遷移和侵襲的抑制作用,這表明AhR是花旗松素發揮抗癌效果的一個重要信號通路。對非脂肪型肝炎的小鼠添加花旗松素進行治療,發現花旗松素可顯著降低病灶和腫瘤的數量,顯著降低了肝臟腫瘤病變中與炎癥和纖維化相關基因的mRNA表達,有效阻止了非脂肪型肝炎向肝臟腫瘤的發展[44]。將肺癌細胞A549皮下注射到BALB/c陰性裸鼠體內,添加不同濃度花旗松素后能抑制A549異種移植BALB/c小鼠的腫瘤生長,降低轉錄因子SOX2和OCT4基因的表達,抑制胞內磷脂酰肌醇激酶PI3K和細胞第四因子TCF4的活性[41]。同樣,將人體乳腺癌細胞4T1注入BALB/c小鼠體內,花旗松素顯著抑制原發性腫瘤細胞的生長并減少乳腺癌的肺轉移[45]。
體外試驗和小鼠試驗結果均表明,花旗松素可降低與癌癥相關基因的表達抑制癌細胞的增殖分化,促進癌細胞凋亡。對AhR/CYP1A1等信號通路的研究結果證實了花旗松素能有效緩解癌癥的發展,相關機制如圖3所示。
3.3花旗松素的抗炎作用
炎癥反應是許多疾病的基礎癥狀,大量體外試驗和小鼠試驗結果表明,花旗松素主要通過下調IL-1β、IL-6等促炎因子基因的表達,來抑制炎癥的發生(圖4)。花旗松素處理肝細胞后,酒精誘導的肝細胞中丙氨酸氨基轉移酶、天冬氨酸氨基轉移酶、IL-6的水平均降低,減輕了酒精誘導的肝細胞壞死和炎性細胞浸潤[46]。花旗松素在抑制牙髓干細胞凋亡時顯著增加了碳酸酐酶Ⅸ基因(CA9)的表達,在缺氧和炎癥狀態下,花旗松素與CA9協同保護牙髓干細胞免受凋亡[47]。花旗松素可通過抑制T-bet、GATA-3和RORγT的轉錄因子基因的表達來調節與銀屑病有關的輔助性T細胞的分化,來治療該慢性皮膚炎癥[48]。富含花旗松素的山奈酚甲醇提取物可抑制LPS誘導的RAW264.7細胞中IL-1β和TNF-α基因的mRNA表達,增加THP-1細胞中LXRβ和ABCG1基因的mRNA表達,具有抗炎和抗脂質積聚作用[49]。同樣,花旗松素可以抑制鐵誘導的細胞凋亡并提高肝細胞存活率,并下調了促炎細胞因子TNF-α、IL-6和IL-1β基因表達,證明花旗松素對鐵誘導肝細胞的損傷有潛在保護作用[50]。
動物試驗結果進一步驗證了花旗松素的抗炎作用。試驗結果表明花旗松素可通過Nrf2/HO-1信號通路,降低促炎因子IL-1β、TNF-α基因的表達,來減輕小鼠由于心肌炎和順鉑所帶來的炎癥反應[51-52]。通過腹腔注射四氯化碳建立小鼠纖維化模型,小鼠灌胃花旗松素后促炎因子IL-1β、IL-6和TNF-α基因表達降低,炎癥得到緩解[12]。Tang等[53]研究結果證明花旗松素能增加心肌缺血/再灌注損傷大鼠的SOD、GSH-PX活性,但LDH活性、肌酸激酶MB(CK-MB)活性和MDA水平降低;提升B細胞淋巴瘤-2(Bcl-2)基因的表達水平,但與Bcl-2相關的X、細胞色素C、半胱天冬酶-3和半胱天冬酶-9蛋白水平下降,這表明花旗松素通過調節氧化應激,減少細胞凋亡。Wan等[54]以葡聚糖硫酸鈉(DSS)誘導的結腸炎小鼠為模型,通過灌胃花旗松素,提升了DSS誘導的疾病活動指數、結腸長度和結腸組織的組織病理學評分,降低促炎細胞因子基因的表達水平,并提高血清中抗炎性因子IL-10的分泌水平。這主要是由于花旗松素顯著增加了結腸中G-蛋白偶聯受體41和G-蛋白偶聯受體43基因的表達,抑制結腸組織中抗炎因子TNF-α、IL-1β和IL-6基因的表達;另外,花旗松素也可通過調節腸道內容物中膽汁酸的分泌以及促進小鼠糞便中短鏈脂肪酸的產生,來達到改善腸炎的目的[55]。
3.4其他作用
花旗松素還具有保護肝臟、腎臟、減輕胰島素抵抗等作用。花旗松素對游離脂肪酸誘導的肝細胞胰島素抵抗試驗發現,花旗松素處理可降低肝細胞中的微小核糖核酸-195基因的表達來減輕胰島素抵抗[56]。T2D模型小鼠灌胃花旗松素后可顯著降低血糖、胰島素、尿酸水平和胰島素抵抗指數水平,這表明花旗松素對糖尿病有一定的抑制效果[57]。花旗松素對高脂飲食鏈脲佐菌素誘導的糖尿病腎病大鼠的腎臟有保護作用,主要表現為花旗松素可顯著降低尿液中微量白蛋白的含量以及高血糖和脂質代謝紊亂,并減輕腎臟組織病理學損傷;抑制IL-1β和TNF-α基因的表達,提升總谷胱甘肽的活性水平[58]。Akagunduz等[59]發現花旗松素可以改善由帕佐帕尼引起的肝毒性,肝組織損傷(包括出血、水腫變性和壞死等癥狀)。丙氨酸轉氨酶、天冬氨酸轉氨酶、堿性磷酸酶是肝細胞損傷的敏感指標,花旗松素處理可以降低其活性[60]。通過對腦淀粉樣血管病小鼠模型研究發現,花旗松素添加可改善腦血流量,促進大腦淀粉樣β的清除,并預防認知功能障礙[6]。另外,花旗松素可以顯著預防由非典型抗精神藥物氯氮平(CLN)和氟哌啶醇(HPL)引起的卵巢和生殖毒性,主要表現為卵泡出現的變性和空泡化現象得到一定的改善[61]。
4展望
花旗松素是一種天然的、具有多種生物活性的黃酮類化合物,存在于多種植物中,以落葉松類植物中含量最為豐富。花旗松素具有抗氧化、抗癌、抗炎、抗病毒等多種生理作用,在醫學領域具有一定的應用潛力。然而,目前花旗松素的生產仍然依賴于傳統的提取,存在生產成本高、產率低、純度低等缺點,實現其工業化生產和應用還需要繼續探索。隨著許多新型技術逐漸發展,如代謝工程、合成生物學、基因工程等將是是解決其大規模生產和應用的重要途徑。
參考文獻:
[1]SUNIL C, XU B. An insight into the health-promoting effects of taxifolin (dihydroquercetin)[J]. Phytochemistry,2019,166:112066.
[2]YANG P, XU F, LI H F, et al. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MS(n)[J]. Molecules,2016,21(9):1209.
[3]FENG E, WANG J, WANG X, et al. Inhibition of HMGB1 might enhance the protective effect of taxifolin in cardiomyocytes via PI3K/AKT signaling pathway[J]. Iranian Journal of Pharmaceutical Research,2021,20(2):316-332.
[4]LI Y, SU H, YIN Z P, et al. Metabolism,tissue distribution and excretion of taxifolin in rat[J]. Biomed Pharmacother,2022,150:112959.
[5]THUAN N H, SHRESTHA A, TRUNG N T, et al. Advances in biochemistry and the biotechnological production of taxifolin and its derivatives[J]. Biotechnology and Applied Biochemistry,2022,69(2):848-861.
[6]INOUE T, SAITO S, TANAKA M, et al. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(20):10031-10038.
[7]LIU X, MA Y, LUO L, et al. Taxifolin ameliorates cigarette smoke-induced chronic obstructive pulmonary disease via inhibiting inflammation and apoptosis[J]. International Immunopharmacology,2023,115:109577.
[8]GOMES D, YADUVANSHI S, SILVESTRE S, et al. Taxifolin and lucidin as potential E6 protein inhibitors:p53 function re-establishment and apoptosis induction in cervical cancer cells[J]. Cancers (Basel),2022,14(12):2834.
[9]張曉利,趙瑞香,姜建福,等. 葡萄皮渣中花旗松素提取工藝優化及其抗氧化能力測定[J]. 食品工業科技,2021,42(5):200-205,220.
[10]劉剛,張雁南,杜乾坤,等. 水紅花子花旗松素乙醇回流法提取工藝優化[J]. 食品與機械,2013,29(3):134-137,186.
[11]WEI F, GUO L, XU Y, et al. Comparative pharmacokinetic study of taxifolin after oral administration of fructus polygoni orientalis extract in normal and fibrotic rats by UPLC-MS/MS[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019(15):9348075.
[12]LIU X, LIU W, DING C, et al. Taxifolin, extracted from waste larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR and TGF-beta1/smads signaling pathways[J]. Drug Design Development and Therapy,2021,15:871-887.
[13]牛生洋,王鳳軒,張曉利,等. 響應面法優化刺葡萄果實花旗松素提取工藝[J]. 食品工業科技,2022,43(18):1-13.
[14]LIU Z, GU H, YANG L. A novel approach for the simultaneous extraction of dihydroquercetin and arabinogalactan from Larix gmelinii by homogenate-ultrasound-synergistic technique using the ionic liquid[J]. Journal of Molecular Liquids,2018,261:41-49.
[15]WEI M, ZHAO R, PENG X, et al. Ultrasound-assisted extraction of taxifolin, diosmin, and quercetin from abies nephrolepis (Trautv.) maxim:kinetic and thermodynamic characteristics[J]. Molecules,2020,25(6):1401.
[16]霍云博,王露瑤,劉怡辰,等. 閃式輔助超聲提取長白落葉松中二氫槲皮素的工藝研究[J]. 黑龍江科學,2020,11(8):1-3.
[17]張宇,蘇丹. 二氫槲皮素提取方法的比較和優化[J]. 中醫學報,2015,30(10):1470-1472.
[18]GHOREISHI S M, HEDAYATI A, MOHAMMADI S. Optimization of periodic static-dynamic supercritical CO2 extraction of taxifolin from pinus nigra bark with ethanol as entrainer[J]. Journal of Supercritical Fluids,2016,113:53-60.
[19]劉剛,張雁南,李正陽,等. 葒草花旗松素提取工藝優化[J]. 長春師范學院學報,2013,32(12):58-63.
[20]王萍,梁坤. 刺玫薔薇莖中二氫槲皮素的提取工藝研究[J]. 食品工業科技,2008,203(3):196-198.
[21]劉妍,王遂. 二氫槲皮素的提取及抗氧化性研究[J]. 化學研究與應用,2011,23(1):107-111.
[22]王宇,王遂. 分光光度法測定落葉松中的總黃酮含量[J]. 食品科學,2009,30(22):314-317.
[23]劉東,林書玉,梁戈亮. 分光光度法測水紅花子中花旗松素含量[J]. 現代生物醫學進展,2008,8(2):331-332,320.
[24]閔捷,饒毅,呂尚,等. HPLC法測定中藥穿破石中花旗松素的含量[J]. 江西中醫藥大學學報,2017,29(6):79-81.
[25]冉丹,吳海智,盧超,等. HPLC法測定乳制品中二氫槲皮素含量[J]. 食品工業科技,2021,42(21):279-284.
[26]程家維,張宇輝,楊季冬. L-半胱氨酸功能化的碳量子點為探針快速檢測花旗松素[J]. 光散射學報,2020,32(4):386-394.
[27]公丕學,劉桂亮,廉貞霞,等. SPE凈化-UPLC-MS/MS法測定食品中二氫槲皮素[J]. 食品工業,2022,43(2):290-295.
[28]廖雪晴,陶凱麗,劉琳,等. 高效液相色譜-電化學檢測法測定水紅花子中花旗松素和槲皮素的含量[J]. 揚州大學學報(自然科學版),2016,19(2):18-22.
[29]ZHANG X, LI D, DONG C, et al. Molybdenum sulfide-based electrochemical platform for high sensitive detection of taxifolin in Chinese medicine[J]. Analytica Chimica Acta,2020,1099:85-93.
[30]TOPAL F, NAR M, GOCER H, et al. Antioxidant activity of taxifolin:an activity-structure relationship [J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2016,31(4):674-683.
[31]LIU X L, ZHAO Y C, ZHU H Y, et al. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice[J]. Food Function,2021,12(23):12142-12158.
[32]XIE X, FENG J, KANG Z, et al. Taxifolin protects RPE cells against oxidative stress-induced apoptosis[J]. Molecular Vision,2017,23:520-528.
[33]ISLAM J, SHREE A, VAFA A, et al. Taxifolin ameliorates Benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway[J]. International Immunopharmacology,2021,96:107566.
[34]AHISKALI I, PINAR C L, KIKI M, et al. Effect of taxifolin on methanol-induced oxidative and inflammatory optic nerve damage in rats[J]. Cutaneous and Ocular Toxicology,2019,38(4):384-389.
[35]SU H, WANG W J, ZHENG G D, et al. The anti-obesity and gut microbiota modulating effects of taxifolin in C57BL/6J mice fed with a high-fat diet[J]. Journal of the Science of Food and Agriculture,2022,102(4):1598-1608.
[36]LIU X, MA Y, LUO L, et al. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway[J]. Phytomedicine,2022,96:153894.
[37]ALGEFARE A I. Renoprotective and oxidative stress-modulating effects of taxifolin against cadmium-induced nephrotoxicity in mice[J]. Life (Basel),2022,12(8):1150.
[38]DOSTAL Z, SEBERA M, SROVNAL J, et al. Dual effect of taxifolin on ZEB2 cancer signaling in HepG2 cells[J]. Molecules,2021,26(5):1476.
[39]BUTT S S, KHAN K, BADSHAH Y, et al. Evaluation of pro-apoptotic potential of taxifolin against liver cancer[J]. PeerJ,2021,9:11276.
[40]WANG R, ZHU X, WANG Q, et al. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice[J]. Annals of Translational Medicine,2020,8(9):590.
[41]HAQUE M W, PATTANAYAK S P. Taxifolin inhibits 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis by regulating AhR/CYP1A1 signaling pathway[J]. Pharmacognosy Magazine,2018,13(S4):749-755.
[42]ZHOU W, LIU Z M, WANG M, et al. Taxifolin inhibits the development of scar cell carcinoma by inducing apoptosis,cell cycle arrest,and suppression of PI3K/AKT/mTOR pathway[J]. Journal of BUON,2019,24(2):853-858.
[43]XIE J, PANG Y, WU X. Taxifolin suppresses the malignant progression of gastric cancer by regulating the AhR/CYP1A1 signaling pathway[J]. International Journal of Molecular Medicine,2021,48(5):1-9.
[44]INOUE T, FU B, NISHIO M, et al. Novel therapeutic potentials of taxifolin for obesity-induced hepatic steatosis,fibrogenesis,and tumorigenesis[J]. Nutrients,2023,15(2):350.
[45]LI J, HU L, ZHOU T, et al. Taxifolin inhibits breast cancer cells proliferation,migration and invasion by promoting mesenchymal to epithelial transition via beta-catenin signaling[J]. Life Sciences,2019,232:116617.
[46]DING C, ZHAO Y, CHEN X, et al. Taxifolin, a novel food, attenuates acute alcohol-induced liver injury in mice through regulating the NF-kappaB-mediated inflammation and PI3K/Akt signalling pathways[J]. Pharmaceutical Biology,2021,59(1):868-879.
[47]FU X, FENG Y, SHAO B, et al. Taxifolin protects dental pulp stem cells under hypoxia and inflammation conditions[J]. Cell Transplant,2021,30:1-10.
[48]YUAN X, LI N, ZHANG M, et al. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways[J]. Biomedicine amp; Pharmacotherapy,2020,123:109747.
[49]MURAMATSU D, UCHIYAMA H, KIDA H, et al. In vitro anti-inflammatory and anti-lipid accumulation properties of taxifolin-rich extract from the Japanese larch,Larix kaempferi[J]. Heliyon,2020,6(12):e05505.
[50]SALAMA S A, KABEL A M. Taxifolin ameliorates iron overload-induced hepatocellular injury:modulating PI3K/AKT and p38 MAPK signaling,inflammatory response,and hepatocellular regeneration[J]. Chemico-Biological Interactions,2020,330:109230.
[51]OBEIDAT H M, ALTHUNIBAT O Y, ALFWUAIRES M A, et al. Cardioprotective effect of Taxifolin against isoproterenol-induced cardiac injury through decreasing oxidative stress,inflammation,and cell death,and activating Nrf2/HO-1 in mice[J]. Biomolecules,2022,12(11):1546.
[52]ALANEZI A A, ALMUQATI A F, ALFWUAIRES M A, et al. Taxifolin prevents cisplatin nephrotoxicity by modulating Nrf2/HO-1 pathway and mitigating oxidative stress and inflammation in mice[J]. Pharmaceuticals (Basel),2022,15(11):1310.
[53]TANG Z, YANG C, ZUO B, et al. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway[J]. Peer J,2019,7:e6383.
[54]WAN F, HAN H, ZHONG R, et al. Dihydroquercetin supplement alleviates colonic inflammation potentially through improved gut microbiota community in mice[J]. Food Function,2021,12(22):11420-11434.
[55]LI W, ZHANG L, XU Q, et al. Taxifolin alleviates Dss-induced ulcerative colitis by acting on gut microbiome to produce butyric acid[J]. Nutrients,2022,14(5):1069.
[56]LEE H, JEONG W T, SO Y S, et al. Taxifolin and sorghum ethanol extract protect against hepatic insulin resistance via the mir-195/irs1/PI3K/AKT and AMPK signalling pathways[J]. Antioxidants (Basel),2021,10(9):1331.
[57]KONDO S, ADACHI S I, YOSHIZAWA F, et al. Antidiabetic effect of taxifolin in cultured L6 myotubes and type 2 diabetic model KK-A(y)/Ta mice with hyperglycemia and hyperuricemia[J]. Current Issues In Molecular Biology,2021,43(3):1293-1306.
[58]DING T, WANG S, ZHANG X, et al. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome[J]. Phytomedicine,2018,41:45-53.
[59]AKAGUNDUZ B, OZER M, OZCICEK F, et al. Protective effects of taxifolin on pazopanib-induced liver toxicity:an experimental rat model[J]. Experimental Animals,2021,70(2):169-176.
[60]OKKAY U, FERAH OKKAY I, CICEK B, et al. Hepatoprotective and neuroprotective effect of taxifolin on hepatic encephalopathy in rats[J]. Metabolic Brain Disease,2022,37(5):1541-1556.
[61]INCE S, OZER M, KADIOGLU B G, et al. The effect of taxifolin on oxidative ovarian damage and reproductive dysfunctions induced by antipsychotic drugs in female rats[J]. Journal of Obstet and Gynaecology Research,2021,47(6):2140-2148.
(責任編輯:成紓寒)