呂 東,許衛曉,2,李翠翠,楊偉松,楊淑娟,王向英
(1.青島理工大學,山東 青島 266520; 2.海洋環境混凝土技術教育部工程研究中心,山東 青島 266520;3.青建集團股份公司,山東 青島 266071)
隨著地下工程規模的擴大,地下室底板長度越來越長,在施工過程中易因溫度應力產生裂縫,從而影響結構的耐久性和使用功能[1-2]。焦彬如等[3]對超長混凝土墻體裂縫控制進行了研究,認為控制裂縫的出現必須要進行溫度應力計算。目前對溫度應力的計算主要集中在數值模擬和理論計算方面。在數值模擬方面,Zang等[4]利用MIDAS分析超長地下室混凝土結構的溫度應力,計算超長結構在溫度影響下的溫度應力。Yuan等[5]基于微觀力學模型和經驗公式對早期混凝土開裂進行數值模擬。梅明榮等[6]通過有限元仿真計算,模擬了上海地鐵地下車站混凝土結構實際施工情況,計算出底板結構溫度干縮應力。馮健等[7]利用ANSYS軟件對南京國際展覽中心工程,按照3種模型分別建模進行線彈性有限元溫度應力計算;在理論計算方面,王鐵夢[8]提出了連續式約束條件下大底板、長墻、剪力墻、樓板等最大約束應力近似計算公式,表明減少溫差能有效控制結構裂縫。針對大面積混凝土梁板結構的溫度應力分析等亟待解決的問題,韓重慶等[9]基于框架彈性空間有限元分析和徐變計算的T-B算法,提出了大面積混凝土梁板結構溫度應力分析的徐變應力折減系數法。朱伯芳[10]根據地基彈性模量及梁的長高比,對梁所受到的地基約束作用分為4類,對每類約束情況分別給出了簡潔的溫度應力計算公式,使計算得到簡化。
混凝土底板澆筑后,受到水化熱、干縮、環境溫度變化的影響,其溫度會不斷發生變化[11-12]。當底板發生升溫膨脹時,由于受到地基的約束作用,底板不能自由變形,膨脹受到抑制,底板受到地基的壓應力。反之,當底板發生降溫收縮時,同樣受到地基的約束,從而產生拉應力。當拉應力大于底板混凝土的抗拉強度時,底板就會發生開裂[13-14]。底板溫度應力的大小和分布受到溫度場[15]、約束條件以及結構參數的影響[16-17]。由于混凝土底板的平面尺寸較大,且在水平方向溫度變化不大,可沿長度方向切出單位寬度的長條,按地基上的梁計算其溫度應力。
在地基上混凝土梁的溫度應力計算中,地基抗剪剛度系數是一個重要參數。目前,關于地基抗剪剛度系數的取值研究還非常匱乏,致使混凝土底板溫度約束應力的計算存在困難。王鐵夢[18]曾給出巖石上直接澆筑混凝土的地基抗剪剛度系數取值為0.6~1.5N/mm3。而實際大量的工業與民用建筑結構中,混凝土底板并不是直接澆筑在巖體地基之上,而是在巖體地基之上設置混凝土墊層、防水層,甚至為降低約束會采用滑動層措施。在這些工況下,地基抗剪剛度系數如何取值尚不明確。為此,本文基于實際工程現場試驗對巖體地基條件下,在墊層、防水層、滑動層上澆筑混凝土底板的地基抗剪剛度系數取值進行研究,以補充溫度約束應力計算中的重要基礎參數。
在底板的任意點x處,截取一段dx長的微體,由均勻受力假定,微體的高度取全高H,其厚度為t,承受均勻內力為N(σx的合力),地基對板的剪力為Q(τ的合力),如圖1所示。

圖1 底板受地基約束計算簡圖Fig.1 Calculation diagram of base plate restrained by foundation
取水平投影,列出平衡方程∑x=0:
N+dN-N+Q=0
(1)
Htdσx+τtdx=0
(2)
(3)
任意點的位移由約束位移與自由位移組成:
u=uσ+aTx
(4)
(5)
(6)
τ=-Cxu
(7)
設:
(8)
(9)
解此微分方程,得位移u的表達式(端部位移u,最大水平法向應力、剪應力都由位移導出):
(10)
(11)
(12)
可見,水平法向力最大值在截面的中點x=0處,此處剪應力τ=0,即最大主應力:
x=0,chβx=1
(13)
顯然,式(13)中地基抗剪剛度系數Cx是計算溫度約束應力的重要基礎參數,其與地基條件相關。
選取某地下車庫工程作為試驗對象,其混凝土底板設置防水層,具體做法如圖2所示。底板采用C30混凝土,厚度500mm。基礎持力層為花崗巖中風化或微風化帶。試驗底板施工區段平面長度為33.6m,沿長度方向布置了5個溫度和應變測點,儀器選用MCU16型無線自動綜合采集儀和A150型埋入式應變計,MCU16型無線自動綜合采集儀通過遠程計算機管理和監測,可以實現實時的溫度和應變數據采集,現場測點布設平面如圖3所示。從底板澆筑開始,監測試驗共持續了63天。

圖2 底板構造做法Fig.2 Construction method of base plate

圖3 現場測點布設平面(單位:m)Fig.3 Layout plan of monitoring points(unit:m)
根據埋設的應變計,可獲得實際應變與溫度隨時間的變化曲線。自由應變主要包括干縮和溫度變化引起的熱脹冷縮,其中干縮值可由干縮經驗計算公式獲得,溫度變化項由應變計讀取的溫差與混凝土線膨脹系數乘積獲得。典型測點(中間測點)的自由應變與實際應變時程變化曲線如圖4所示。進一步由實際應變與自由應變作差,可計算得出約束應變。

圖4 中間測點自由應變與實際應變時程曲線Fig.4 Time history curve of free strain and actual strain of intermediate measuring point
為分析約束應變在底板長度方向的分布規律,計算了7,14,30,45,60d時,由于混凝土澆筑過程中導致右側邊部測點損壞(圖3中5號測點),其余4個測點的約束應變在長度方向的數值大小分布如圖5所示。其在長度方向,基本呈現中間大、邊部小的分布規律,與理論分析基本一致。

圖5 各測點約束應變的平面分布Fig.5 Plane distribution of constraint strain at each measuring
由式(8)和(13)可以推出地基抗剪剛度系數Cx計算公式:
(14)
Cx=βn2HEn
(15)
式中:εz為某一時間點的自由應變累計值;εs為某一時間點的實際應變累計值;α為混凝土的線膨脹系數,取10×10-6/℃;H為底板厚度,取500mm;L為墻體長度,取33 600mm;En為混凝土彈性模量。
由于式(15)是按累計自由應變和實際應變計算地基抗剪剛度系數,而每一個累計時間段中的彈性模量也是變化的。由于影響每一時間段應變增量的主要因素是溫差,所以按每個時間段溫差的權重計算累計的彈性模量,較按時間平均的彈性模量更為合理,故采用式(16)計算加權彈性模量。此時,計算得到巖體地基防水層構造條件下地基抗剪剛度系數取值在0.08~0.1N/mm3。
(16)
式中:Ei為第i天的彈性模量;ΔTi為第i天的綜合溫度增量。
為了得到巖石地基條件下更多不同構造做法的地基抗剪剛度系數,參照GB/T 50269—2015《地基動力特性測試規范》中提出的方法,進行了巖石地基上的防水層、墊層、滑動層3種構造條件的動力測試,并基于量綱分析,計算墊層和滑動層構造條件下的地基抗剪剛度系數。
在2.1節試驗工程原位巖石地基上,分別在墊層、防水層、滑動層3種構造條件上澆筑試驗標準混凝土試塊,試塊尺寸為2 000mm×1 500mm×1 000mm,混凝土強度等級為C30。其中,防水層構造做法與2.1節試驗工程相同,墊層和滑動層構造做法采用工程常用做法。
將基坑開挖至基巖,進行基底清槽、驗槽,澆筑3塊混凝土墊層,依次編號為R1,R2,R3。澆筑尺寸為2 250mm×1 750mm×100mm,混凝土強度等級為C20。墊層施工具體做法為:混凝土澆筑后,用板式表面振動器搗鼓密實,再用標桿檢查上平尺寸,粗略找平后用木杠刮抹順平,表面再用木抹子搓平。
防水層做法與工程防水層做法相同,如圖6所示。選取R1,R2兩塊墊層,施工完成后養護,直到墊層強度滿足設計要求,進行防水層施工。防水層施工具體做法為:①鋪1層合成高分子防水卷材,厚度為1.5mm;②鋪1層合成高分子防水卷材(濕鋪自粘),厚度為1.5mm;③鋪1層聚酯無紡布;④做C20細石混凝土保護層,厚度為50mm。

圖6 防水層做法Fig.6 Waterproofing layer practice
滑動層即在防水層上鋪1層細砂起到滑動的作用,如圖7所示。本試驗滑動層的施工是在R3塊防水層的聚酯無紡布鋪設完畢后進行的,具體做法為:①平整清理干凈R3塊防水層的聚酯無紡布;②鋪1層塑料薄膜,厚度為0.2mm;③鋪1層細砂,厚度為20mm;④鋪1層塑料薄膜,厚度為0.2mm;⑤做C20細石混凝土保護層,厚度為50mm。

圖7 滑動層做法Fig.7 Sliding layer practice
實際施工中針對滑動層的情況還應注意以下幾點:①砂子進行二次篩分,徹底除去雜質;②砂子篩分后充分晾曬,確保含水量3%;③鋪砂時每隔1.5m放置等同厚度的木龍骨來保證砂層的厚薄均勻,并用木杠刮平;④抽出木條用木抹子拍實砂子;⑤上層的塑料布邊可以直接用膠布貼在方木上;⑥下層塑膠布的固定可以直接用磚壓實,或者嵌入方土里。
由于壓實程度不同會影響試塊剛度,從而影響試塊自由振動測試速度衰減速率而影響結果,需達到壓實指標。試件以壓實系數λc控制壓實指標,壓實系數為現場實際干密度與標準擊實試驗的最大干密度之比的百分率。地下車庫上部為框架結構,基礎為獨立柱基和防水板,不承重,根據GB 50007—2011《建筑地基基礎設計規范》,試驗時控制λc不小于0.94以達到壓實標準。
本試驗采用DH5902堅固型數據采集儀和941B型超低頻傳感器進行試塊振動速度采集。941B型超低頻傳感器設有加速度、小速度、中速度和大速度四檔,本試驗根據工況的速度量級,選用小速度檔,其中靈敏度為23(V·s)/m,最大速度為20m/s,最大位移為20mm。
自由振動的測試是在基礎頂面沿著長度方向軸線的兩端各布置1臺豎向傳感器,在中間布置1臺水平向傳感器,如圖8所示。

圖8 試驗傳感器布設Fig.8 Layout of test sensor
對在不同地基條件上澆筑的混凝土試塊進行敲擊,激發試塊進行自由衰減振動,基于超低頻傳感器和數據采集儀可以獲得試塊自由振動速度衰減曲線,如圖9所示。通過傅里葉變換,繪制試塊自由振動頻譜圖,如圖10所示,計算得到試塊自振周期,經求得滑動層、防水層、墊層的自振周期分別為0.025,0.014,0.008s。

圖9 各層自由振動衰減曲線Fig.9 Free vibration attenuation curve of each layer

圖10 各層自由振動頻譜Fig.10 Free vibration spectrum of each layer
根據量綱理論,一個物理現象一般總可用下述函數來表示:
P0=f(P1,P2,…,Pk,Pk+1,…,Pn)
(17)
式中:每個量Pi(i=0,1,…,n)都是由數量和單位組成的,可以是定量,也可以是變量。很顯然,單位的選擇與物理現象的本質無關。一個由n個有量綱的物理量參與的物理過程中的函數關系都可以轉換成n-m個物理量組成的無量綱的函數關系,其中,m是獨立量綱物理量的個數。在一般物理現象中,每個量的量綱均可由基本量綱單位時間T,質量M和長度L三者表示,所以n+1個量中獨立量綱的量不超過3個。
故通過Buckingham π定理可將式(17)轉化為以下形式:
Π0=f(1,1,1,π4,…,πn)
(18)
式中:Πi(i=0,4,…,n)均為無量綱量,Πi的數值大小與原先各單位的選取無關。這樣,由n+1個有量綱量表示的物理關系可轉化為3個數量為1的有量綱量和n-2個無量綱量的物理關系。
對于巖體地基抗剪剛度系數問題,根據其定義,可表述為如下函數關系:
Cx=f(A,m,T)
(19)
式中:Cx為地基抗剪剛度;A為基礎底面積;m為塊體質量;T為塊體自振周期。
取A,m,T三者為基本量:[A]=A,[m]=M,[T]=T;則,量Cx可表示為A,T,M的冪次單項式,進而可得無量綱積Π0,具體有:
Π0=CxT2/MA
(20)
根據式(20)可知,在塊體底面積和質量不變的條件下有:
Cx∝1/T2
(21)
由式(19)和式(21)可知,不同構造條件下巖體的地基抗剪剛度系數之間的相似關系只與其自振周期有關。基于自由振動測試獲得的試塊自由振動周期,通過上文現場實測巖體防水層地基抗剪剛度系數,即可計算出滑動層和墊層的地基抗剪剛度系數。計算得到巖體地基在滑動層、墊層構造條件下地基抗剪剛度系數取值分別為0.026~0.033N/mm3,0.26~0.32N/mm3。
1)本文基于量綱分析和現場實測對巖體地基抗剪剛度系數進行了研究,計算得出巖體地基在滑動層、防水層和墊層構造條件下地基抗剪剛度系數取值分別為0.026~0.033,0.08~0.1,0.26~0.32N/mm3,可為實際工民建結構相應構造條件下的基礎底板溫度約束應力計算提供參考。
2)從數值上看,滑動層、防水層和墊層的地基抗剪剛度系數取值范圍依次增大,表明設置滑動層和防水層會減小巖體地基對底板的約束作用。在實際工程中,對于一些不適于布置后澆帶或者伸縮縫的超長結構,可考慮在巖體地基上設置滑動層等做法減少裂縫;防水層會降低巖體地基對底板的約束作用,在計算溫度應力時,應考慮防水層的積極作用。