秦鈺潔 郭明明 陳永晶 周利



摘要:雙丙環蟲酯是一種新型生物源殺蟲劑,2023年在我國登記用于茶樹中茶小綠葉蟬的防治。建立了改良QuEChERS法結合超高效液相色譜-串聯質譜法(UPLC-MS/MS)測定茶樹組織中雙丙環蟲酯及其代謝物M440I007的分析方法。茶樹根、莖、葉經水和乙腈提取,N-丙基乙二胺(PSA)、羥基化多壁碳納米管(MWCNT-OH)和石墨化炭黑(GCB)凈化,目標物用UPLC-MS/MS多反應監測模式(MRM)測定,基質匹配標準曲線外標法定量。在0.002~5.000 mg·L-1范圍內,兩種化合物的線性關系良好,決定系數(R2)>0.999 5。在0.005~2.000 mg·kg-1的添加水平下,兩種化合物的回收率為78.3%~106.0%,相對標準偏差(RSD)≤12.85%,方法的定量限(LOQ)和檢出限(LOD)分別為0.005 mg·kg-1和0.002 mg·kg-1。采用該方法,測得盆栽施藥處理土壤培養7 d的茶苗組織中雙丙環蟲酯的分布為根(0.102 mg·kg-1)>莖(0.078 mg·kg-1)>葉(0.007 mg·kg-1),其轉運因子TFroot-stem和TFstem-leaf均小于1,代謝物M440I007的殘留水平均在定量限以下。本研究建立的方法成本低、準確度和靈敏度高,可為進一步研究雙丙環蟲酯和M440I007在茶樹中的吸收傳導行為提供技術基礎。
關鍵詞:茶樹;農殘;雙丙環蟲酯;M440I007;檢測方法
中圖分類號:S571.1;S482?? ?????????????文獻標識碼:A?????????????? 文章編號:1000-369X(2024)03-515-11
Determination of Afidopyropen and Metabolite M440I007 in Tea Tissues by Modified QuEChERS Coupled with Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry
QIN Yujie1,2, GUO Mingming1,2, CHEN Yongjing3, ZHOU Li1*
1. Research Center of Quality Safety for Agricultural Products, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; 2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
3. Hengzhou Jasmine Industry Service Center, Hengzhou 530300, China
Abstract: Afidopyropen, a novel biorational insecticide, was registered in China in 2023 for the control of tea leafhoppers in tea plantation. In this study, an analytical method was developed for the determination of afidopyropen and its metabolite M440I007 in tea tissues by a modified QuEChERS method combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Roots, stems and leaves of tea plants were extracted by water and acetonitrile, and purified with primary secondary amine (PSA), hydroxylated multi-walled carbon nanotubes (MWCNT-OH) and graphitized carbon black (GCB). The target compounds were determined by UPLC-MS/MS in multiple reaction monitoring (MRM) mode, and quantified by external standard method with matrix-matched standard curve. Both targets display excellent linearity (R2>0.999 5) in the range of 0.002-5.000 mg·L-1. The recoveries of both compounds at the spiked levels of 0.005-2.000 mg·kg-1 ranged from 78.3% to 106.0% with the relative standard deviations (RSD) ≤ 12.85%. The limits of quantification (LOQs) and detection (LODs) of the method were 0.005 mg·kg-1and 0.002 mg·kg-1, respectively. The developed method was applied to detect afidopyrofen and M440I007 in tea seedling tissues cultured in soil treated with afidopyropen in a pot experiment for 7 days. The results show that the distribution of afidopyropen in the tissues was roots (0.102 mg·kg-1) > stems (0.078 mg·kg-1) > leaves (0.007 mg·kg-1). The translocation factors, TFroot-stem and TFstem-leaf, were both less than 1, and the residue levels of the metabolite M440I007 were below the LOQ. The method established in this study is low-cost, accurate and sensitive, which can serve as a technical basis for further research on the uptake and transport behaviors of afidopyropen and M440I007 in tea plants.
Keywords: tea plant, pesticide residues, afidopyropen, M440I007, detection method
環境中的農藥殘留能被植物吸收并在體內富集造成植物中的農藥殘留污染[1],監測植物組織中的農藥水平對評價其在植物中的吸收、傳導,以及對后茬作物的影響及植物中農藥殘留的來源追溯具有重要意義。雙丙環蟲酯是一種新型生物源殺蟲劑[2],于2023年9月在茶樹上登記用于茶小綠葉蟬的防治[3],其在茶樹葉片上會代謝產生與其毒性相似的M440I007[4-5]。M440I007是雙丙環蟲酯在植物體中的主要代謝物,二者結構式如圖1所示。此外,雙丙環蟲酯在環境中具有中等持久性[6],隨著雙丙環蟲酯在我國茶園的推廣使用,茶園環境中的雙丙環蟲酯可能被茶樹吸收并在茶樹組織中轉運,所以開發茶樹組織中雙丙環蟲酯和M440I007的快速靈敏檢測方法十分必要。
目前,樣品中農藥殘留檢測的前處理技術有液液萃取(LLE)[7]、固相萃取(SPE)[8]、固相微萃取(SPME)[9]和分散固相萃取(d-SPE)[10]等。其中,LLE操作簡單,但溶劑用量大、凈化效果不好[11]。SPE凈化能力強,但消耗溶劑且固相萃取柱價格較高[12]。SPME雖然無需使用溶劑,但萃取頭成本較高[13]。d-SPE具有操作簡單快速、溶劑用量少、應用成本低等優點,基于此技術開發的QuEChERS前處理方法被廣泛應用于植物源樣品中的農
藥殘留分析[14-16]。對雙丙環蟲酯和M440I007檢測方法的研究較少,主要集中在果蔬[17-22]、小麥[23]和棉花[24]等簡單基質上。對復雜基質中雙丙環蟲酯和M440I007的檢測方法研究,僅Guo等[25]建立了茶葉中目標物經水和乙腈提取,固相萃取柱TPT凈化的分析方法,但該法中有機溶劑的使用量較大、TPT柱的成本較高。
本研究擬建立一種低成本的改良QuEChERS結合UPLC-MS/MS方法檢測茶樹組織中雙丙環蟲酯和代謝物M440I007殘留的分析方法,為探究其在茶樹體內的吸收傳導行為提供參考。
1 材料與方法
1.1 儀器與試劑
UPLC/Quattra Premier XE超高效液相色譜-三重四極桿質譜聯用儀,ESI源,Mass Lynx 4.1 質譜工作站軟件(美國Waters公司);Acquity UPLC HSS-T3色譜柱(100 mm×2.1 mm,1.8 ?m,美國Waters公司);DFT-200食品粉碎機(溫嶺市林大機械有限公司);Votertex Genie-2渦旋振蕩器(美國Scientific industries公司);KQ-500DE超聲波清洗機(昆山市超聲儀器有限公司);高速離心機(德國Sigma公司);R-210旋轉蒸發儀(瑞士Buchi公司);0.22 μm有機濾膜(天津博納艾杰爾科技有限公司)。
雙丙環蟲酯標準品(純度98.7%)、M440I007標準品(純度90.2%)、50 g·L-1雙丙環蟲酯可分散液劑購自巴斯夫歐洲公司,乙腈(色譜純)購自賽默飛世爾科技(中國)有限公司,甲酸(色譜純)購自CNW Technologies GmbH公司,純凈水購自杭州娃哈哈集團有限公司,N-丙基乙二胺(PSA,40~63 μm)購自上海安譜實驗科技股份有限公司,羥基化多壁碳納米管(MWCNT-OH,50 nm)購自中國科學院成都有機化學有限公司,石墨化炭黑(GCB,120~400目)購自天津博納艾杰爾科技有限公司。
1.2 標準溶液配制
分別稱取雙丙環蟲酯和M440I007標準品于10 mL容量瓶,色譜純乙腈溶液定容后搖勻,配制成200 mg·L-1單標準品儲備溶液。分別吸取兩種化合物單標準品儲備液于25 mL容量瓶,色譜純乙腈溶液定容后搖勻,配制成50 mg·L-1混合標準品儲備液。用色譜純乙腈逐級稀釋成10.00、1.00、0.10、0.01 mg·L-1系列混合標準品工作溶液。
1.3 試驗方法
1.3.1 盆栽試驗方法
利用盆栽模擬試驗收集茶樹根、莖、葉樣品。向150 mL水中加入600 μL雙丙環蟲酯農藥乙腈溶液(0.5 g·L-1),充分混合后倒入1.5 kg土壤(采于中國農業科學院茶葉研究所茶園,風干后過10目篩),攪拌均勻,使其在土壤中的質量分數為0.2 mg·kg-1。含藥土壤裝至底部墊有濾紙的花盆后,選擇長勢大致相同的茶苗移栽,澆水使茶苗培養期間的土壤含水率約為25%[26],設置無藥土壤作為對照組。稱重法每天補水至初始重量,7 d后采集3株茶樹樣品,用清水將根系土壤沖洗干凈,然后用濾紙擦干,分離根、莖和葉,分別稱重記錄,均質后在﹣18 ℃冰箱中凍存,待測。
1.3.2 樣品前處理
根和莖基質樣品(一次凈化):分別稱取0.50 g根或莖(不含葉)磨碎樣品于50 mL離心管,加入2 mL水,渦旋混勻靜置15 min后加入10 mL乙腈,振蕩5 min,超聲提取15 min后加入2 g氯化鈉,渦旋2 min,于10 000 r·min-1離心5 min。取全部上清液于含有凈化劑(根為50 mg PSA,莖為50 mg PSA+5 mg MWCNT-OH)的10 mL離心管中,渦旋1 min,于10 000 r·min-1離心5 min。取8 mL上清液于40 ℃旋轉蒸發濃縮至干燥,加入1 mL乙腈溶解殘渣,過0.22 μm有機濾膜,待UPLC-MS/MS測定。
鮮葉基質樣品(二次凈化):稱取0.50 g鮮葉磨碎樣品于50 mL離心管,加入2 mL水,渦旋混勻靜置15 min后加入10 mL乙腈,振蕩5 min,超聲提取15 min后加入2 g氯化鈉,渦旋2 min,于10 000 r·min-1離心5 min。取全部上清液于含有凈化劑(200 mg PSA+5 mg MWCNT-OH)的10 mL離心管中,渦旋1 min,于10 000 r·min-1離心5 min。取8 mL上清液于40 ℃旋轉蒸發濃縮至干燥,加入1 mL乙腈溶解殘渣。溶液轉移至含有10 mg GCB的2 mL離心管中,渦旋1 min,于12 000 r·min-1離心5 min,過0.22 μm有機濾膜,待UPLC-MS/MS測定。
1.3.3 色譜條件
Acquity UPLC HSS-T3色譜柱(100 mm×2.1 mm,1.8 ?m),柱溫40 ℃,進樣量5 μL,樣品室溫度10 ℃。流動相A為0.1%甲酸乙腈,流動相B為純凈水。梯度洗脫程序:0 min(5% A)→0.5 min(30% A)→3.0 min(70% A)→5.0 min(85% A)→6.0 min(99% A)→7.5 min(5% A,保持1.5 min),流速0.25 mL·min-1。
1.3.4 質譜條件
采用電噴霧電離ESI+模式MRM測定;電噴霧電壓3.5 kV;離子源溫度150 ℃;脫溶劑氣溫度350 ℃;錐孔反吹氣為N2;流量50 L·h-1;脫溶劑氣為N2,流量700 L·h-1;碰撞氣為Ar,流量0.35 mL·min-1;倍增電壓650 V。其他參數見表1。
1.4 數據處理
基質效應(Matrix effect,ME)是指樣品本身所含物質干擾目標分析物檢測信號的現象。計算公式為ME=(k2/k1-1)×100%,k1為純溶劑標準曲線的斜率,k2為基質匹配標準曲線的斜率。一般認為,|ME|≤20%時為弱基質效應,20%<|ME|≤50%為中等基質效應,|ME|>50%為強基質效應[25,27]。
2 結果與分析
2.1 莖基質凈化過程優化
PSA可以去除有機酸、茶多酚和少量色素等,常在QuEChERS方法中使用[28-29]。MWCNT-OH是一種新型羥基化碳材料,對色素有較強吸附性[27,30]。本研究考察了50 mg PSA與不同用量MWCNT-OH組合對莖基質中雙丙環蟲酯和M440I007回收率及基質效應的影響與色素去除的效果,結果如圖2和圖3所示。50 mg PSA分別與0、2、5 mg MWCNT-OH組合下,雙丙環蟲酯和M440I007的回收率相差不大,隨著MWCNT-OH用量的增加,M440I007的基質抑制效應逐漸減小。但是當MWCNT-OH用量增加到8 mg和10 mg時,雙丙環蟲酯和M440I007的回收率降低,小于60%,回收率較差,可能是由于高含量的MWCNT-OH對目標物質產生了較強的吸附[31]。在滿足回收率的同時,MWCNT-OH用量為5 mg時的莖樣品顏色最淺,故選擇50 mg PSA+5 mg MWCNT-OH作為莖基質的凈化劑。
2.2 葉基質凈化過程優化
基于莖的凈化劑用量對葉基質中PSA的
用量進行優化。由圖4可知,隨著PSA用量的增加,葉中雙丙環蟲酯和M440I007的回收率逐漸增加,兩種化合物在葉中的基質抑制效應逐漸減小。當PSA用量為200 mg時,二者回收率達90.6%和95.0%,基質抑制效應降低至14.04%和26.65%,滿足農藥殘留分析的要求,但此時葉基質樣品的顏色仍然較深(圖5B,0 mg GCB),大批量進樣將加速色譜柱、儀器管路和檢測器的污染,增加儀器維護頻率,所以需對葉基質凈化過程進一步優化。
GCB對色素類共提取物具有較好的去除效果[17],且應用成本低于MWCNT-OH,因此考察了在200 mg PSA+5 mg MWCNT-OH中直接組合GCB的一次凈化方式對葉基質中雙丙環蟲酯和M440I007回收率、基質效應及色素去除的影響,結果如圖5所示。增加GCB用量在30~70 mg范圍,對雙丙環蟲酯和M440I007在葉基質中的基質效應和回收率改善不明顯,樣品中仍有較多色素。
加入凈化劑的階段可能會影響凈化效果,因此試驗中考察了GCB單獨用于二次凈化的效果,即在200 mg PSA+5 mg MWCNT-OH凈化、1 mL乙腈溶解后使用GCB再次凈化。如圖6所示,二次凈化中GCB用量對葉基質
中雙丙環蟲酯回收率的影響較大,當GCB用量由0增加到10 mg時,雙丙環蟲酯和M440I007的回收率均高于72.0%(圖5A),且雙丙環蟲酯的基質抑制效應減小,溶液顏色變淺(圖5B和圖6B);繼續增加GCB用量到30 mg和50 mg時,雖然溶液顏色持續變淺,但是雙丙環蟲酯的基質效應有所增加且回收率降低至60.0%以下,可能是高含量的GCB對目標物的吸附作用增強[24]。因此改變GCB的加入階段,將其作為二次凈化的凈化劑應用于小體積凈化以提高對共提取物的凈化效果。試驗中選用200 mg PSA+5 mg MWCNT-OH一次凈化,結合10 mg GCB二次凈化的方式對葉基質進行凈化。
2.3 方法評價
2.3.1 方法的線性范圍和基質效應
純溶劑(乙腈)及基質(根、莖、葉)中雙丙環蟲酯和M440I007的線性方程、相關系數和基質效應如表2所示。在0.002~5.000 mg·L-1范圍內,雙丙環蟲酯和M440I007在各基質中的線性良好,相關系數在0.999 5~1.000 0,基質抑制效應范圍為31.56%~59.28%。本方法中茶基質對雙丙環蟲酯和M440I007主要表現為中等基質抑制效應,因此本研究采用基質匹配標準曲線進行定量分析以減少基質效應的干擾。以信噪比(S/N)>3的基質中可檢出的最低濃度為LOD,雙丙環蟲酯和M440I007在茶樹根、莖和葉中的LODs為0.002 mg·kg-1。
2.3.2 方法的準確度、精密度和定量限
茶樹根、莖和葉中雙丙環蟲酯和M440I007的添加回收率和相對標準偏差如表3所示。4個添加水平(0.005、0.020、0.200、2.000 mg·kg-1)下,雙丙環蟲酯和M440I007在茶樹根、莖和葉中的平均回收率為78.3%~106.0%,RSD為1.23%~12.85%,滿足殘留分析檢測的準確度和精密度要求。以最低添加水平作為方法定量限(LOQ),雙丙環蟲酯和M440I007在茶樹根、莖和葉中的LOQs為0.005 mg·kg-1。
2.4 盆栽試驗結果
基于上述建立的農藥殘留分析方法,對在0.2 mg·kg-1雙丙環蟲酯的土壤中培養7 d的茶苗進行檢測,結果如表4所示。茶苗根、莖和葉中雙丙環蟲酯的殘留水平為根(0.102 mg·kg-1)>莖(0.078 mg·kg-1)>葉(0.007 mg·kg-1),雙丙環蟲酯在茶苗根、莖和葉中的分布存在差異,代謝物M440I007的殘留水平均在定量限以下,可能因為施藥濃度較低、試驗時間較短或植株代謝緩慢,茶苗中的低母體殘留產生的代謝物濃度較低。
以轉運因子(Transfer factor,TF)評價茶樹對目標化合物的傳導能力,其計算公式為
TFroot-stem=Cstem/Croot,TFstem-leaf=Cleaf/Cstem,其中Croot、Cstem和Cleaf分別表示目標化合物在根、莖和葉中的殘留水平,TFroot-stem表示目標化合物從根向莖的轉運因子,TFstem-leaf表示目標化合物從莖向葉的轉運因子[32]。雙丙環蟲酯的轉運因子TFroot-stem和TFstem-leaf分別為0.796和0.102,說明雙丙環蟲酯從根向莖轉運的能力大于從莖向葉的轉運能力;但TFroot-stem和TFstem-leaf均小于1,表明目標化合物傳導能力弱,雙丙環蟲酯不易從茶苗根中向上傳導到莖和葉中。
3 結論
本研究通過比較不同凈化條件對雙丙環蟲酯和M440I007回收率的影響,建立了水和乙腈提取,PSA、MWCNT-OH和GCB兩步凈化并結合超高效液相色譜-串聯質譜測定茶樹根、莖和葉中雙丙環蟲酯和M440I007的QuEChERS殘留分析方法。該方法與TPT固相萃取法相比,減少了有機溶劑使用,降低了前處理技術的時間和耗材成本,具有簡便、快速的優勢。實際茶樹根、莖、葉中目標化合物的測定結果表明,建立的改良QuEChERS法可應用于茶樹組織中目標物的測定,為研究雙丙環蟲酯和M440I007在茶樹中的吸收傳導行為提供技術基礎。
參考文獻
262Affholder M C, Cohen G J V, Gombert-Courvoisier S, et al. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: new perspectives for food safety and phytomanagement of contaminated soils [J]. Science of the Total Environment, 2023, 859: 160152. doi: 10.1016/j.scitotenv.2022.160152.
263譚海軍. 新型生物源殺蟲劑雙丙環蟲酯[J]. 世界農藥, 2019, 41(2): 61-64.
Tan H J. The novel biological insecticide afidopyropen [J]. World Pesticides, 2019, 41(2): 61-64.
264農業農村部農藥檢定所. 中國農藥信息網[EB/OL]. [2024-3-2]. http://www.icama.org.cn/zwb/dataCenter.
Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs. China pesticide information network [EB/OL]. [2024-3-2]. http://www.icama.org.cn/zwb/
dataCenter.
265Guo M M, Sun H Z, Wang X R, et al. Residue behavior and risk assessment of afidopyropen and its metabolite M440I007 in tea [J]. Food Chemistry, 2023, 404: 134413. doi: 10.1016/j.foodchem.2022.134413.
266FAO and WHO. Pesticide residues in food 2019-report 2019-joint FAO/WHO meeting on pesticide residues [EB/OL]. [2024-03-20]. https://www.fao.org/3/ ca7455en/
ca7455en.pdf.
267Keigwin R P. Final registration decision for the new active ingredient; first new food & outdoor uses, afidopyropen [EB/OL]. (2018-09-04)[2024-03-20]. https://www.regulations.
gov/document/EPA-HQ-OPP-2016-0416-0024.
268Shin J M, Choi S, Park Y H, et al. Comparison of QuEChERS and liquid-liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS [J]. Food Control, 2022, 141: 109202. doi: 10.1016/j.foodcont.2022.109202.
269馬麗莎, 鄭光明, 尹怡, 等. 固相萃取/超高效液相色譜-串聯質譜法測定稻漁水體中氟蟲腈及其代謝物[J]. 分析測試學報, 2022, 41(11): 1678-1683.
Ma L S, Zheng G M, Yin Y, et al. Determination of fipronil and its metabolites in rice fishing water samples by SPE/UPLC-MS/MS [J]. Journal of Instrumental Analysis, 2022, 41(11): 1678-1683.
270Zhang X Y, Li Z, Wang Y, et al. Preparation of black phosphorus nanosheets/zeoliticimidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides [J]. Journal of Chromatography A, 2023, 1708: 464339. doi: 10.1016/j.
chroma.2023.464339.
271Bhuiya A, Yasmin S, Shaikh M A A, et al. Method development of multi pesticide residue analysis in country beans collected from Dhaka, Bangladesh, and their dietary risk assessment [J]. Food Chemistry, 2024, 445: 138741. doi: 10.1016/j.foodchem.2024.138741.
272徐芷怡, 陳夢婷, 侯錫愛, 等. QuEChERS-高效液相色譜-串聯質譜法同時測定芝麻油中7種農藥殘留[J]. 分析化學, 2020, 48(7): 928-936.
Xu Z Y, Chen M T, Hou X A, et al. Simultaneous determination of seven pesticide residues in sesame oil using QuEChERS-high performance liquid chromatography-
tandem mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 928-936.
273韓梅, 郭靈安, 焦穎, 等. 比較3種不同前處理方法結合高分辨質譜測定姜中農藥殘留的效果[J]. 食品安全質量檢測學報, 2021, 12(9): 3674-3683.
Han M, Guo L A, Jiao Y, et al. Comparison of the effects of 3 kinds of different pretreatment methods combined with high-resolution mass spectrometry applied to the determination of pesticide residues in ginger [J]. Journal of Food Safety & Quality, 2021, 12(9): 3674-3683.
274雷紫依, 蘇光林, 李跑, 等. 植物源性食品中多農藥殘留GC-MS高通量快速檢測技術研究進展[J]. 分析測試學報, 2023, 42(10): 1370-1380.
Lei Z Y, Su G L, Li P, et al. Research progress of high-throughput and rapid detection of multi-pesticide residues in plant-derived food samples based on GC-MS [J]. Journal of Instrumental Analysis, 2023, 42(10): 1370-1380.
275Schenck F J, Hobbs J E. Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 73(1): 24-30.
276Dong Y, Das S, Parsons J R, et al. Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS [J]. Journal of Hazardous Materials, 2023, 458: 131992. doi: 10.1016/j.jhazmat.2023.131992.
277李自強, 楊梅, 張新忠, 等. 改良QuEChERS方法與UPLC-MS/MS聯用測定茶葉中草甘膦、草銨膦及氨甲基膦酸[J]. 茶葉科學, 2023, 43(2): 263-274.
Li Z Q, Yang M, Zhang X Z, et al. Simultaneous determination of glyphosate, glufosinate and aminomethyl phosphonic acid residues in tea by modified QuEChERS method coupled with UPLC-MS/MS [J]. Journal of Tea Science, 2023, 43(2): 263-274.
278Chen K Y, Liu X G, Wu X H, et al. Simultaneous determination of afidopyropen and its metabolite in vegetables, fruit and soil using UHPLC-MS/MS [J]. Food Additives & Contaminants: Part A, 2018, 35(4): 716-723.
279邵輝, 劉磊, 李輝, 等. UPLC-MS/MS法測定蘋果中雙丙環蟲酯及其代謝物殘留量[J]. 農藥, 2019, 58(7): 511-514.
Shao H, Liu L, Li H, et al. Determination of afidopyropenandits metabolite residues in apple by UPLC-MS/MS [J]. Agrochemicals, 2019, 58(7): 511-514.
280Chawla S, Gor H N, Patel H K, et al. Validation of a QuEChERS-based method for the estimation of afidopyropen in Brinjal (Solanum melongena L.) and soil [J]. Journal of AOAC International, 2020, 103(1): 68-72.
281Xie J, Zheng Y X, Liu X G, et al. Human health safety studies of a new insecticide: dissipation kinetics and dietary risk assessment of afidopyropen and one of its metabolites in cucumber and nectarine [J]. Regulatory Toxicology and Pharmacology, 2019, 103: 150-157.
282Liu X L, Ban N, Fu Z X, et al. Persistent toxicity and dissipation dynamics of afidopyropen against the green peach aphid Myzus persicae (Sulzer) in cabbage and chili [J]. Ecotoxicology and Environmental Safety, 2023, 252: 114584. doi: 10.1016/j.ecoenv.2023.114584.
283郇志博, 于世幸, 王明月, 等. 3種殺蟲劑在豇豆中的殘留行為及膳食風險評估[J]. 農藥, 2023, 62(10): 741-745.
Huan Z B, Yu S X, Wang M Y, et al. Residue behavior and dietary risk assessment of 3 insecticides in cowpea [J]. Agrochemicals, 2023, 62(10): 741-745.
284Chen Y J, Guo M C, Liu X G, et al. Determination and dissipation of afidopyropen and its metabolite in wheat and soil using QuEChERS-UHPLC-MS/MS [J]. Journal of Separation Science, 2018, 41(7): 1674-1681.
285Hou X A, Qiao T, Zhao Y L, et al. Dissipation and safety evaluation of afidopyropen and its metabolite residues in supervised cotton field [J]. Ecotoxicology and Environmental Safety, 2019, 180: 227-233.
286Guo M M, Qin Y J, Sun H Z, et al. Method validation for detection of afidopyropen and M440I007 in tea [J]. Journal of the Science of Food and Agriculture, 2023, 103(12): 5738-5746.
287邵奇, 吳濤, 解雪峰, 等. 不同植茶年限土壤氮素組分變化及其與環境因子關系[J]. 環境科學, 2024, 45(3): 1665-1673.
Shao Q, Wu T, Xie X F, et al. Changes in soil nitrogen components and their relationship with environmental factors with different tea plantation ages [J]. Environmental Science, 2023, 45(3): 1665-1673.
288Wang Z H, Wang X R, Wang M, et al. Establishment of a QuEChERS-UPLC-MS/MS method for simultaneously detecting tolfenpyrad and its metabolites in tea [J]. Agronomy, 2022, 12(10): 2324. doi: 10.3390/agronomy12102324.
289Perestrelo R, Silva P, Porto-Figueira P, et al. QuEChERS-fundamentals, relevant improvements, applications and future trends [J]. Analytica Chimica Acta, 2019, 1070: 1-28.
290黃田田, 湯樺, 董曉倩, 等. 多壁碳納米管QuEChERS-氣相色譜法測定茶葉中23種有機磷農藥殘留量[J]. 食品科學, 2018, 39(6): 315-321.
Huang T T, Tang H, Dong X Q, et al. Determination of 23 organophosphorus pesticide residues in tea by QuEChERS extraction with multi-walled carbon nanotubes (MWCNTs) coupled to gas chromatography [J]. Food Science, 2018, 39(6): 315-321.
291榮杰峰, 韋航, 李亦軍, 等. 羥基化多壁碳納米管分散固相萃取-氣相色譜-質譜法測定茶葉中21種有機磷農藥[J]. 色譜, 2016, 34(2): 194-201.
Rong J F, Wei H, Li Y J, et al. Determination of 21 organophosphorus pesticides in tea by gas chromatography-mass spectrometry coupled with hydroxylated multi-walled carbon nanotubes based on dispersive solid-phase extraction [J]. Chinese Journal of Chromatography, 2016, 34(2): 194-201.
292Zhu B Q, Xu X Y, Luo J W, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent [J]. Food Chemistry, 2019, 276: 202-208.
293Fang N, Zhao X P, Li Y J, et al. Uptake, translocation and subcellular distribution of broflanilide, afidopyropen, and flupyradifurone in mustard (Brassica juncea) [J]. Journal of Hazardous Materials, 2023, 452: 131381. doi: 10.1016/j.
jhazmat.2023.131381.