999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于金屬有機框架的功能紡織品研究進展

2024-04-29 00:00:00龔向宇王群趙文瀟王際平
現代紡織技術 2024年2期

摘要:為了更好地了解基于金屬有機框架的功能紡織品研究現狀,闡述了在織物表面構建金屬有機框架結構,以賦予紡織品獨特的功能特性;總結了現階段基于金屬有機框架的功能紡織品的主要制備方法,結合構建自粗糙結構和疏水劑整理,獲得具有超疏水性能的功能紡織品,該類紡織品在自清潔、抗菌抗紫外、抗化學污染、油水分離和傳感器領域具有潛在的應用價值;最后分析了基于金屬有機框架的功能紡織品在實際應用中存在的不足,討論了低成本制備穩定性良好的多功能紡織品的發展方向,為實現開發可持久的、高值化利用的多功能紡織品提供參考。

關鍵詞:金屬有機框架;功能紡織品;制備方法;超疏水;自清潔;油水分離

中圖分類號:TS195.5

文獻標志碼:A

文章編號:1009-265X(2024)02-0040-10

織物由于其固有的優點,如柔韌性、可再生性和良好的可加工性,在日常生活中有著廣泛應用。但普通織物不具備對抗外界惡劣環境的侵害,如紫外線、電磁波、化學物質、霉菌等,導致其實際應用范圍大大受到限制。近年來,人們開發了各種織物表面改性技術,如通過涂層[1]、電噴涂[2]、接合[3]、蝕刻[4]等在織物表面構造微納結構材料,使得改性后的織物具有自潔、防冰、抗菌、導電等功能[5-6]。但這些改性技術成本較高不易于大量應用,因此,開發與織物進行復合的低成本多功能材料成為實現織物的多功能化方向之一。

金屬有機框架(MOFs)材料是一種新型多孔聚合物;該材料以金屬(簇)為節點,有機配體為連接體,通過強配位鍵橋連形成開放式的、具有永久孔道的晶型骨架結構[7-9]。以四水合硝酸鋅和苯并咪唑為前驅體制備的沸石型Zn基金屬有機框架,如ZIF-7、ZIF-8和ZIF-90[10],具有開放式和永久性孔道的框架結構。在溫和的合成條件下,通過對金屬節點或配體進行簡單修飾,可精確調節MOFs的組成成分和結構,以實現目標功能。與傳統多孔材料相比,MOFs材料的優勢表現為:a)比表面積較大,最大比表面積可達10000 m2/g;b)無毒性、低成本及穩定的化學性質;c)孔隙率較大,可以更充分地暴露催化活性位點;d)在相對溫和的反應條件下,通過對金屬節點或有機配體進行簡單修飾,即可獲得孔道均勻、形貌規整的MOFs顆粒;e)孔道易于功能化,通過原位合成修飾或后合成修飾,對金屬(簇)節點或有機配體進行修飾,獲得具有特定功能的MOFs結構[11-13]。然而,MOFs微納顆粒在分散液中易相互碰撞而聚集,自身活性受到抑制,且不利于收集再利用,從而限制了其實際應用。

為了解決上述問題,研究人員借助一定的技術手段將各類MOFs負載至紡織品表面,賦予紡織品表面特定的功能,極大地擴展了二者的可應用范圍,同時為多功能紡織品發展方向提供了重要思路[14-15],在開發持久、高值化利用等多功能紡織品方面具有很好的應用前景。

1MOFs@織物的制備

將MOFs材料和普通織物相結合,可將MOFs材料具有的優點賦予織物,增加二者的實際應用范圍。目前MOFs@織物的制備方法主要有浸漬法、輻射接枝法、熱壓法、原位生長法和層層自組裝法,不同的方法優缺點不同,應根據實際需求選擇最適合的方法。

1.1浸漬法

采用浸漬法制備MOFs@織物的主要流程是:將先制備好MOFs顆粒分散在溶液中,再將織物浸沒在該分散液中,使得MOFs顆粒吸附在織物纖維上。Abdelhameed等[16]將苯-1,3,5-三羧酸(BTC)和Cu(NO3)2·3H2O溶解于N,N-二甲基甲酰胺(DMF)中,加熱至溶劑完全蒸發,得到藍色固體粉末(Cu-BTC),然后將H2O2氧化處理的棉織物浸泡在含Cu-BTC的乙醇分散液中,制備了Cu-BTC修飾的棉織物。Chen等[17]將鋯金屬有機框架(MOF-808)顆粒分散在甲醇/聚乙烯亞胺溶液中,再將棉織物浸入該分散液中攪拌10 min,取出干燥,得到MOF-808負載的棉織物。該方法雖然操作較為簡便,但存在無法控制MOFs負載量和MOFs與織物之間結合的牢固性差等問題。

1.2輻射接枝法

采用輻射接枝法制備MOFs@織物是利用鈷源、電子束、等離子體等高能射線的輻照作用,在高分子基底材料上產生自由基活性位點,進而引發單體在活性位點上發生聚合反應,生成接枝聚合物。該方法以強共價鍵將金屬有機框架與織物結合在一起,相比于直接浸漬法,結合更為牢固和持久。李萬新[18]將Cr基金屬有機框架(MIL-101)、丙烯酸羥乙

酯(HEA)和尼龍織物通過輻射共接枝成功地將MIL-101固定在尼龍織物表面。張清華等[19]將金屬有機框架分散在MOF/HEA分散液中,再將聚酰亞胺織物浸漬于該分散液中,在N2環境下借助60Coγ-射線對MOF/HEA修飾的聚酰亞胺織物表面進行照射,在其表面產生活性位點,使得MOFs顆粒在活性位點上發生聚合反應,成功制備了MOFs接枝的聚酰亞胺織物。通過輻射接枝法獲得的功能織物,其表面均勻分布的MOFs與織物結合牢度較好,不足之處在于制備過程復雜、成本較高,不適于大規模生產。

1.3熱壓法

采用熱壓法制備MOF@織物的主要流程是:將粉末狀物質和基底材料在適當的溫度和壓力下以一定比例混合,然后通過熱壓裝置快速地將粉末狀材料負載至基材表面。Li等[20]將Zn(CH3COO)2、2-甲基咪唑、聚乙二醇混合溶解均勻涂覆在Kevlar織物表面,并用鋁箔紙包覆,在200 ℃、10 MPa的條件下反應,得到ZIF-8負載的Kevlar織物(ZIF-8@Kevlar)。Zhang等[21]將制備的Zr、Cu等金屬框架錨定在棉、芳綸、聚酯等織物表面,并用鋁箔紙包覆,置于熱壓機中一定時間,之后將其從鋁箔上剝離,得到不同類型的MOFs負載的紡織品(見圖1),將其用于凈化空氣,可有效去除空氣中的污染物PM2.5。熱壓法制備的功能織物,其不足之處在于織物表面顆粒涂層分布不夠均勻,涂層與織物表面結合不夠牢固等,但是其快速簡便、無溶劑、低成本等優勢為各類MOFs@織物的規模化生產提供了參考。

1.4原位生長法

采用原位生長法制備MOFs@織物的主要流程是:將處理干凈的織物浸入MOFs的前驅體溶液中,使得MOFs材料在織物表面自行合成得到MOFs@織物。與熱壓法相比,原位生長法在柔性織物表面負載的MOFs,其形貌和密度更易于調控、分布更為均一。Nie等[22]將四卟啉(TCPP)、苯甲酸(BA)、ZrOCl2·8H2O混合溶解于DMF中,并將棉織物置于該混合溶液中,在90 ℃的油浴中加熱5 h,獲得了Zr金屬有機框架(PCN-224)均勻生長的棉織物表面。此外,Emam等[23]以Cu(NO3)2·3H2O和苯-1,3,5三羧酸為前驅體,利用原位生長法在織物表面成功錨定Cu-BTC,制備了Cu-BTC/棉織物。

1.5層層自組裝法

為了更精確地控制MOFs在織物表面的覆蓋率和厚度,改善織物表面性能以增強MOFs和織物間的相互作用,層層自組裝法(LBL)應需而生。層層自組裝法是通過在帶相反電荷的前驅體溶液中交替涂覆織物,在一定條件下使得MOFs自行生長在織物表面,該方法可精確調控MOFs在織物上的負載量和顆粒大小。Lu等[24]以醋酸鋅(II)和1, 4-苯二甲酸為原料,通過LBL將Zn基金屬有機框架(ZnBDC)錨定在棉織物表面,并對比了不同沉積次數對應的ZnBDC在棉織物上的負載量,獲得了抗紫外、抗菌的ZnBDC/棉織物。Li等[25]借助LBL在羧基改性的棉織物表面負載了Cu-BTC,通過優化沉積次數獲得致密且規則的正八面體Cu-BTC修飾的棉織物表面(見圖2),制備的Cu-BTC/棉織物表現出良好的抗菌、抗紫外等多重性能。

分析比較上述5種方法可得到不同方法制備MOFs@織物的優缺點,具體內容見表1。

2MOFs@織物的應用

根據對功能紡織品的實際需求,如自清潔、抗菌抗紫外、抗化學污染、油水分離、智能傳感器等,可選擇不同類型的MOFs并將其結合織物表面,制備多功能MOFs@織物,以賦予織物的高附加值。

2.1自清潔

通常,通過在材料表面構造粗糙結構,同時結合低表面能疏水劑整理來實現固體材料表面的自清潔性能[26]。接觸角測試用于表征織物表面超疏水性能。接觸角(θ),如圖3所示[27],即氣、液、固相三相交點處的氣-液相界面切線與固-液相界面切線之間的夾角。當液滴在表面光滑平坦的均勻固體上達平衡時,利用楊氏(T.Young)方程[28]來表示接觸角:

γs=γsl+γlcosθ(1)

cosθ=γs-γslγl(2)

其中:γs、γsl、γl分別為固相表面能、固-液相表面能、液相表面能。根據液相在固相表面的接觸角大小,可以判斷液相在固相表面的潤濕情況,可分為4個狀態:超親水狀態(θ<10°)、親水狀態(10°<θ<90°)、疏水狀態(90°<θ<150°)以及超疏水狀態(θ>150°)。

要想獲得物體表面的超疏水能力,必須具備良好的表面粗糙度和低表面能這兩個條件[29],研究人員發展了多類型的MOFs用于提高固體表面粗糙度和獲得獨特的功能性[30-31]。Liu等[15]在羧甲基修飾的棉織物表面原位生長了ZIF-8,并結合聚甲基氫硅氧烷(PMHS)的后整理,制備了一種持久、自清潔性能優異的彩色功能棉織物。Yang等[32]將棉織物浸入異丙氧基鈦和2-氨基對苯二甲酸的混合溶液,利用水熱反應在棉織物表面均勻地負載了Ti-MOFs顆粒,同時借助疏水整理劑聚二甲基硅氧烷(PDMS)的修飾,制備了具有自清潔性能的超疏水棉織物(PDMS/Ti-MOFs@棉織物),該制備過程無需較高的溫度和壓強,具有規模化生產潛力。但現有的織物超疏水涂層普遍存在著耐水洗性能差、不耐機械摩擦和表面損壞后超疏水性能不可恢復等缺點。例如織物在日常使用中會沾染來自空氣中的油污或人體分泌的油脂,洗滌時油污分子易于和超疏水涂層結合,從而破壞或污染超疏水涂層。為了有效解決現有超疏水織物存在的一系列缺陷,研究者們在織物表面進行超疏水涂層的自修復改性,以賦予織物超疏水自修復能力。Zhao等[33]利用PDMS和石蠟對聚酯織物(PET)進行改性,成功地賦予了聚酯織物超疏水自修復能力,因PDMS/石蠟和聚酯纖維的相互作用,聚酯織物表面呈現出致密且明顯的粗糙度,制備的PDMS/石蠟@PET也表現出令人滿意的耐機械磨損和抗化學腐蝕穩定性。Chen等[34]使用聚磷酸銨(APP)、支鏈聚乙烯亞胺(bPEI)和氟化十二烷基多聚體低聚硅氧烷(F-POSS),通過浸漬法在棉織物表面嵌入了一種膨脹型阻燃和自修復超疏水涂層,該涂層表現出優異的阻燃和自修復超疏水性能,將自修復涂層和MOFs結合可以大大提高超疏水織物的使用壽命,降低成本。

2.2抗菌抗紫外

MOFs材料在抗菌應用上被分為成分釋放抗菌劑、光催化抗菌劑、螯合抗菌劑以及其他功能材料的載體或/和協同抗菌劑[35]。與傳統抗菌劑相比,MOFs的螯合作用可使得金屬離子極性降低,從而增強其親脂性,有利于MOFs穿透細菌細胞膜殺死細菌,且高孔隙率和比表面積可以促進其他材料有效地包封/加載到其孔隙中,同時豐富的表面活性基團可以促進其他材料在其表面的修飾,這有利于獲得MOF基雙效抗菌復合材料[36]。MOFs負載的不同種類織物可有效抑制細菌生長,歸因于某些MOFs,如Zr-MOFs、Ti-MOFs,能夠阻止細菌粘附纖維表面并繁殖,從而賦予紡織品有效的抗菌能力,這些紡織品可廣泛應用于醫療領域。Rezaee等[37]在羊毛織物表面原位生長出Zr-MOF,制備的Zr-MOF@羊毛織物對大腸埃希菌、革蘭氏陰性模型菌的抑制效率均達到60.95%,對金黃色葡萄球菌、革蘭氏陽性模型菌的抑制效率為64.64%。Teo等[38]用聚丙烯酸(PAA)作為鏈接劑將銅金屬有機框架(HKUST-1)嫁接到棉織物表面,制備具有顯著抗菌能力的棉織物(HKUST-1@棉織物)。這些具有抗菌活性的紡織品涂層因制備方法簡易、高效,且適于規模化生產,故在醫療用紡織品,如醫用工作服、口罩、防護服等方面具有廣泛的應用前景。Ma等[39]將多孔Zr-MOFs顆粒通過原位生長負載到棉織物表面,制備的Zr-MOFs/棉織物對革蘭氏陰性菌和革蘭氏陽性菌都表現出高效的抑菌性能(見圖4)。

將MOFs結合至織物表面,可構建能夠有效反射或選擇性吸收紫外光的功能紡織品,該紡織品在使用過程中可以有效屏蔽紫外線 [40]。Yang等[32]通過原位生長法將Ti-MOFs微納顆粒沉積在棉織物表面,并在室溫下借助PDMS整理,制備了具有持久的超疏水和抗紫外的棉織物。Lu等[24]結合Ti-MOFs構造粗糙結構和PDMS的疏水整理制備了彩色的超疏水棉織物(PDMS/Ti-MOFs@cotton),賦予了棉織物顯著的抗紫外能力,制備過程無需高溫高壓,故具有潛在的規模化生產前景。Zhang等[41]通過LBL法將Cu-BTC均勻負載到棉織物上,制備的Cu-BTC/棉織物表現出優異的抗紫外能力。但值得注意的是,在反復使用過程中,部分MOFs顆粒會從織物表面脫落,從而抗紫外性能會受到一定程度的影響,因此MOFs與織物的結合牢度不夠理想是未來相關研究領域亟待解決的問題。

2.3抗化學污染

MOFs因具有高比表面積和形貌可控,能夠有效捕獲有機污染物,并在一定條件下將其催化降解,故將其負載在紡織品表面,所制備的MOFs@

織物在抗化學污染方面表現出顯著的應用價值。如Jhinjer等[42]通過在棉織物表面進行羧甲基化處理,使得ZIF-8和ZIF-67在其表面均勻生長,制備的功能棉織物對苯胺、苯和苯乙烯等芳香族有機物具有顯著的快速吸附能力,在防護服和抗室內空氣污染等方面具有潛在的應用前景。Zhang等[43]在PAN納米纖維上生成了UiO-66-NH3,制備的UiO-66-NH3織物可快速去除化學戰劑(CWAs),優化的UiO-66-NH3織物對二氯乙基硫化物的去除率在72 h內可達到98.94%。Ma等[44]開發了一種簡易、低成本、無模板水溶液的合成策略,在PET表面制備了連續的Zr-MOFs涂層,通過優化Zr-MOFs在PET表面的生長機制,賦予了PET表面覆蓋均勻的高孔隙率膜層(見圖5),如UiO-66-NH2/PET、MOF-808/PET,這些功能化的PET能夠促使神經毒劑甲氟磷酸異已酯(GD)和芥子氣模擬物2-氯乙基硫醚(CEES)的高效催化水解,且MOF層可有效減緩CEES擴散,為CEES充分水解提供了必要的接觸時間。值得注意的是,MOF-808/PET較UiO-66-NH2/PET表現出更加優異的GD、CEES的催化水解活性。

2.4油水分離

海洋石油泄漏和工業含油廢水排放對人類健康和生態環境帶來了嚴重危害,因而人們探索開發出各類油水分離材料,以凈化水資源和節約油品資源。Gupta等[45]研究發現,在無需外界作用條件下,利用固體材料表面粗糙度和化學性質的調控,通過材料表面對油和水的浸潤性差異,可對含油廢水進行高效的油水分離。Shi等[46]通過UiO-66-NH2與十八烷基氯的酰胺化反應,成功制備了能夠選擇性吸附水中有機溶劑的Zr-MOF(UiO-66-NH-C18),UiO-66-NH-C18負載的海綿對各類油品、有機溶劑的吸附能力達到323~661 g/g,并且可以循環使用。Zhang等[47]制備了潤濕性可調的ZIF-8修飾的棉織物,該織物經乙醇浸潤后,具有顯著高通量地分離不同密度的油水混合物,且具有良好的耐機械摩擦和抗化學腐蝕穩定性,在處理工業含油廢水方面具有很大的應用潛力。Li等[48]通過簡單的逐層組裝,將原位生長的Cu-MOFs顆粒結合至濾紙表面,并對其進行超疏水(PDMS)處理,制備了具有優異自清潔和抗菌性能的超疏水/超親油濾紙,該復合材料可高效分離油水混合物或油包水乳液。

2.5智能傳感器

智能電子紡織品越來越受到人們的關注,如可穿戴的充電電池[49]、水下報警器[50] 、傳感器[51]等,這些設備在實際使用中需經常彎曲和變形,故對柔性、靈活性及導電性具有較高要求。柔性有機半導體是制備電子可穿戴紡織品的理想材料,但是具有優異性能的有機半導體,如聚吡咯(PPy)、聚苯胺、聚噻吩,通常成本較高,并且不適合大規模生產[52]。將修飾的、具有獨特性能的MOFs與織物結合,制備的導電紡織品具有規模化制備電子可穿戴織物的潛力。由于MOFs中含有大量的金屬離子,可提供高電化學信號,其自由孔也提供了另一種方式來調節電輸運性質,如在孔隙中引入7,7,8,8-四氰喹啉二甲烷(TCNQ)、聚N-異丙基丙烯酰胺(PNIPAM)、金屬納米顆粒、富勒烯、和聚吡咯等能夠與開放金屬位點配合的氧化客體分子,可以在骨架中建立新的導電路徑,從而提高導電性能。Sun等[53]利用TCNQ和PPy分別修飾Cu3(BTC)2,制備了TCNQ@Cu3(BTC)2和PPy@Cu3(BTC)2,并在室溫下將其結合至聚酯纖維織物表面,構建了聚酯纖維紡織品表面的柔性導電膜層,該研究為構建MOFs基膜層在各類柔性電子可穿戴織物方面的應用發展了新方向。Liu等[54]制備了Cu-MOFs基新型癌胚抗原(CEA)電化學免疫傳感器,即利用甲苯胺藍(TB)負載的聚多巴胺(PDA)修飾的Cu-MOFs作為信號探針(Cu-MOFs-TB/PDA),并將Cu-MOFs-TB/PDA、殼聚糖和多壁碳納米管混合涂覆于玻碳電極表面,制備功能化電極膜層。優化的電極膜層對CEA在 20~200 mg/mL范圍內的定量檢測表現出良好的穩定性、選擇性和重現性,故Cu-MOFs基電化學傳感器在對腫瘤標志物檢測方面具有潛在應用。He等[55]制備了一種用來檢測棒曲霉素(PAT)的Zr-MOFs基電化學傳感器,該傳感器具有特異性和長期使用穩定性,并對PAT具有良好的響應范圍,成功應用于蘋果汁和蘋果酒樣的檢測中。

3結語

利用MOFs在織物表面構造自粗糙結構,同時結合疏水劑整理,賦予紡織品的超疏水性能,從而達到抗化學污染、自清潔、油水分離等目的。制備的功能紡織品不僅能保持其原有的柔性、抗機械外力、穿著服用等性能,還為日常生活帶來更多便利,具有潛在的應用價值。某些MOFs能夠有效阻斷細菌生物膜形成,故將這些MOFs結合至織物表面可廣泛應用于醫療領域。此外,某些MOFs具有一定的導電性,且通過在該類MOFs的孔隙中引入能夠與開放金屬位點配合的氧化客體分子以建立新的導電路徑,從而進一步改善其導電性能,因此將該類MOFs與織物結合制備的功能紡織品可應用于水下傳感器、電子可穿戴紡織品等方面。

雖然MOFs基紡織品的制備和應用研究已有很多報道,但依然存在一些難以突破的問題,如制備方法還不夠成熟,當前報道的相關制備過程,其工藝較復雜,原材料浪費嚴重不利于規模化制備;MOFs與織物之間的結合牢度不夠理想,且MOFs在織物表面原位生長時,其形貌和尺寸的均一性不能得到有效控制,使得制備的紡織品使用壽命受限,這對MOFs基紡織品的產業化應用具有一定的限制。因此,研究者未來的相關研究應聚焦在MOFs基紡織品的制備工藝和產業化應用等方面。

總之,基于金屬有機框架的功能紡織品的研究為發展綠色環保、節能高效、經濟實用地構筑性能穩定、功能持久的多功能紡織品提供了新思路,具有極大的研究價值和潛在的應用前景。

參考文獻:

[1]SHAN H, PAN Q W, XIANG C J, et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane[J]. Cell Reports Physical Science, 2021, 2(12):100664.

[2]CAO C, GE M, HUANG J, et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation[J]. Journal of Materials Chemistry A, 2016, 4(31):12179-12187.

[3]LI W L, WANG H P, LI Z X. Preparation of golf ball-shaped microspheres with fluorinated polycaprolactone via single-solvent electrospraying for superhydrophobic coatings[J]. Progress in Organic Coatings, 2019, 131:276-284.

[4]XIANG F, ZONG Y K, CHEN M Q, et al. Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting[J]. Progress in Organic Coatings, 2022, 163:106635.

[5]CHENG Y, ZHU T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355:290-298.

[6]LI W, WANG H, LI Z. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self-cleaning ability[J]. Polymers for Advanced Technologies, 2019, 30(9):2321-2330.

[7]LI W L, WANG X T, WU Y, et al. One-step spontaneous grafting via diazonium chemistry for the fabrication of robust bionic multifunctional superhydrophobic fabric[J]. Surface and Coatings Technology, 2021, 407:126802.

[8]TROYANO J, CARNé-SáNCHEZ A, AVCI C, et al. Colloidal metal-organic framework particles: The pioneering case of ZIF-8[J]. Chemical Society Reviews, 2019, 48(23):5534-5546.

[9]BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943.

[10]PEREZ E, KARUNAWEERA C, MUSSELMAN I,et al. Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations[J]. Processes, 2016, 4(3):32.

[11]KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2):1105-1125.

[12]TAN Y X, HE Y P, ZHANG J A. Tuning MOF stability and porosity via adding rigid pillars[J]. Inorganic Chemistry, 2012, 51(18):9649-9654.

[13]WANG S B, WANG X C. Multifunctional metal-organic frameworks for photocatalysis[J]. Small, 2015, 11(26):3097-3112.

[14]ZHANG L Y, CHEN H, BAI X J, et al. Fabrication of 2D metal-organic framework nanosheet@fiber composites by spray technique[J]. Chemical Communications, 2019, 55(57):8293-8296.

[15]LIU D D, LIU X M, FANG K J, et al. Synergistic effect of MOFs and PMHS on robust cotton fabric for promoted hydrophobic and UV-resistance[J]. Chemical Engineering Journal, 2023,457:141319.

[16]ABDELHAMEED R M, ABDEL-GAWAD H, ELSHAHAT M, et al. Cu-BTC@cotton composite: Design and removal of ethion insecticide from water[J]. RSC Advances, 2016, 6(48):42324-42333.

[17]CHEN Z J, MA K K, MAHLE J J, et al. Integration of metal-organic frameworks on protective layers for destruction of nerve agents under relevant conditions[J]. Journal of The American Chemical Society, 2019, 141(51):20016-20021.

[18]李萬新.紡織品表面輻射接枝金屬有機框架化合物的研究[D].上海:中國科學院大學,2015:17-20

LI Wanxin. Research on Radiation Grafting of Metal-organic Framework Compounds on Textile Surfaces[D]. Shanghai: University of Chinese Academy of Sciences, 2015: 17-20

[19]張清華,甘鋒,李琇廷,等.一種聚酰亞胺織物表面輻射接枝金屬有機框架的方法:CN201711067706.X[P].2020-08-04.

ZHANG Qinghua, GAN Feng, LI Xiuyan, et al. A method of radiation grafting metal organic framework on the surface of polyimide fabric: CN201711067706.X[P]. 2020-08-04.

[20]LI D K, GUO Z G. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance[J]. Applied Surface Science, 2018, 443:548-557.

[21]ZHANG K, HUO Q A, ZHOU Y Y, et al. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials amp; Interfaces, 2019, 11(19):17368-17374.

[22]NIE X L, WU S L, MENSAH A, et al. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy[J]. Journal of Colloid and Interface Science, 2020, 579:233-242.

[23]EMAM H E, ABDELHAMEED R M. In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide)[J]. Journal of Porous Materials, 2017, 24(5):1175-1185.

[24]LU L, HU C, ZHU Y J, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework[J]. Cellulose, 2018, 25(7):4223-4238.

[25]LI W L, ZHANG Y X, YU Z, et al. In situ growth of a stable metal-organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications[J]. ACS Nano, 2022, 16(9):14779-14791.

[26]ZHANG Z B, ZHAO J W, LEI Y Q, et al. Preparation of intricate nanostructures on 304 stainless steel surface by SiO2-assisted HF etching for high superhydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124287.

[27]LIU Y Y, TANG J, WANG R H, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles[J]. Journal of Materials Chemistry, 2007, 17(11):1071-1078.

[28]YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of The Royal Society of London, 1805,95: 65-87.

[29]ZHANG Y F, ZHANG L Q, XIAO Z, et al. Fabrication of robust and repairable superhydrophobic coatings by an immersion method[J]. Chemical Engineering Journal, 2019, 369:1-7.

[30]WANG J R, WANG X F, ZHAO S, et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion[J]. Separation and Purification Technology, 2020, 235:116166.

[31]YANG Y Y, GUO Z P, HUANG W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020, 503:144079.

[32]YANG Y Y, HUANG W, GUO Z P, et al. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation[J]. Cellulose, 2019, 26(17):9335-9348.

[33]ZHAO Y M, LIU E Z, FAN J, et al. Superhydrophobic PDMS/wax coated polyester textiles with self-healing ability via inlaying method[J]. Progress in Organic Coatings, 2019, 132:100-107.

[34]CHEN S S, LI X A, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4):4070-4076.

[35]LI R, CHEN T T, PAN X L. Metal-organic-framework-based materials for antimicrobial applications[J]. ACS Nano, 2021, 15(3): 3808-3848.

[36]LIANG S, WU X L, XIONG J, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review[J]. Coordination Chemistry Reviews, 2020, 406: 213149.

[37]REZAEE R, MONTAZER M, MIANEHRO A, et al. Single-step synthesis and characterization of Zr-MOF onto wool fabric: Preparation of antibacterial wound dressing with high absorption capacity[J]. Fibers and Polymers, 2022, 23(2):404-412.

[38]TEO W L, LIU J, ZHOU W, et al. Facile preparation of antibacterial MOF-fabric systems for functional protective wearables[J]. SmartMat, 2021, 2(4):567-578.

[39]MA K K, CHEUNG Y H, XIE H M, et al. Zirconium-based Metal-organic frameworks as reusable antibacterial peroxide carriers for protective textiles[J]. Chemistry of Materials, 2023, 35(6):2342-2352.

[40]范雪榮.紡織品染整工藝學[M].2版.北京:中國紡織出版社,2006:356.

FAN Xuerong. Textile Dyeing and Finishing Technology[M]. 2nd ed. Beijing: China Textile amp; Apparel Press, 2006:356.

[41]ZHANG K, YANG Z, MAO X E, et al. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction[J]. ACS Applied Materials amp; Interfaces, 2020, 12(49):55316-55323.

[42]JHINJER H S, SINGH A, BHATTACHARYA S, et al. Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air[J]. Journal of Hazardous Materials, 2021, 411:125056.

[43]ZHANG X L, SUN Y X, LIU Y F, et al. UiO-66-NH2 fabrics: Role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants[J]. ACS Applied Materials amp; Interfaces, 2021, 13(33):39976-39984.

[44]MA K K, ISLAMOGLU T, CHEN Z J, et al. Scalable and template-free aqueous synthesis of zirconium-based metal-organic framework coating on textile fiber[J]. Journal of the American Chemical Society, 2019, 141(39):15626-15633.

[45]GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31):16025-16058.

[46]SHI M B, HUANG R L, QI W, et al. Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602:125102.

[47]ZHANG G H, LIU Y, CHEN C, et al. MOF-based cotton fabrics with switchable superwettability for oil-water separation[J]. Chemical Engineering Science, 2022, 256:117695.

[48]LI H, LUO Y D, YU F Y, et al. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625:126976.

[49]KIM J, KHAN S, WU P, et al. Self-charging wearables for continuous health monitoring[J]. Nano Energy, 2021, 79: 105419.

[50]ZHU T X, NI Y M, ZHAO K Y, et al. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming[J]. ACS Nano, 2022, 16(11): 18018-18026.

[51]YANG G L, JIANG X L, XU H, et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327.

[52]ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials amp; Interfaces, 2019, 11(26):23649-23658.

[53]SUN C C, WANG W K, MU X Y, et al. Efficiently regulating the electrical properties of flexible fabric-based Cu3(BTC)2 thin film by introducing various guest molecules[J]. Advanced Materials Interfaces, 2022, 9(3):2101810.

[54]LIU J B, SHANG Y H, XU J Q, et al. A novel electro-chemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier[J]. Journal of Electroanalytical Chemistry, 2020, 877:114563.

[55]HE B S, DONG X Z. NB.BbvCI powered DNA walking machine-based Zr-MOFs-labeled electrochemical aptasensor using Pt@ AuNRs/Fe-MOFs/PEI-rGO as electrode modifi-cation material for patulin detection[J]. Chemical Engineering Journal, 2021, 405: 126642.

Research progress of MOFs-based multifunctional textiles

GONG Xiangyu, WANG Qun, ZHAO Wenxiao, WANG Jiping

(a.School of Textile and Fashion; b.Shanghai Engineering Research Center for Clean Production of Textile Chemistry,

Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract:

The textiles produced by the traditional textile industry have relatively single function and cannot meet the needs of modern people's life. At present, the ordinary fabrics exposed to strong ultraviolet rays, toxic chemicals, bacteria and other environments are not enough to fight against the infringement of these harsh environments, resulting in the scope of application being greatly reduced. To improve the protective performance of fabrics and expand the range of applications, it is usually necessary to carry out surface modification. Therefore, the development of multifunctional textiles to improve product grade and increase the range of applications is now a hot spot in the field of textile research. Metal-organic frameworks (MOFs) are a new type of nanoscale porous polymers, which form an open, crystalline skeleton with permanent pores by bridging strong coordination bonds with metals (clusters) as nodes and organic ligands as connectors. Under mild synthetic conditions, the composition and structure of MOFs can be precisely tuned to achieve their target functions by simple modifications of metal nodes or ligands. Compared with traditional porous materials, MOFs materials have the advantages of larger specific surface area, non-toxicity and low cost, and larger porosity. Some studies have incorporated MOFs materials into fiber matrices for special applications. However, the above studies prepared MOFs fiber composites only by simple mixing, the interaction between MOFs and fibers was poor, and the final products obtained could not achieve the desired morphology and structure. In addition, hydrolytic instability is one of the major drawbacks of several MOFs, and to solve these problems, the integration of MOFs onto fibers through covalent bonding and hydrophobic modification may be a feasible solution for the development of future MOF fabrics.

Combining the advantages and defects of MOFs@fabrics, their preparation methods and application prospects are summarized, and the development prospects of researching MOFs@ fabrics in developing multifunctional textiles such as long-lasting and high-value utilization are envisioned. Nowadays, the composite of MOFs materials onto fabrics has been realized by many people, and the main methods of loading MOFs particles onto fabrics are impregnation, radiation grafting, hot pressing, in-situ growth, and layer-by-layer self-assembly, and each method has its own advantages and shortcomings. We can choose the appropriate method through different application scenarios, and the synthesized multifunctional textiles have been developed in the areas of antimicrobial, chemical resistance, UV resistance, oil-water resistance, chemical contamination resistance, and oil-water resistance. The synthesized multifunctional textiles have good performance in the fields of antimicrobial, antichemical, anti-ultraviolet, oil-water separation and smart sensors. The treatment of metal-organic frameworks with anti-UV and anti-bacterial functions on textiles can give the textiles additional properties and construct rough surfaces for the textiles, creating conditions for the textile surfaces to obtain multi-functional properties. These multifunctional textiles can not only enhance their own grade and value, but also provide convenience for daily life. With unique advantages of the existence of a huge potential, they will occupy a place in the future market, and provide new ideas for developing green, energy-saving, efficient, economical and practical methods to build multifunctional textiles with stable performance and lasting functions, which has great research value and significance.

Keywords:

metal-organic frameworks (MOFs); functional textiles; preparation method; superhydrophobic; self-cleaning; oil-water separation

收稿日期:20230712

網絡出版日期:20231019

基金項目:新疆生產建設兵團重大科技項目(2019AAA001)

作者簡介:龔向宇(1997—),男,安徽宣城人,碩士研究生,主要從事金屬有機框架復合材料及功能紡織品方面的研究。

通信作者:王群,E-mail: qwang@sues.edu.cn

主站蜘蛛池模板: 国产网站免费看| 亚洲欧美h| 欧美日韩国产在线观看一区二区三区| Aⅴ无码专区在线观看| 国产青榴视频| www.国产福利| 国产精品一区不卡| 五月天香蕉视频国产亚| 久久黄色视频影| 国产亚洲欧美日韩在线观看一区二区| 小说 亚洲 无码 精品| 色135综合网| 亚洲国产成人精品青青草原| 亚洲精品视频免费观看| 真人高潮娇喘嗯啊在线观看| 亚亚洲乱码一二三四区| 欧美成人午夜视频免看| www.99精品视频在线播放| 久久不卡国产精品无码| 人妻无码中文字幕一区二区三区| 真实国产乱子伦视频| 毛片久久久| 日本在线欧美在线| 日韩av电影一区二区三区四区| 国产成人做受免费视频| h视频在线观看网站| 国产日韩丝袜一二三区| 国产成人欧美| 多人乱p欧美在线观看| 精品成人免费自拍视频| 天天综合网亚洲网站| 亚洲第一成年人网站| 日本精品中文字幕在线不卡| 丁香六月激情综合| 国产好痛疼轻点好爽的视频| 九色综合伊人久久富二代| 国产精品hd在线播放| 亚洲区欧美区| 丁香婷婷久久| 国产综合欧美| 99热6这里只有精品| AV色爱天堂网| 一级福利视频| 毛片在线播放网址| 日韩一区二区三免费高清| 欧美精品亚洲精品日韩专区va| 一区二区三区在线不卡免费| 亚洲第一天堂无码专区| 国产情侣一区二区三区| 四虎综合网| 欧美另类图片视频无弹跳第一页| 久久精品无码国产一区二区三区| 91原创视频在线| 亚洲无码高清视频在线观看| 青青久在线视频免费观看| 久久青草视频| a级毛片免费网站| 久久精品女人天堂aaa| 强乱中文字幕在线播放不卡| 国产欧美一区二区三区视频在线观看| 无码中文字幕精品推荐| 国产主播在线一区| 国产拍在线| 美女裸体18禁网站| 青青青国产免费线在| 欧美中文字幕一区二区三区| 久久久黄色片| 国产精品偷伦在线观看| 在线观看视频99| 最新国产精品第1页| 99精品这里只有精品高清视频| 九九热免费在线视频| 久久精品嫩草研究院| 国产精品亚洲五月天高清| 日韩黄色大片免费看| 亚洲国产av无码综合原创国产| 国产情侣一区二区三区| 国模视频一区二区| 国产亚洲精品资源在线26u| 日韩中文无码av超清| 亚洲午夜综合网| 伊人狠狠丁香婷婷综合色|