





doi:10.3969/j.issn.1006-8023.2024.02.010
摘" 要:以典型黑土區3種地貌類型區(漫川漫崗區、丘陵漫崗區、平原低地區)坡耕地不同坡位表層土壤為研究對象,通過測定土壤總有機碳、高活性有機碳、中活性有機碳和低活性有機碳等指標,分析黑土區坡耕地不同坡位表層土壤活性有機碳的變化特征,探究不同地貌類型區坡耕地土壤活性有機碳變化特征的差異。結果表明,坡耕地各坡位表層土壤總有機碳含量變化范圍為26.57~38.61 g/kg,土壤活性有機碳含量變化范圍為1.85~5.67 g/kg。3種地貌類型區坡耕地不同坡位土壤總有機碳和活性有機碳含量變化特征不同。漫川漫崗區總有機碳、中活性有機碳和低活性有機碳含量變化特征均表現為坡上和坡中顯著大于坡下、坡上和坡中無顯著差異;高活性有機碳含量變化特征則以坡中最高坡下最低,且不同坡位之間高活性有機碳含量差異顯著。丘陵漫崗區不同坡位土壤總有機碳和低活性有機碳含量差異顯著,并表現為坡下顯著大于坡上、坡上顯著大于坡中;高活性有機碳和中活性有機碳含量的變化則呈現坡上和坡下顯著大于坡中、坡上和坡下無顯著差異。平原低地區總有機碳及3種活性有機碳組分的含量在各坡位間的差異均為未達顯著水平。不同地貌間典型黑土區坡耕地表層土壤活性有機碳分布規律有所差異,漫川漫崗區和丘陵漫崗區坡耕地土壤有機碳活性最差的坡位分別是坡下和坡中,而平原低地區不同坡位間無顯著變化。研究結果為黑土坡耕地生態建設與保護技術的針對性設計奠定了理論基礎。
關鍵詞:典型黑土區;坡耕地;生態建設與保護;土壤總有機碳;土壤活性有機碳
中圖分類號:S157.2""" 文獻標識碼:A""" 文章編號:1006-8023(2024)02-0085-07
Characteristics of Changes in Active Organic Carbon in Surface Soil of
Sloping Farmland in Typical Black Soil Areas
HE Shan, HAN Shaojie, WANG Dantong, ZHANG Yang, FU Yu, CHEN Xiangwei*
(College of Forestry, Northeast Forestry University, Harbin 150040, China)
Abstract:Taking the surface soil at different slope positions of sloping farmland in three typical types of landforms (overtopping and overtopping areas, hilly and overtopping areas, and plain low areas) in the black soil areas of Northeast China as the research object, the change characteristics of surface soil active organic carbon at different slope positions of slope land in black soil area were analyzed by measuring total organic carbon, highly active organic carbon, moderately active organic carbon, and low active organic carbon, exploring the differences in soil active organic carbon change characteristics of slope farmland in different landform types. The results showed that the variation range of total organic carbon content in the surface soil of slope farmland was 26.57 - 38.61 g/kg and the variation range of soil active organic carbon content was 1.85-5.67 g/kg. The change characteristics of total organic carbon and active organic carbon content in different slope positions of sloping farmland in three types of landforms were different. The variation characteristics of total organic carbon, medium active organic carbon and low active organic carbon content in the overtopping and overtopping areas were: slope up and slope middle significantly greater than slope down, and there was no significant difference between the slope up and slope middle. The variation characteristics of high active organic carbon content was the highest in slope middle and the lowest in slope down, and the high active organic carbon content was significantly different among different slope positions. The contents of total organic carbon and low active organic carbon in the hilly and overtopping areas were were significantly different at different slope positions, and the slope down was significantly greater than slope up, slope up was significantly greater than slope middle. The changes in the content of high active organic carbon and medium active organic carbon were: slope up and slope down significantly greater than slope middle, and there was no significant difference between slope up and slope down. The content of total organic carbon and three" levels of active organic carbon in the plain low areas had no significant difference among different slope positions. There were differences
收稿日期:2023-05-09
基金項目:“十四五”國家重點研發計劃項目(2021YFD1500705);黑龍江省應用技術研究與開發計劃項目(GA20B401)。
第一作者簡介:何舢,碩士研究生。研究方向為水土保持與生態修復。E-mail: 993510887@qq.com
*通信作者:陳祥偉,博士,教授。研究方向為水土保持與生態修復。E-mail: chenxwnefu@163.com
引文格式:何舢,韓少杰,王丹彤,等.典型黑土區坡耕地表層土壤活性有機碳變化特征.[J].森林工程,2024,40(2):85-91.
HE S, HAN S J, WANG D T, et al. Characteristics of changes in active organic carbon in surface soil of sloping farmland in typical black soil areas[J]. Forest Engineering, 2024, 40(2):85-91.
in the distribution patterns of active organic carbon in the surface soil of typical black soil areas among different landforms. The slopes with the worst activity in the overtopping and overtopping areas and the hilly and overtopping areas were slope down and slope middle, respectively. There was no significant change between different slope positions in the plain low areas. The research results have laid a theoretical foundation for the targeted design of ecological construction and protection technologies for black soil sloping farmland.
Keywords:Typical black soil areas; sloping farmland; ecological construction and protection; soil total organic carbon; soil active organic carbon
0" 引言
有機碳作為土壤重要的組成部分,不僅起到維系植物生長的作用,同時還表征著土地的生產力[1-7]?;钚杂袡C碳是土壤有機碳中較為活躍的部分[8],是土壤碳庫動態變化的早期指示指標[9]。Loginow等[10]模擬有機碳被微生物、酶等的氧化分解作用,將活性有機碳能被3種不同濃度( 33、167、333 mmol/L) 的KMnO4氧化的數量,分為高活性、中活性、低活性3種不同活性有機碳。由于不同活性有機碳中含碳有機化合物形態的不同,導致3種活性有機碳的化學性質、存在方式、生物有效性、穩定性及周轉時間不盡相同,對外部環境干擾的反應程度也存在差異[11]。因此,對不同活性有機碳進行定量研究,能夠更加準確、細致地反映出土壤碳庫的變化情況。
東北黑土區是我國重要的糧食生產基地,每年為國內市場提供近40%的商品糧[12]。由于多年來高強度集約式耕作,東北黑土區坡耕地普遍存在土壤有機碳含量下降的問題,嚴重威脅國家糧食安全[13]。在此背景下,鑄牢北方生態安全屏障、持續加強黑土區生態建設與保護,不僅是新時代賦予林業行業的新使命,更是應對黑土地保護戰略、國家糧食“壓艙石”維護的重大需求。開展黑土區坡耕地土壤活性有機碳變化特征的研究,是科學認識坡耕地土壤質量與功能退化的基礎,也是制約針對性設計黑土坡耕地生態建設與保護技術的瓶頸。雖然東北黑土區地處松嫩平原,但區內地形有著不同程度的變化,不同地形作用下導致土壤侵蝕-沉積規律在坡面上的變化有所差異。目前,關于黑土區坡耕地土壤活性有機碳變化特征的研究主要集中在單一的地貌類型區內[14],而忽略了黑土區擁有多種地貌類型這一重要的自然因素差異[15]。關于黑土區多種地貌類型區內坡耕地不同坡位土壤活性有機碳變化特征的研究相對缺乏,制約了對于黑土區坡耕地活性有機碳變化特征的全面認識以及退化黑土的針對性修復。因此,本研究以典型黑土區3種地貌類型區(漫川漫崗區、丘陵漫崗區、平原低地區)坡耕地不同坡位(坡上、坡中、坡下)表層土壤為研究對象,通過測定土壤總有機碳、高活性有機碳、中活性有機碳和低活性有機碳等指標,探究不同地貌類型區坡耕地土壤活性有機碳變化特征的空間差異,旨在為系統揭示黑土坡耕地侵蝕退化機制、針對性設計研發生態修復與保護技術提供理論依據。
1" 材料與方法
1.1" 研究區概況
研究區為松嫩典型黑土區[16],位于小興安嶺南側的山前沖積臺地上,是小興安嶺余脈向平原過渡地帶,區內有漫川漫崗、丘陵漫崗和平原低地等多種地形。在典型黑土區內分別選擇漫川漫崗、丘陵漫崗、平原低地3種地形區內開墾60 a的坡耕地為研究樣地。坡耕地的坡度、坡向、坡長基本一致,均為大豆玉米輪作,現茬作物為大豆,前茬作物為玉米。研究區基本信息見表1。
1.2" 研究方法
野外采樣于2021年6月進行,在選定坡耕地的壟溝上沿平行于坡的方向設3條樣線,每條樣線按照坡上、坡中、坡下3個坡位設置取樣點,在每個取樣點表層(0~10 cm)采集0.5 kg土樣裝入塑料袋中帶回試驗室。將3條樣線相同坡位的土壤樣品均勻混合后分成3份,剔除石塊和根系,放在室內自然風干后用于測定土壤總有機碳和活性有機碳。土壤總有機碳采用重鉻酸鉀容量-外加熱法測定[17];土壤活性有機碳采用高錳酸鉀氧化法測定[18],具體方法為:稱取含15~30 mg碳的土樣放入50 mL的離心管中,加入333、167、33 mmol/L的KMnO4溶液25 mL,密封振蕩1 h后,放入離心機以4 000 r/min的轉速離心5 min,取離心后的上清液用去離子水按1∶250比例稀釋,然后將稀釋液在分光光度計于565 nm波長處進行比色測定,利用KMnO4消耗量來計算高、中、低3種活性有機碳含量,每個指標重復3次。
1.3" 指標計算
土壤高、中、低活性有機碳含量計算公式如下[19]
高、中、低活性有機碳含量(g/kg)=(V×25×250×9)/(m×1 000)
式中:V為KMnO4濃度變化值,mmol/L;25為KMnO4用量,mL;250為稀釋倍數;9為KMnO4濃度變化1 mmol/L消耗的碳量,mg;m為烘干土質量,g。
土壤非活性有機碳含量為土壤總有機碳含量與土壤活性有機碳含量之差;土壤不同活性有機碳含量占比為土壤不同活性有機碳含量在土壤總有機碳含量中所占百分比[2]。
1.4" 數據處理
采用SPSS Statistics 27.0的單因素方差分析(ANOVA)和最小顯著差異法(LSD)進行差異分析(Plt;0.05)。使用Pearson相關系數檢驗法對各指標進行相關性分析。采用Origin 2021軟件繪圖。
2" 結果與分析
2.1" 土壤總有機碳含量變化特征
由表2可知,坡耕地各坡位土壤總有機碳含量變化范圍為26.57~38.61 g/kg,3種地貌類型區坡耕地不同坡位土壤總有機碳含量變化特征不同,漫川漫崗區土壤總有機碳含量變化特征為:坡上和坡中顯著大于坡下,坡上和坡中無顯著差異;丘陵漫崗區土壤總有機碳含量變化特征為:坡下顯著大于坡上、坡上顯著大于坡中;平原低地區土壤總有機碳含量在不同坡位之間均未見明顯差異。
2.2" 土壤高活性有機碳含量變化特征
由表3可知,坡耕地各坡位土壤高活性有機碳含量變化范圍為1.85~2.30 g/kg,3種地貌類型區坡耕地不同坡位土壤高活性有機碳含量變化特征不同,漫川漫崗區土壤高活性有機碳含量變化特征為:坡中顯著大于坡上,坡上無顯著大于坡下;丘陵漫崗區土壤高活性有機碳含量變化特征為:坡上和坡下顯著大于坡中,坡上和坡下無顯著差異;平原低地區土壤高活性有機碳含量在不同坡位之間均未見明顯差異。
2.3" 土壤中活性有機碳含量變化特征
由表4可知,坡耕地各坡位土壤中活性有機碳含量變化范圍為3.62~4.43 g/kg,3種地貌類型區坡耕地不同坡位土壤中活性有機碳含量變化特征不同,漫川漫崗區土壤中活性有機碳含量變化特征為:坡上和坡中顯著大于坡下,坡上和坡下無顯著差異;丘陵漫崗區土壤中活性有機碳含量變化特征為:坡上和坡下顯著大于坡中,坡上和坡下無顯著差異;平原低地區土壤中活性有機碳含量在不同坡位之間均未見明顯差異。
2.4" 土壤低活性有機碳含量變化特征
由表5可知,坡耕地各坡位土壤低活性有機碳含量變化范圍為4.21~5.67 g/kg,3種地貌類型區坡耕地不同坡位土壤低活性有機碳含量變化特征不同,漫川漫崗區土壤低活性有機碳含量變化特征為:坡上和坡中顯著大于坡下,坡上和坡中無顯著差異;丘陵漫崗區土壤低活性有機碳含量變化特征為:坡下顯著大于坡上、坡上顯著大于坡中;平原低地區土壤低活性有機碳含量在不同坡位之間均未見明顯差異。
2.5" 土壤不同活性有機碳含量占比的變化特征
不同地貌區均為非活性有機碳占比最大,均超過50%,活性越大,比例越小,如圖1所示。丘陵漫崗區各活性有機碳在不同坡位的占比變化較為明顯,低活性有機碳比例相對較高且不同坡位之間變異性最大。漫川漫崗區高活性有機碳在不同坡位之間無顯著變化,中、低活性有機碳含量占比變化表現為坡下顯著大于坡上和坡中。平原低地區除坡中高活性有機碳顯著小于坡上和坡下外,其他坡位中、低活性有機碳含量占比在不同坡位之間均未見明顯差異。
3" 討論
活性有機碳是土壤有機碳中最為活躍的部分[19],將活性有機碳分為高、中、低3種不同活性的有機碳,能夠細致量化土壤活性有機碳在坡面上的變化情況[20]。研究發現,3種地貌類型區坡耕地各坡位土壤高、中、低活性有機碳占土壤總有機碳比例由大到小表現為:低活性、中活性、高活性,這與齊思明[21]研究結果相符合。相關分析表明(表6)土壤高活性有機碳和中活性有機碳與土壤總有機碳呈極顯著正相關,這也說明了高活性有機碳和中活性有機碳與土壤總有機碳之間的緊密聯系。
3種地貌類型區坡耕地不同坡位土壤總有機碳和高、中、低活性有機碳變化特征存在差異,漫川漫崗區坡耕地土壤總有機碳和高、中、低活性有機碳含量均表現為坡下最低,這是由于在漫川漫崗區,坡耕地坡下位置處于整個坡面的徑流匯集區域,受到較強的徑流沖刷力,加劇團聚體破碎的同時加快了有機碳的礦化,導致坡下土壤總有機碳含量要低于坡上和坡中[22];丘陵漫崗區坡耕地土壤總有機碳和高、中、低活性有機碳含量均表現為坡中最低,這是因為有相關研究表明:坡中位置的水蝕速率要大于坡上,使坡中受到更嚴重的水力侵蝕,導致土壤有機碳的流失[23];平原低地區土壤總有機碳和高、中、低活性有機碳含量在坡上、坡中、坡下無顯著差異,這可能是因為:平原低地區地勢較為平坦,在較大的地貌背景下,坡耕地坡面上的起伏變化幅度相對較小,各坡位受到的侵蝕程度基本一致,導致各坡位土壤總有機碳和高、中、低活性有機碳含量沒有顯著差異的原因[24]。雖然黑土區地勢平坦,但區內仍存在多種地貌類型,不同地貌類型區坡耕地不同坡位受到侵蝕營力類型、侵蝕-沉積規律的變化皆不同[25],從而導致不同活性有機碳的變化特征存在差異[26]。因此在黑土坡耕地修復過程中,建議考慮地貌類型以及坡位等因素的差異,有針對性地開展修復相關工作。
4" 結論
3種地貌類型區坡耕地不同坡位表層土壤總有機碳和活性有機碳含量變化特征存在差異,漫川漫崗區總有機碳、中活性有機碳和低活性有機碳含量變化特征為:坡上和坡中顯著大于坡下,坡上和坡中無顯著差異;高活性有機碳含量變化特征表現為:坡中顯著大于坡上、坡上顯著大于坡下。丘陵漫崗區總有機碳和低活性有機碳含量變化特征為:坡下顯著大于坡上、坡上顯著大于坡中;高活性有機碳和中活性有機碳含量變化特征為:坡上和坡下顯著大于坡中,坡上和坡下無顯著差異。平原低地區總有機碳、高活性有機碳、中活性有機碳、低活性有機碳含量變化在不同坡位間均未見明顯差異。研究結果不僅為系統揭示黑土區坡耕地土壤侵蝕退化機制積累了數據,而且為進一步開展黑土地生態修復以及黑土區生態建設與保護技術研發奠定了理論基礎。
【參" 考" 文" 獻】
[1]苗雪松,王嗣奇,張彥東.施氮對落葉松人工林凋落物分解及土壤有機碳礦化的影響[J].森林工程,2022,38(6):1-8.
MIAO X S, WANG S Q, ZHANG Y D. Effects of nitrogen fertilization on litter decomposition and soil carbon mineralization in Larix olgensis plantation[J]. Forest Engineering, 2022, 38(6): 1-8.
[2]李云紅,邵英男,陳瑤,等.云冷杉紅松林和蒙古櫟紅松林對土壤活性有機碳含量的影響[J].森林工程,2021,37(3):60-66.
LI Y H, SHAO Y N, CHEN Y, et al. Effects of Picea sp.-Abies sp.-Pinus koraiensis forests and Quercus mongolica-Pinus koraiensis forests on soil labile organic carbon content[J]. Forest Engineering, 2021, 37(3): 60-66.
[3]王軍廣,趙志忠,王鵬,等.海南島東南部熱帶雨林土壤易氧化有機碳特征及影響因素[J].西部林業科學,2023,52(2):106-112,131.
WANG J G, ZHAO Z Z, WANG P, et al. Characteristics and influencing factors of easily oxidized organic carbon in tropical rain forest soil in southeast Hainan Island[J]. Journal of West China Forestry Science, 2023, 52(2): 106-112, 131.
[4]楊小燕,韓少杰,陳祥偉.退耕還林類型對黑土表層土壤活性有機碳分布特征的影響[J].東北林業大學學報,2015,43(12):41-44,77.
YANG X Y, HAN S J, CHEN X W. Characteristics of topsoil labile organic carbon under the “grain for green project” in typical black soil region[J]. Journal of Northeast Forestry University, 2015, 43(12): 41-44, 77.
[5]蓋浩,劉平奇,張夢璇,等.黑土坡耕地橫坡壟作對減少徑流及土壤有機碳流失的作用[J].水土保持學報,2022,36(2):300-304,311.
GAI H, LIU P Q, ZHANG M X, et al. Effects of ridge planting on reducing runoff and soil organic carbon loss in black soil slope[J]. Journal of Soil and Water Conservation, 2022, 36(2): 300-304, 311.
[6]張健樂,曾小英,史東梅,等.生物炭對紫色土坡耕地侵蝕性耕層土壤有機碳的影響[J].環境科學,2022,43(4):2209-2218.
ZHANG J L, ZENG X Y, SHI D M, et al. Effects of biochar on soil organic carbon of eroded cultivated layer of slope farmland in purple hilly area[J]. Environmental Science, 2022, 43(4): 2209-2218.
[7]王軍強,劉立超,楊義榮,等.民勤綠洲區撂荒農耕地土壤有機碳變化特征及影響因素[J].土壤,2015,47(5):932-939.
WANG J Q, LIU L C, YANG Y R, et al. Changes and influencing factors of soil organic carbon in abandoned cropland of Minqin oasis region[J]. Soils, 2015, 47(5): 932-939.
[8]XU M G, LOU Y L, SUN X L, et al. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation[J]. Biology and Fertility of Soils, 2011, 47(7): 745-752.
[9]陸昕,孫龍,胡海清.森林土壤活性有機碳影響因素[J].森林工程,2013,29(1):9-14.
LU X, SUN L, HU H Q. Factors affecting the forest soil active organic carbon[J]. Forest Engineering, 2013, 29(1): 9-14.
[10]LOGINOW W, WISNIEWSKI W, GONET S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20(1):47-52.
[11]DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4: 11-37.
[12]翟國慶,韓明釗,李永江,等.坡地黑土侵蝕區和沉積區不同有機碳庫分配特征[J].東北林業大學學報,2019,47(11):86-90.
ZHAI G Q, HAN M Z, LI Y J, et al. Distribution characteristics of different organic carbon pools of sloping black soil in erosion and deposition areas[J]. Journal of Northeast Forestry University, 2019, 47(11): 86-90.
[13]劉興土,閻百興.東北黑土區水土流失與糧食安全[J].中國水土保持,2009(1):17-19.
LIU X T, YAN B X. Soil erosion and food security in black soil region of Northeast China[J]. Soil and Water Conservation in China, 2009(1): 17-19.
[14]祝元麗.東北低山丘陵區土壤侵蝕格局及其對土地利用變化的響應研究[D].長春:吉林大學,2021.
ZHU Y L. A study on soil erosion patterns and their responses to land use changes in A low mountain and hilly region of northeast China[D]. Changchun: Jilin University, 2021.
[15]嚴月.漫川漫崗黑土區坡面植被的防蝕機制及模式優選[D].哈爾濱:中國科學院大學(中國科學院東北地理與農業生態研究所),2021.
YAN Y. The mechanism and model optimization of the vegetation for soil erosion resistance in rolling hill regions with black soil[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2021.
[16]汪景寬,徐香茹,裴久渤,等.東北黑土地區耕地質量現狀與面臨的機遇和挑戰[J].土壤通報,2021,52(3):695-701.
WANG J K, XU X R, PEI J B, et al. Current situations of black soil quality and facing opportunities and challenges in northeast China[J]. Chinese Journal of Soil Science, 2021, 52(3): 695-701.
[17]鮑士旦.土壤農化分析[M].3版.北京:中國農業出版社,2000.
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[18]梁彩群,劉國彬,王國梁,等.黃土高原人工刺槐林土壤團聚體中不同活性有機碳從南到北的變化特征[J].環境科學學報,2020,40(3):1095-1102.
LIANG C Q, LIU G B, WANG G L, et al. Variation characteristics of different labile organic carbon in soil aggregates of Robinia pseudoacacia plantation from south to north in the Loess Plateau[J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1095-1102.
[19]TANG H M, XIAO X P, TANG W G, et al. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China[J]. Communications in Soil Science and Plant Analysis, 2018, 49(16): 1976-1989.
[20]姚旭,景航,梁楚濤,等.人工油松林表層土壤團聚體活性有機碳含量對短期氮添加的響應[J].生態學報,2017,37(20):6724-6731.
YAO X, JING H, LIANG C T, et al. Response of labile organic carbon content in surface soil aggregates to short-term nitrogen addition in artificial Pinus tabulaeformis forests[J]. Acta Ecologica Sinica, 2017, 37(20): 6724-6731.
[21]齊思明.不同林齡落葉松林對黑土土壤團聚體酶活性和易氧化有機碳的影響[D].哈爾濱:東北林業大學,2017.
QI S M. Effects of different age of Larix plantations on soil aggregates enzyme activities and the distribution of labile organic carbon in black soil region[D]. Harbin: Northeast Forestry University, 2017.
[22]趙鵬志,陳祥偉,王恩姮.黑土坡耕地有機碳及其組分累積-損耗格局對耕作侵蝕與水蝕的響應[J].應用生態學報,2017,28(11):3634-3642.
ZHAO P Z, CHEN X W, WANG E H. Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3634-3642.
[23]黃誠誠.東北黑土坡耕地水蝕條件下土壤有機碳分布及土壤呼吸的研究[D].北京:中國農業科學院,2017.
HUANG C C. Studies on redistribution of SOC and soil respiration under water erosion at black soil in northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[24]趙紫遠,方海燕,武亞冰,等.坡形對黑土區坡耕地土壤侵蝕的模型模擬研究[J].水土保持學報,2022,36(6):23-29,40.
ZHAO Z Y, FANG H Y, WU Y B, et al. Simulating the impact of slope shapes on soil erosion for the black soil region, northeastern China[J]. Journal of Soil and Water Conservation, 2022, 36(6): 23-29, 40.
[25]邵頌東,王禮先,周金星.國外土壤侵蝕研究的新進展[J].水土保持科技情報,2000(1):32-36.
SHAO S D, WANG L X, ZHOU J X. New progress of soil erosion research abroad[J]. Scientific and Technical Information of Soil and Water Conservation, 2000(1): 32-36.
[26]ZHANG J H, QUINE T A, NI S J, et al. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion[J]. Global Change Biology, 2006, 12(10): 1834-1841.